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The principle of set theory known as the Axiom of Choice (AC) has been hailed as 

“probably the most interesting and, in spite of its late appearance, the most 

discussed axiom of mathematics, second only to Euclid’s axiom of parallels 

which was introduced more than two thousand years ago”1 It has been 

employed in countless mathematical papers, a number of monographs have been 

exclusively devoted to it, and it has long played a prominently role in 

discussions on the foundations of mathematics.  

In 1904 Ernst Zermelo formulated the Axiom of Choice in terms of what 

he called coverings (Zermelo [1904]).  He starts with an arbitrary set M and uses 

the symbol M′ to denote an arbitrary nonempty subset of M, the collection of 

which he denotes by M.  He continues: 

 

 Imagine that with every subset M′ there is associated an arbitrary element m1′ , 
that occurs in M′ itself; let m1′ be called the “distinguished” element of M′. This yields a 
“covering” γ of the set M by certain elements of the set M. The number of these coverings 
is equal to the product [of the cardinalities of all the subsets M′] and is certainly 
different from 0. 
 

The last sentence of this quotation—which asserts, in effect, that coverings 

always exist for the collection of nonempty subsets of any (nonempty) set—is 

Zermelo’s first formulation of AC2. This is now usually stated in terms of choice 

functions: here a choice function on a collection S  of nonempty sets is a map f 

                                                 
1 Fraenkel, Bar-Hillel and Levy [1973], §II.4. 
2 Zermelo does not actually give the principle an explicit name at this point, however. He does so only in 
[1908], where he uses the term “postulate of choice”.  
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with domain S  such that f(X) ∈ X for every X ∈ S.  Zermelo’s first formulation 

of the Axiom of Choice then reads: 

 

AC1         Any collection of nonempty sets has a choice function. 

  

AC1 can also be reformulated in terms of relations, viz.  

 

AC2          for any relation R between sets A, B,    

∀x∈A∃y∈B R(x,y) ⇒ ∃f: A → B ∀x∈A R(x, fx). 

  

 In his [1908] Zermelo offered a formulation of AC couched in somewhat 

different terms from that given in his earlier paper. Let us call a choice set for a 

family of sets S any subset T ⊆ ∪S  for which each intersection T ∩ X for X ∈ S  

has exactly one element. Zermelo’s second formulation of AC amounts to the 

assertion3 that any family of mutually disjoint nonempty sets has a choice. 

 Zermelo asserts that “the purely objective character” of this principle “is 

immediately evident.” In making this assertion meant to emphasize the  fact that 

in this form the principle makes no appeal to the possibility of making “choices”. 

It may also be that Zermelo had something like the following “combinatorial” 

justification of the principle in mind. Given a family S of mutually disjoint 

nonempty sets, call a subset S  ⊆ ∪S   a selector for S  if S ∩ X  ≠ ∅ for all X ∈ S . 

Clearly selectors for S  exist; ∪S  itself is an example. Now one can imagine 

taking a selector S for S  and “thinning out” each intersection S ∩ X  for X ∈ S  

until it contains just a single element. The result4 is a choice set for S .  

                                                 
3 Zermelo’s formulation reads literally: 
 A set S that can be decomposed into a set of disjoint parts A, B, C, ... , each containing at least one 
 element, possess at least one subset S1 having exactly one element with each of the parts A, B, C, ... , 
 considered. 
  
4 This argument, suitably refined, yields a rigorous derivation of AC in this formulation from Zorn’s lemma. 
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 Let us call Zermelo’s 1908 formulation the combinatorial axiom of choice:  

 

CAC 5     Any collection of mutually disjoint nonempty sets has a choice set. 

 

 It is to be noted that AC1 and CAC for finite collections of sets are both 

provable (by induction) in the usual set theories.  

  
  As is well-known, Zermelo’s original purpose in introducing AC was to 

establish a central principle of Cantor’s set theory, namely, that every set admits 

a well-ordering and so can also be assigned a cardinal number. His introduction 

of the axiom, as well as the use to which he put it, provoked considerable 

criticism from the mathematicians of the day. The chief objection raised was to 

what some saw as its highly non-constructive, even idealist, character: while the 

axiom asserts the possibility of making a number of—perhaps even uncountably 

many—arbitrary “choices”, it gives no indication whatsoever of how these latter 

are actually to be effected, of how, otherwise put, choice functions are to be 

defined. For this reason Bertrand Russell regarded the principle as doubtful at 

best. The French Empiricists Baire, Borel and Lebesgue, for whom a 

mathematical object could be asserted to exist only if it can be uniquely defined 

went further in explicitly repudiating the principle in the uncountable case.  

 On the other hand, a number of mathematicians came to regard the 

Axiom of Choice as being true a priori. These all broadly shared the view that for 

a mathematical entity to exist it was not necessary that it be uniquely definable. 

Zermelo himself calls AC a “logical principle” which “cannot … be reduced to a 

still simpler one” but which, nevertheless, “is applied without hesitation 

everywhere in mathematical deductions.” Ramsey asserts that “the 

                                                 
5 It is this formulation of AC that Russell and others refer to as the multiplicative axiom, since it is easily seen to be 

equivalent to the assertion that the product of arbitrary nonzero cardinal numbers is nonzero. 
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Multiplicative Axiom seems to me the most evident tautology”6. Hilbert 

employed AC in his defence of classical mathematical reasoning against the 

attacks of the intuitionists: indeed his ε-operators are essentially just choice 

functions. For him, “the essential idea on which the axiom of choice is based 

constitutes a general logical principle which, even for the first elements of 

mathematical inference, is indispensable.”7 

 A particularly interesting analysis of the axiom of choice was formulated 

by Paul Bernays8. He saw AC as the result of a natural extrapolation of what he 

terms “extensional logic”, valid in the realm of the finite, to infinite totalities. He 

considers formulation AC2, with the two sets A and B identical. In the special 

case in which A contains just two (or, more generally, finitely many elements), 

AC2 is essentially just the usual distributive law for ∧ over ∨. Bernays now 

observes: 

 

The universal statement of the principle of choice is then nothing other than the 

extension of an elementary-logical law [i.e. the distributive law] for conjunction 

and disjunction to infinite totalities, and the principle of choice constitutes thus a 

completion of the logical rules that concerns the universal and the existential 

judgment, that is, of the rules of existential inference, whose application to 

infinite totalities also has the meaning that certain elementary laws for 

conjunction and disjunction are transferred to the infinite.  

 

He goes on to remark that the principle of choice “is entitled to a special position 

only to the degree that the concept of function is required for its formulation.” 

Most striking is his further assertion that the concept of function “in turn receives 

an adequate implicit characterization only through the principle of choice.”  

                                                 
6 Ramsey [1926].  
7 Quoted in section 4.8 of Moore [ 1982].  
 
8 Bernays [1930-31], translated in Mancosu [ 1998] 
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 What Bernays seems to be saying here is that in asserting the antecedent 

of AC2, in this case ∀x∈A∃y∈A R(x,y), one is implicitly asserting the existence of 

a function f: A → A for which R(x,fx) holds for all x —that is, the consequent of 

AC2.  On the surface, this seems remarkably similar to the justification of AC 

under constructive interpretations of the quantifiers: indeed, under (some of) 

those interpretations (discussed further below), the assertability of an alternation 

of quantifiers ∀x∃yR(x,y) means precisely that one is given a function f for which 

R(x,fx) holds for all x. However, Bernays goes on to draw the conclusion that, for 

the concept of function arising in this way, “the existence of a function with a 

[given] property in no way guarantees the existence of a concept-formation 

through which a determinate function with [that] property is uniquely fixed.” In 

other words, the existence of a function may be asserted without the ability to 

provide it with an  explicit definition9. This is incompatible with stronger 

versions of constructivism.    

 Bernays and the constructivists both affirm AC2 through the claim that its 

antecedent and its consequent have the same meaning. The difference is that, while 

Bernays in essence agrees with the constructive interpretation in treating the 

quantifier block ∀x∃y as meaning ∃f∀x, he interprets the existential quantifier in 

the latter classically, so that in affirming “there is a function ” it is not necessary, 

as under the constructive interpretation, actually to be given such a function.  

Per Martin-Löf has recently10 contrasted the constructive affirmability of  

Zermelo’s 1904 formulation of the axiom of choice – which we shall take in the 

version AC2, and which Martin-Löf terms the intensional axiom of choice – with 

Zermelo’s 1908 formulation, the combinatorial axiom of choice CAC.  

 Martin-Löf’s discussion takes place within a simplified version of 

constructive (dependent) type theory (CTT), the system of constructive mathematics, 

based on intuitionistic logic, he introduced some years ago and which has 
                                                 
9 This fact, according to Bernays, renders the usual objections against the principle of choice invalid, since these latter are 
based on the misapprehension that the principle “ claims the possibility of a choice”.    
10 Martin-Löf [2006]. 
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become standard11. In CTT the primitive relation of identity of objects 

(necessarily of the same type) is intensional. In set theory, on the other hand, the 

identity relation is treated extensionally since two sets are identified if they have 

the same elements (Axiom of Extensionality). In CTT a set in the usual set-

theoretic sense corresponds to a to an extensional set, that is, a set carrying an 

equivalence relation representing “extensional” equality of its elements.   

That being the case, it is natural to formulate within CTT a version of AC 

for extensional sets. Martin-Löf calls this the extensional axiom of choice (EAC). 

To state this we need to introduce the notion of an extensional function. Thus let 

A and B be two sets carrying equivalence relations =A  and =B respectively. A 

function f: A → B is called extensional, Ext(f), if   ∀xx′∈A (x =A x′ → fx  =B fx′). Then 

EAC may be stated: for any relation R between A and B, 

 

∀x∈A∃y∈B R(x,y) ⇒ ∃f: A → B [Ext(f) ∧ ∀x∈A R(x, fx)]. 

 

Martin-Löf shows that, in CTT, CAC and EAC are equivalent. 

 Now the equivalence between CAC and EAC, is established within CTT 

where AC2 is already provable12. There the equivalence between CAC and EAC is 

a nontrivial assertion. In set theory, on the other hand, not only are  CAC and 

EAC equivalent, but they are themselves both equivalent to AC2. It becomes 

natural then to ask: can Martin-Löf’s argument be presented within set theory 

without courting triviality?  

 I believe this can be done by noting that Martin-Löf also establishes the 

equivalence, in CTT, of CAC with the assertion that unique representatives can 

be picked from the equivalence classes of any given equivalence relation. Let us 

abbreviate this as EQ. In deriving CAC (actually the equivalent EAC, but no 

                                                 
11 Martin-Löf [1975], [1982], [1984]. 
12 For a proof see, e.g., Tait [1994]. 
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matter) from EQ, Martin-Löf employs AC2,  so establishing, in CTT, the 

implication  

 
EQ + AC2 ⇒ CAC 

 
The problem thus boils down to giving a faithful version of the argument for this 

implication within set theory.  

 To do this, AC2 must be furnished with a constructively valid set-theoretical 

formulation. This can be achieved by invoking the “propositions as types” 

doctrine (PAT)13 underlying CTT. CDTT The central thesis of PAT is that each 

proposition is to be identified with the type, set, or assemblage of its proofs. As a 

result, such proof types, or sets of proofs, have to be accounted the only types, or 

sets. Strikingly, then, in the “propositions as types” doctrine, a type, or set, 

simply is the type, or set, of proofs of a proposition, and, reciprocally, a 

proposition is just the type, or set, of its proofs. In PAT logical operations on 

propositions are interpreted as certain mathematical operations on sets: in 

particular ∀ is interpreted as Cartesian product  and ∃ as coproduct (disjoint 

union) .14  

 Under PAT, AC2 may be taken to assert the existence, for any doubly- 

indexed family of sets {Aij : i ∈ I, j ∈ J}, of a bijection 

 

(+)                                 ( )Iij if ii I i Ij J f J
A A

∈ ∈∈ ∈
≅∏ ∏ . 

 

The requisite, indeed canonical, isomorphism is easily supplied in the form of the 

map 

 

                                                 
13 See Tait [1994]. 
14 Here ii I

A
∈

may be identified with )( { }ii I
A i

∈
×∪ .  
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g  (π1g, π2g) = g*, 

 

where π1, π2 are the projections of ordered pairs onto their first and second 

coordinates. 

Note that  

 

(#)      for g ∈ iji I j J
A

∈ ∈
∏ , g* is a pair of functions (e, f) with f ∈ JI and e ∈ ( )if ii I

A
∈
∏ . 

 

 Now CAC can be shown, in standard (intuitionistic) set theory, to be 

equivalent to the assertion that, for any doubly-indexed family of sets                

{Aij : i ∈ I, j ∈ J}, 

 

( )Iij if ii I i Ij J f J
A A

∈ ∈∈ ∈
=∏ ∏∪ ∪ . 

 

which is in turn equivalent to  

 

(*)                               ( )Iij if ii I i Ij J f J
A A

∈ ∈∈ ∈
⊆∏ ∏∪ ∪ . 

 

I shall present a natural derivation within set theory of (*) from (+) and EQ, so 

providing what seems to me a purely set-theoretical formulation of Martin-Löf’s 

argument.  

 First observe that there is a natural epimorphism  

 

iji I j J
A

∈ ∈
∏  iji I j J

A
∈ ∈
∏ ∪  

 

given by  
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g  π1  g 

 

Write ≈ for the equivalence relation on iji I j J
A

∈ ∈
∏ given by 

 

g ≈ h ⇔ π1g = π1h. 

 

Each k ∈ iji I j J
A

∈ ∈
∏ ∪ may be identified with the ≈-equivalence class {g: π1g = k} = 

k . Using EQ, choose a system of unique representatives from the ≈-equivalence 

classes. This amounts to introducing a map 

 

u: iji I j J
A

∈ ∈
∏ ∪ → iji I j J

A
∈ ∈
∏  

 

for which u(k) ∈ k , i.e. 

 

(**)                                  π1u(k) = k,  

 

for all k ∈ iji I j J
A

∈ ∈
∏ ∪ . 

 Now to establish (*), we take any k ∈ iji I j J
A

∈ ∈
∏ ∪ . Then under the natural 

bijection between ( )and 
Iij if ii I i Ij J f J

A A
∈ ∈∈ ∈
∏ ∏ given in (+), u(k) is correlated 

with the pair of maps  

 

(π1u(k) , π2u(k)), 

 

i.e., using (**), with  
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                                      (k , π2 u(k)). 

 

Writing f = π2 u(k), it follows from (#) that 

 

f ∈ JI  and k ∈ ( )if ii I
A

∈
∏ , 

 

whence  

 

k ∈ ( )I if ii If J
A

∈∈
∏∪ . 

 

So we have derived (*). 

 

 What is really going here appears to be the following. Under the 

epimorphism  

 

 

iji I j J
A

∈ ∈
∏  iji I j J

A
∈ ∈
∏ ∪  

 

information is “lost”, to wit, the identity , for a given member g of the domain of 

the epi, and an arbitrary i ∈ I, of the j ∈ J for which g(i) ∈ Aij. The map u furnished 

by EQ essentially resupplies that information. So starting with k ∈ iji I j J
A

∈ ∈
∏ ∪ , if 

one applies u to it, and then applies to the result the bijection given in (+), one 

winds up with a map f ∈ JI for which k(i) ∈ Aif(i) for all i ∈ I.  This is precisely 

what is demanded by (*). 
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 In an intensional constructive framework such as CTT, the axiom of choice 

is compatible with intuitionistic logic, that is, with the non-affirmation of the law 

of excluded middle. But in 1975 Diaconescu showed15 that, in extensional 

frameworks such as topos theory or set theory, the usual formulations of the 

axiom of choice imply the law of excluded middle, so making logic classical. And 

Martin-Löf’s analysis shows that, in CTT, the imposition of (a form of) 

extensionality on the axiom of choice will enable Diaconescu’s theorem to 

become applicable, again yielding classical logic16. That extensionality in 

some form is required to derive Diaconescu’s theorem can be observed in a 

number of different ways in addition to Martin-Löf’s penetrating analysis. Here 

are three.    

 

  1. Second-order logic. Let L  be a second-order language with individual 

variables x, y, z, ..., predicate variables  X, Y, Z, ... and second-order function 

variables F, G, H, ... . Here a second-order function variable F may be applied to a 

predicate variable X to yield an individual term FX. The scheme of sentences 

 

AC*              ∀X[Φ(X) → ∃xX(x)] → ∃F ∀X[Φ(X) → X(FX)] 

 

may be taken as the axiom of choice in L .  

 We assume that the background logic of L is intuitionistic logic. Given 

certain mild further presuppositions, AC can be shown to imply LEM, the law of 

excluded middle that, for any for any proposition A,  A ∨ ¬A. These mild further 

presuppositions latter may be stated: 

 

Predicative Comprehension     ∃X ∀x[X(x) ↔ ϕ(x)] 

                                                 
15 Diaconescu [1975]. 
16 Note, however, that if the axiom of choice is formulated within set theory or topos theory in the “harmless” —indeed 

mathematically useless— way (+), it is perfectly compatible with intuitionistic logic.  
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Here ϕ is a formula not containing any bound predicate variables. 

Extensionality of Functions      ∀X ∀Y ∀F[X   Y → FX = FY] 

Here X  Y is an abbreviation for ∀x[X(x) ↔ Y(x)], that is, X and Y are 

extensionally equivalent. 

  In addition we assume the presence of two individuals 0 and 1. Their 

distinctness is expressed by means of the trivial presupposition 0 ≠ 1. 

 Now let A be a given proposition. By Predicative Comprehension, we may 

introduce predicate constants U, V  together with the assertions 

 

(1)         ∀x[U(x) ↔ (A ∨ x = 0)]              ∀x[V(x) ↔ (A ∨ x = 1)]   

 

Let Φ(X) be the formula X  U  ∨  X  V. Then clearly we may assert ∀X[Φ(X) → 

∃xX(x)]  so AC* may be invoked to assert ∃F ∀X[Φ(X) → X(FX)]. Now we can 

introduce a function constant K together with the assertion  

 

(2)                           ∀X[Φ(X) → X(KX)].  

 

Evidently we may assert Φ(U) and Φ(V), so it follows from (2) that we may assert 

U(KU) and V(KV), whence also, using (1), 

 

                          [A ∨ KU = 0 ] ∧  [A ∨ KV = 1]. 

 

Using the distributive law (which holds in intuitionistic logic), it follows that we 

may assert 

A ∨ [KU = 0  ∧ KV = 1]. 

 

From the presupposition that 0 ≠ 1 it follows that  
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(3) A ∨ KU ≠ KV   

 

is assertable. But it follows from (1) that we may assert  A → U   V, and so also, 

using Extensionality of Functions,  A → KU = KV. This yields the assertability of 

KU ≠ KV → ¬A, which, together with (3) in turn yields the assertability of  

 

A ∨ ¬A, 

 

that is, LEM. 

 Note that in deriving LEM from version AC essential use was made of the 

principles of Predicative Comprehension and Extensionality of Functions. It 

follows that, in systems of constructive mathematics affirming AC (but not LEM) 

either the principle of Predicative Comprehension or the Principle of Extensionality of 

Functions must fail. While the Principle of Predicative Comprehension can be 

given a constructive justification, no such justification can be provided for the 

principle of Extensionality of Functions. Functions on predicates are given 

intensionally, and satisfy just the corresponding Principle of Intensionality       

∀X ∀Y ∀F[X  = Y → FX = FY]. The Principle of Extensionality can easily be made 

to fail by considering, for example, the predicates P: rational featherless biped and 

Q: human being and the function K on predicates which assigns to each predicate 

the number of words in its description. Then we can agree that P   Q but KP = 3 

and KQ = 2.  

 2.  Hilbert’s Epsilon Calculus.. In the logical calculus developed by Hilbert 

in the 1920s the Axiom of Choice appears in the form of a postulate he called the 

logical ε-axiom or the transfinite axiom. To formulate this postulate he introduced, 

for each formula α(x), a term (an epsilon term) εxα or simply εα  which, intuitively, 

is intended to name an indeterminate object satisfying α(x). The ε-axiom then 

takes the form 
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(ε)                                ∃xα(x) → α(εα). 

 

All that is known about εα  is that, if anything satisfies α, it does17. Now since α 

may contain free variables other than x, the identity of εα depends, in general, on 

the values assigned to these variables. So εα may be regarded as the result of 

having chosen, for each assignment of values to these other variables, a value of 

x so that α(x) is satisfied. That is, εα may be construed as a choice function, and 

the ε-axiom accordingly seen as a version of AC. 

 An ε-calculus Pε is obtained by starting with a system P of first-order 

predicate logic, augmenting it with epsilon terms, and adjoining as an axiom 

scheme the formulas (ε). It is known that when P  is classical predicate logic, Pε  

is conservative over P , that is, each assertion of P demonstrable in Pε is also 

demonstrable in P: the move from P to Pε does not enlarge the body of 

demonstrable assertions in P . But for intuitionistic predicate logic the situation is 

otherwise.  

 In fact it is easy to see that, if P  is taken to be intuitionistic predicate logic, 

then a number of first-order assertions undemonstrable within P, for instance 

∃x(∃xα(x) → α(x)), are provable within Pε . More interesting is the fact that 

certain purely propositional assertions undemonstrable within P  are rendered 

provable within Pε .18 These include Dummett’s scheme A → B ∨ B → A and 

(hence) the intuitionistically invalid De Morgan law  ¬(A ∧ B)  → ¬A ∨ ¬B.  But, 

curiously, the Law of Excluded Middle does not become demonstrable as a result 

of passing from intuitionistic P  to Pε .  

This is related to the fact (remarked on above) that in deriving LEM from 

AC one requires the principle of Extensionality of Functions. The analogous 

principle within the ε-calculus is the Principle of Extensionality for ε-terms: 

 
                                                 
17 David Devidi has had the happy inspiration of calling εα  “the thing most likely to be α.”    
18 Bell [1993], [1993a]. 
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(Ext)                    ∀x[α(x) ↔ β(x)] → εα = εβ. 

 

An argument similar to the derivation of LEM from AC given above yields LEM 

from (Ext) within the intuitionistic ε-calculus. 

 It is interesting to note that the use of (Ext) can be avoided in deriving 

LEM in the intuitionistic ε-calculus if one employs relative ε-terms, that is, allows 

ε to act on pairs of formulas, each with a single free variable. Here, for each pair of 

formulas α(x), β(x) we introduce the “relativized” ε-term εxα/β and the 

“relativized” ε-axioms  

 

(1) ∃x β(x) → β(εxα/β)                 (2) ∃x [α(x) ∧ β(x)] → α(εxα/β). 

 

That is, εxα/β may be thought of as an individual that satisfies β if anything does, 

and which in addition satisfies α if anything satisfies both α and β. Notice that the 

usual ε−term εxα is then εxα/x = x. In the classical ε-calculus εxα/β may be defined 

by taking  

 

εxα/β = εy[[y = εx(α ∧ β) ∧ ∃x (α ∧ β)] ∨  [y = εxβ  ∧ ¬∃x (α ∧ β)]]. 

 

�ut the relativized ε-scheme is not derivable in the intuitionistic ε-calculus since it 

can be shown to imply LEM. To see this, given a formula γ define  

 

α(x)  ≡  x = 1         β(x) ≡  x = 0  ∨   γ. 

 

Write a for εxα/β. Τhen we certainly have ∃xβ(x), so (1) gives β(a), i.e. 

 

(3)                                       a = 0 ∨ γ 

 
Αlso ∃x (α ∧ β) ↔ γ, so (2) gives γ → α(a), i.e. 
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γ → a = 1, 
 

whence 
 

a ≠ 1 → ¬γ, 
 

so that 
 

a = 0 → ¬γ. 
 

And the conjunction of this with (3) gives γ ∨ ¬γ, as claimed. 
 

3. Weak set theories lacking the axiom of extensionality. In Bell [forthcoming] a 

first order weak set theory WST is introduced which lacks the axiom of 

extensionality19 and supports only minimal set-theoretic constructions. WST may 

be considered a fragment both of (intuitionistic) ∆0-Zermelo set theory and 

Aczel’s constructive set theory20. Like CTT, WST is too weak to allow the 

derivation of LEM from AC. But (again as with constructive type theories) 

beefing up WST with extensionality principles (even very moderate ones) 

enables the derivation to go through. 

 

 I end with some further thoughts on the status of the axiom of choice in 

constructive type theory and the “propositions as types” framework. We have 

observed above that AC interpreted à la “propositions as types” is 

(constructively) canonically true, while construed set- (or topos-) theoretically it 

is anything but, since so construed its affirmation yields classical logic. This 

prompts the question: what modification needs to be made to the “propositions-

as-types” framework so as to yield the set- (or topos-) theoretic interpretation of 

AC? An answer (due to M.E. Maietti)21 to this question can be furnished within 

the general framework of (variable) type theories through the use of so-called 

                                                 
19 Set theories (with classical logic) lacking the axiom of extensionality seem first to have been extensively 
studied in [4] and [10]. 
20 Aczel  and Rathjen [2001]. 
21 Maietti [2005]. 
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monotypes (or mono-objects), that is, types containing at most one entity or 

having at most one proof. In the category Set of ordinary sets, mono-objects are 

singletons, that is, sets containing at most one element. 

 Monotypes correspond to monic maps. This can be illustrated concretely 

by considering the categories Indset of indexed sets and Set→ of bivariant sets. The 

objects of Indset are indexed sets of the form M = {<i, Mi>: i ∈ I} and those of 

Set→�maps A → B in Set, with appropriately defined arrows in each case. It can 

be shown that these two categories are equivalent. If we think of (the objects of) 

Set as representing simple or static types, then (the objects of) Indset, and hence 

also of Set→, represent variable types. It is easily seen that a monotype, or object, 

in Indset, is precisely an object M for which each Mi has at most one element. 

Moreover, under the equivalence between Indset and Set→, such an object 

corresponds to a monic map- object in Set→.  

 Now consider Set→ as a topos. Under the topos-theoretic interpretation in 

Set→, formulas correspond to monic arrows, which in turn correspond to mono-

objects in Indset. Carrying this over entirely to Indset yields the sought 

modification of the “propositions-as-types” framework to bring it into line with 

the topos-theoretic interpretation of formulas, namely, to take formulas or 

propositions to correspond to mono-objects, rather than to arbitrary objects. Let us 

call this the “formulas-as-monotypes” interpretation. 

 Finally let us reconsider AC under the “formulas-as-monotypes” 

interpretation within Set.  In the “propositions-as-types” interpretation as 

applied to Set, the universal quantifier ∀i∈I corresponds to the product 
i I∈
∏ and 

the existential quantifier ∃i∈I to the coproduct, or disjoint sum, .
i I∈

 Now in the 

“formulas-as-monotypes” interpretation, under which formulas correspond to 

singletons, ∀i∈I continues to correspond to ,
i I∈
∏  since the product of singletons is 

still a singleton. But the interpretation of ∃i∈I is changed. In fact, the 
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interpretation of ∃i∈I Ai (with each Ai a singleton) now becomes [ ]ii I
A

∈
, where 

for each set X, [X] = {u: u = 0 ∧ ∃x. x ∈ X} is the canonical singleton associated with 

X. 

  It follows that, under the “formulas-as-monotypes” interpretation, the 

proposition  ∀i∈I ∃j∈J Aij  is interpreted as the singleton 

(1) [ ]iji I j J
A

∈ ∈
∏  

and the proposition ∃f∈JI ∀i∈I Aif(i)  as the singleton 

(2) ( )[ ].
I if ii If J

A
∈∈
∏  

Under the “formulas-as-monotypes” interpretation AC would be construed as 

asserting the existence of an isomorphism between (1) and (2).  

 Now it is readily seen that to give an element of (1) amounts to no more 

than affirming that, for every i ∈ I, ijj J
A

∈
∪  is nonempty. But to give an element 

of (2) amounts to specifying maps f ∈JI and g with domain I such that               

∀i∈I g(i) ∈ Aif(i) . It follows that to assert the existence of an isomorphism between 

(1) and (2), that is, to assert AC under the “formulas-as-monotypes” 

interpretation, is tantamount to asserting AC in its usual form, so leading in turn 

to classical logic. This is in sharp contrast with AC under the “propositions-as-

types” interpretation, where its assertion is automatically correct and so has no 

nonconstructive consequences. 
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