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Abstract

We investigate Hilbert’s e-calculus in the context of intuitionistic type theories,
that is, within certain systems of intuitionistic higher-order logic. We determine
the additional deductive strength conferred on an intuitionistic type theory by
the adjunction of closed e-terms. We extend the usual topos semantics for type
theories to the e-operator and prove a completeness theorem. The paper also
contains a discussion of the concept of “partially defined” e-term.
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1. Introduction

We investigate Hilbert’s e-calculus ([1], [6]) in the context of intuitionistic type the-
ories, that is, within certain systems of intuitionistic higher-order logic. The paper
is organized as follows: Section 2, which is chiefly expository in nature, contains a
compressed account (following [2]) of the basic framework of type theory we shall
employ, and of its semantics. In Section 3 we introduce the e-operator. Noting that,
in contrast with the classical case, the e-calculus is in general not conservative over
intuitionistic systems (see, e.g., [3]), we determine the additional deductive strength
conferred on an intuitionistic type theory by the adjunction of (closed) e-terms. In
Section 4 we introduce and develop the concept of “partially defined” e-terms. In
Section 5 we extend the topos semantics for type theories to the e-operator and prove
a completeness theorem. Section 6 contains some examples establishing the indepen-
dence of various concepts introduced in the paper. Finally, in Section 7 we explain
why we have confined attention to closed e-terms.

2. A framework for intuitionistic type theories

We summarize briefly the system presented in [2]. A language L for intuitionistic type
theory, or a language for short, has the following ingredients:

DI am grateful to JIM LAMBEK whose stimulating correspondence and paper [5] exerted a strong
influence on the present work.
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Basic symbols.
1 (unit type),
©  (truth value type),
S, T,U,... (ground types),
f.g,h,... (function symbols).

Types. These are members of the smallest class containing 1, £ and the ground
types and closed under products and powers; here the product of two types A and B
is denoted by A X B and the power of a type A is denoted by PA.

Signatures. Each function symbol f is assigned a pair of types called its
signature. Notation: f : A — B.

Terms and their iated types are specified as follows:

(i) # is a term of type 1, and for each type A we are given a list of variables
z,y,z,...of that type;

(ii) terms are closed under the following operations (where 7 : A indicates that the
term 7 has type A):

(o,7):AX B forc:Aand7:B,

f(r): B fort:Aand f: A — B,
{z:a}:PA forz:Aand a:Q,
o= foro,7: A,

ceET:N foro: Aand 7:PA.

Formulas. These are the terms of type §2.
Sentences are, as usual, formulas without free variables, i.e., variables z not
appearing in a context of the form {z : a}.

We use the letters @, 8,7 to denote formulas and write a(z/7) for the result of
substituting 7 for z at each of the latter’s free occurences in a.

Axioms and rules of inference. We adopt a sequent notation, writing I'|a
for the sequent composed of a finite set I' of formulas and a formula a, and |a for
0|ov. The aztoms for L are, writing o «— B for a = 3,

le=# (with 2:1),

z =y a(z/z)|a(z/y)  (with z,y free for z in a),
(z,9) = (=" ¥)le =2,

(z,y) = (=" V)lv=1,

lz€{z:a}—a.

BRI B S ha s A g s _—
The rules of inference are
Ma o T3 (provided all free variables of a appear free in the
|3 conclusion),
e
B,Tla’

o
T(z/7)la(z/T)
Ne€o—zeT

Fle=71

o, B, T«
Ta—=pg

These axioms and rules of inference yield a system of natural deduction in L. |

is any collection of sequents in L, we say that the sequent [|a is derivable from
and write ' Fg a, provided there is a derivation of I'|a using the basic axiom:
sequents in S, and the rules of inference. For I' by « we write I' - o, and for 0
we write Fs a. A theory in L is a collection of sequents closed under derivalli

A theory in some typed intuitionistic language L will be called a type theory
S, T are type theories in languages L, L’ with S C 7', LCL', then T is said to I«
conservative extension of S if, for any sequent I'|ov of L, we have I'Fp a = kg o

(with 7 free for z in a and all the members of I'),

(provided z is not free in conclusion),

Logical operators in L are defined as follows:

true = # = #,
a A8 = {a, ) = (true, true),
a—f=(aAp) —a,
Vza = {z:a} = {z: true},
false = Yu.u = true (with u: ),
—a = a — false,
aV 3 =Yul(a—uAp—u)—u] (withu:Qnotina,p),
Jza = Yu[Vz(o — u) — u] (with u: Q not in a).
Other logical operators such as 3!z and set-theoretic terms such as {z} can be int

duced in the usual way. It can then be shown that the theorems of (free) higher-or¢
intuitionistic logic are derivable in L (see [2], Ch. 3).

Convention. Whenever a formulais introduced as a(z, y, . . .), we shall supp:
that all the free variables of « occur among z,y, .. ..

The natural domains of interpretation for type theories are the toposes (see |
Ch. 2). These are categories possessing a terminal object 1, a subobject classifier
finite products, and exponentials of the form Q% (which we shall write as PA).
interpretation I of L in a topos E is an assignment



P o

. to each type A of an E-object Ay in such a way lhat?,:l, Qrv=nfl
_x B); = A x By, (PA); = P(Ap);

. to each function symbol f : A — B of an E-arrow f; : A; — By.

In [2], Ch. 3, it is shown how to extend any interpretation [ to arbitrary terms in
th a way that, if 7 : B has variables z; : Ay,...,z, : Ay, [ assigns to T an E»am:_»w
:(Ay)r %o % (An)r — By ‘Taking 7 to be a formula leads to a notion 'of validity
a sequent ['|a under [, written T f=; a. [ is said to be a model of S if I «
ienever I'Fs a.

Any type theory S determines a topos C(S), the topos of S-sets and maps. The
jects of C(S) are all terms of type of the form PA and the arrows all such terms
lich are S-provably functional relations. There is a natural interpretation C'(S) of
e language of S in C(S) which is also a model of S; in fact we have I' Fs a iff
Ec(s) . This fact leads to the Basic Completeness Theorem for Type Theories,
mely

Ptsa iff T a forevery model I of S.

The procedure of associating a topos with a type theory can be reversed. Given
topos E, we can associate with it a language L(E) called its internal language.
sughly speaking, L(E) has the objects of E as types and the arrows of E as function
mbols. There is a natural interpretation E of L(E) in E; the theory of E, Th(E), is
e collection of sequents of L(E) valid under this interpretation. It is then the case
at I' by o iff T =g . For any topos E, the theory Th(E) can be shown to be
ell-termed, i.e., if Fpy(g) 3!za(z), then bFryE) a(z/7) for some (closed) term 7.

We shall need the following fundamental result (proved in [5] for a somewhat
flerent system of type theory than the present one). Call a type theory S witnessed
for any formula a(z), Fs 3za implies ks a(z/7) for some (closed) term 7.

Theorem 2.1. Any type theory has a conservative witnessed extension.

Proof. We first perform the following general construction. Let ¥ be a set of
rmulas of L such that each o € ¥ has at most one free variable z, : A,. We shall
‘op the subscript “a” from z, thus writing “z” for “z,”, “z,” for “Zq,”, etc. Let
') the language obtained from L by adding for each o € ¥ a new function symbol
i 1= Ag,; write ¢, for cq(#). Then ¢, is a new closed term of type A, which we
all call the indeterminate associated with o Let S(X) be the theory in L(X) whose
cioms are those of S together with all sequents of the form |3(z1/ca,, .-, %n/Ca,),
here ay,...,a, € £ and ay,...,a, Fs B. We remark that gx) a(z/cs), whence
s(z) 3za(z) for any a € .

Claim. If ks 3za(z) for all a € ¥, then S(X) is a conservative extension of S.

We sketch a proof of this claim. Suppose that I'|y is a sequent of L and that
Fs(s) 7. Let P be a derivation in S(X) of I'|y. Let ¢a,,. .-, Ca, be the indetermi-
ates occurring in P and let y;, Ua be variables not appearing in P such that y;
1d c,, have the same type for i = 1,...,n. For each sequent Al§ of L(E) let A8
* obtained by replacing each c,, by yi. Now let P’ be obtained from P be replac-
ig each of its sequents A8 by the sequent a1(21/y1), ..., an(2n/Yn), A'|8". Then
“is a derivation of the sequent a;(z1/y1), ..., @n(Zn/¥n), [l in the theory S aug-
tented by some axioms of the form ay(z1/y1), ..., an(Zn/Ya)|B(=1 /015 20 /Un),

HIDErvs m TYpe TIeores IZT

where |3(21/¢ca,,... ,2n/Cq,) is an axiom of S(X), i.e., where ay,...,an Fs 8. It
follows that P’ yields a derivation in S of ay(z1/m), ..., @n(zn/yn), 7. Then
pan(xi/m) A Adgman(@n /), T ks 7.

So if ks 3xiai(z;) for i = 1,...,n, we get ' ks v as required. O

Now, to prove the Theorem, take ¥ to be the collection of formulas a(z) of L
such that kg 3ra(z). Put &' = S(X), '=L(E). It follows from the Claim above
that S is a conservative extension of S. Define recursively Sy = S, Sp41 = (Sn),
Lo=L, Lug1 = (Ly)" and put 7' = |, ¢, Sn and M = |, ¢, L. It follows immediately
by induction that 7" is a conservative extension of S in the language M. And finally,
T is witnessed. For any given M-formula a(z) is in L, for some n. If ¢, is the
indeterminate associated with o, we have ks, ., a(z/eca), so a fortiori b a(z/c,),
completing the proof. O

3. Type theories with the e-operator
Let S be a type theory in a language L. A type A of L is said to be S-inhabited if
Fs 3.z = = with z : A. Clearly any type of the form P A is S-inhabited.

The e-language L (S) over S is obtained by adding to L the symbol ¢ and the new
term forming clause

- for any formula a(z) with z of S-inhabited type, . is a (closed) term of the
same type as z.
Of course, all occurences of z in ez« are regarded as being bound occurences. Note
also that iterated e-terms may be formed in L.(S). For example, L (S) contains the
term e;a(z, y/c,B) provided z and y have S-inhabited types.

The e-extension S of S is the theory in L.(S) obtained from S by adding as
axioms the sequents

Jrala(z/c a)
for any L.(S)-formula a(z) with z of S-inhabited type.

We are going to determine the deductive strength of S relative to S. Let S* be

the theory in L obtained from S by adding as axioms the sequents
|32(3za — a)
for all formulas a(z) with 2 of S-inhabited type.

Theorem 3.1. For any sequent T'|3 of L, Tks, B ff 'Fse B.

Proof. For the “«"-direction, we note that 3za(z) bs, a(z/e;«), whence
ts, Jza — a(z/e:q), so bs, 3z(3za — a) by existential generalization.

Conversely, let T' be a conservative witnessed extension of S* as provided by
Theorem 2.1. Then for any L-formula a(z) with = of S-inhabited type we have
Fr 3za — a(z/7) for some closed term 7 of the language L(T') of 7. For each
such formula a(z) choose such a 7 and denote it by 7, .. Note that the sequent

Jzala(z/7, ;) is then derivable from T'. We now define a type preserving map 7+ 77
recursively as follows:




(#)‘ e L
£(r) = £(r), (a,7) = (o*,7°), {z:a}*={z:0},
(e=7)=(c"=7"), (c€T)=(c"€ET") (£20)" =Tass-

1t is readily checked (by induction) that this definition is coherent, type preserving,
and commutes with logical operations (i.e. (a A 8)* = a* A 7, etc.).
We now claim that, for any sequent |3 of L.(S),

(*) TrsB8=TFr g,

where, if ' is {ay,...,an}, I is {a},...,a}}. To prove (*), start with a derivation
P of T'|3 in S;. Replace each sequent A|§ in P by the sequent A®|8*, thus obtaining
a new list P* of sequents in L(7"). This process carries basic axioms to basic axioms,
axioms of S to axioms of S, and application of a rule of inference to an applica-
tion of the same rule of inference, and any S;-axiom 3za|a(z/cza) to the sequent
Jza*|a*(z/Tas,z) which, as we have observed above, is derivable in T. Therefore P*
is a derivation of I'*|3* in T, which establishes (*).

Finally, if I'|3 is a sequent of L, I'*|8* is the same as I'|8, so that T k-5, 8 implies
I' k7 3 by (*) and I' Fg. 3 by the fact that T is a conservative extension of S*. O

This result has an illuminating corollary, to state which we require some defini-
tions.

A type theory T in a language L(7") (possibly containing e-terms) is said to be
classical if o Yu.u V —u with u : Q; stable if Fr 3z(3za — a) for any L(T)-formula
a(z) with z of T-inhabited type; Hilbertian if, for any L(T')-formula a(z) with z
of T-inhabited type, there is a closed L(T)-term 7 of the same type as z such that
Jza by a(z/T).

It is readily shown that any classical theory is stable, and a theory is Hilbertian
if and only if it is witnessed and stable. We shall show in Section 6 that the first
implication cannot be reversed, and that the Hilbertian property is genuinely stronger
both than that of being witnessed and that of being stable.

We can now state and prove our promised .

Corollary 3.2. The following are equivalent for any type theory S:

(i) S s stable;
(i1) S¢ s a conservative extension of S;
(iii) S has a conservative Hilbertian extension.

Proof. (i)=(ii) is an immediate consequence of Theorem 3.1, since it is evident
that S is stable iff S = §*. The proof of (iii)=>(i) is left as an easy exercise to the
reader. Finally, for (ii)=>(iii), suppose that S, is a conservative extension of S. Then
any S,-inhabited type is S-inhabited, since no new types are added in the passage
from L to L.(S). So for any L. (S)-formula a(z), if z is of S,-inhabited type, it is also
of S-inhabited type, so that e« is a term of L.(S) and the sequent 3zaja(z/c,a) is
an axiom of S,. Therefore 3za b5, a(z/e;a), and it follows that S, is a Hilbertian
extension of S. Hence (iii). O

Remarks. (1) It follows in particular that any classical theory satisfies (ii) an(
(iii) of the Corollary; for first-order theories this fact is well-known (see [6]). (2) Th
implication (i)=(iii) of the Corollary is asserted in [5] for a somewhat different systen
of type theory.

4. The partial e-operator

In intuitionistic type theories there is a straightforward way of formulating a notio
of “partially defined” term which, as we shall see, leads naturally to the concept o
partial e-operator.

Now although there is no explicit provision for partially defined terms in ou
present framework, we can produce an acceptable surrogate as follows. Suppose
were a “partially defined” term of some type A in a type theory S. Consider th
extension [/ of the property of being equal to & Then U would be a closed term o
type P A satisfying the condition

(a) FsVeeUVyelUz=y
(but in general not b5 3z.z € U, since € is only partially defined). A closed tern
U : PA satisfying (a) is called an A-singleton (over S); this notion will be taken a
representing within type theories the concept of partially defined term.

Let us see what happens when we replace ordinary terms by partially definec
terms in some of our previous definitions. For example, consider the concept of bein;
Hilbertian. For partially defined terms it would read

(b) for any formula a(z), there is a partially defined term & such tha
Jza b a(z/E). "
(Note that we were able to drop the condition that the type of z be inhabited sinei
we are now only concerned with terms that are partially defined.) But a(z/€) =
Jz(z = € Aa(z)) and if U is the singleton arising as the extension of the property o
being equal to &, we have - 3z(z = £ Aa) — 3z € U.a. So our condition (b) become;

(b") for any formula a(z) with z : A, there is an A-singleton U such tha
Jrats 3z e l.a.

A type theory S satisfying (b') for all types A will be called partially Hilbertian.

Turning now to the concept of stability, we introduce the defined predicate

sing(u) =¥z € u¥y € u.z = y, where u: PA.
Note that a closed term U : PA is then an A-singleton iff ¢ sing(U/). A type theor;
S is now said to be partially stable if for any formula a(z), we have
ks ufsing(u) A 3z — 3z € u.a).
We can now assert the
Proposition 4.1. For any type theory S we have
(i) of S is Hilbertian, then S is partially Hilbertian;
(i) ¢f S 1s stable, then S is partially stable,

(iii) if S is well-termed, then S is partially Hilbertian if and only if S is witnesse
and partially stable.




Proof. We prove (i); the proof of (ii) is similar and that of (iii) easy. Suppose that
i5'is Hilbertian and let a(z) be a formula with z : A. Define #(u) = Jz[u = {z}ra(z)]
with u : PA. There is a closed term V : PA such that 3ug(u) B(u/V). Let
U/ ={x:V = {z}}; then U is an A-singleton and we have

Jza(z)Fs3uf(u)
Fsp(u/V)
Fs3z[V = {z} A a(z)]
Fs3z[z € U A a(z)],
as required. O

We can now introduce, by analogy with ¢, the partial e-operator, which we shall
lenote by .

The partial e-language L(S) over S is obtained by adding to the language L of S
hie symbol 7 and the term-forming clause

- for any formula a(z) with z : A, 7« is a (closed) term of type PA.

I'he partial e-extension Sy of S is the theory in L (S) obtained from S by adding as
wxioms the sequents

[sing(7za) and  3ze|(Iz € 7ra)a

or all Ly (S)-formulas a(z). Clearly S, is partially Hilbertian.
Now let S" be the theory in L obtained by adding to S all sequents

[Fufsing(u) A (3za — Iz € u.a))

i all a(z). Clearly S* is partially stable, and S, is an extension of S*.
In essentially the same way as we proved Theorem 3.1, we obtain the
Theorem 4.2. For any sequent T|8 of L,

ks, B iff TksapB.

Proof. We give a sketch. Let T be a conservative witnessed extension of SN as
waranteed by Theorem 2.1. For each a(z) choose a closed term Uaz : PA in L(T)
o that

ks sing(Usz) A (Jza — 3z € U z.).

Jefine a translation 7 — 7% of the terms of L, () to those of L(T) as in the proof of

heorem 3.1, except that now (720)" = Uqa,». The proof now proceeds like that of
heorem 3.1. O

Corollary 4.3. The following are equivalent for any type theory S:
(1) S is partially stable;
(i) Sy is a conservative extension of S;

[iii) S has a conservative partially Hilbertian extension. O

5. Interpreting the e-operator in a topos

We shall call a topos E Hilbertian if any diagram of the form X — A — 1 in E can
be expanded to a commutative diagram of the form

P S S —— 3|

X>—>A4 —>> |

Hilbertian toposes will turn out to be the appropriate structures for interpretating
e-operators in type theories.

Note first that, in a Hilbertian topos, every subobject of 1 is projective. For this
it suffices to show that for the canonical epi-mono factorization X — U/ — 1 of any
X — 1 there is an arrow U — X. Now if X~ is the partial map classifier of X (see
[4], Ch. 1), we have a diagram X — X~ — 1. Using the Hilbertian property, we
expand this to

e ————>% il ]

Ao =511

and the assertion follows.

The proof of the following proposition is routine and, accordingly, omitted (see
[2], 4.32).

Proposition 5.1. Let E be a topos. Then we have:
(i) Th(E) is witnessed iff 1 is projective in E;
(ii) Th(E) s partially Hilbertian iff every subobject of 1 is projective in E;
(iii) Th(E) is Hilbertian iff E is Hilbertian.

Let E be a Hilbertian topos. For each object X let

ux
X e |

be the canonical epi-mono factorization of X — 1. For any A — 1, choose for each
monic m : X — A arrows £(m) : 1 — A and 7(m) : Ux — X such that the following
diagram commutes:
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ux
U e

*) (m) e(m)

m
SiEE———23

We shall call £(m) the canonical element of A determined by the monic m. We shall
assume that each Hilbertian topos has been assigned canonical elements £(m) for all

monics m.

Now let S be a type theory in a language L and let I be an interpretation of L
in a Hilbertian topos E. We extend I to an interpretation of the e-language Le(S) as
follows. For any arrow u : A — Q, let & be the monic (unique up to isomorphism) to
A classified by u, i.e. such that the following diagram is a pullback:

« ———> 1
u true

et 5§

Then for any formula a(z) with the type A of @ S-inhabited we define
(eza)r = ¢€(ar): 1 — A.
Proposition 5.2. If I is a model of S, then I, as exlended, is a model of S;.
Proof. It suffices to show that the sequent Jzala(z/e;a) is valid under_ I and
for this it suffices (by, e.g., [2], 2.14) to show that there is an arrow g making the
following diagram commute:
U
9 T (e20)1
Vv
X

But the commutativity of the diagram (*) above shows that we may take g to be
w(a7). O

In general, interpretations of L.(.S) in Hilbertian toposes validate more ﬂtlal'l jus‘t
the theorems of S.. For example, let us call two formulas a(z), B(y) (S)-sxmllar if
(i) @ and y are of the same S-inhabited type, (ii) « is free for y in 3, (m) yis free' for'z
in « and (iv) ks Vz[a(z) < B(y/)]. It is then easy to see that any interpretation in

Iﬂ
> <
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a Hilbertian topos assigns the same value to ez« and &, 8 whenever a(z) and B(y) are
similar. This being the case, what is the theory common to all Hilbertian toposes?
We proceed to identify it.

Given a theory 7' in some language L, let L*(T) be obtained by adding to L all-
e-terms ez not already present in L for formulas a(z) with z of T-inhabited type.
Let T be the theory in L2 (7)) obtained from T by adding as axioms the sequents

Jzala(z/eza) for new e-terms e, a,

leza = 48 for all (7-) similar formulas o(z), B(y).

Now define recursively Ty = S, Thy1 = (Tn)*, Ly = L, Loyt = LA(Ty). Let
55 = Uneo Tn, L2 (8) = Unew Ln- We call S the strong e-extension of S.

Lemma 5.3. S7 is Hilbertian and bsy eza = gy for any ST -similar formulas
(@), By)-

Proof. If a(z) is a formula of L7(S) with z of S7-inhabited type, then
br, 3z.z = z for some n; let ng be the least such n. Then Jala(z/e.a) is an
axiom of Ty,41 so that 3za bsx a(xz/ez«). Therefore Si is Hilbertian. Now let
a(z), B(y) be S -similar formulas. Then there is a least n such that a(z) and 8(y)
are Tp,-similar. So |e;a = ¢, is an axiom of 7,11 and hence derivable in S;*. O

Any model 7 of S in a Hilbertian topos can be extended to a model (also denoted
by I) of S by iterating the procedure of extending I to a models of S, ; we leave the
details to the reader.

All this leads to

Theorem 5.4 (e-Completeness Theorem). For any sequent T'|o of L(S) (and
hence, a fortiori, of L.(S)), T Fsz a iff T |1 a for every Hilbertian model I of S.

Proof. We give just a sketch, as the details are tedious but routine.

=>. Show by induction on n that I' b7, « implies I' |=; « for every Hilbertian
model T of S.

<. Consider the topos C(S7). It is Hilbertian, for if A is an S”-inhabited type
and X = {z : a} with 2 : A, the following diagram commutes, where A is {z : 2 = z}
with z : A and iy is the insertion map.

{u€l:3za} >——> 1

# e l#’—'fr“
v :
X 54

i

X ——

Now choose canonical elements in C(S7) in such a way that e(ix) is always the map
1 — A with value e;. Lemma 5.3 implies that this definition is coherent (it would
not be if we had not replaced S, with S;”). One can now show (along the lines of the
proof of 3.28 of [2]) that I' Fsx a iff T m¢(sp) . Since C(S7) is a Hilbertian model
of S, the implication follows. O
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Remark. It is possible to establish similar resulgrelatingApartial ettheor‘ies fmd
“partially Hilbertian” toposes, i.e., those in which every subobject of 1 is projective.
We omit the details.

6. Mostly counterexamples \
We establish the nonequivalence of the various properties of type theories we have
introduced. First, we require the following \

Proposition 6.1. Let S be a stable theory in a language with a natural numbér
system (N, 5,0) (see [2], Ch. 7). Then for any sentences 3, v we have

ks (B—7) V(y— B).

Proof. Write 1 for 50 and let z, y be variables of type N. It is well known (see

[2], 7.6) that N is decidable, i.e. ks YaVy(z = yV z # y). Now define

a(z)=(z=0AB)V(z#0AY).

Then ks a(0) < 8 and ks a(1) < 7, so that
ks Jza(z) - BVy.
Also (z # 0 A a(z)) Fs 7, whence
(%) z#0ks a(z) — 7.
So we have
Jza(z) — a(z) Fs BV Yy — a(z)
Fs(BVy—a(@)A(z=0Va#0)
Fsl(BVy—a@)Az=0]V[BVy—al2) Az #0]
Fs(BVy = a(0) V(B VY= a(@) A(a(z) = 7)), by (¥)
Fs(BVy—B)V(BVY—7)
Fs(r =BV (B—1).
Therefore
B(3ra(z) = a(@)) Fs (I =)V (1 = H).
So if S is stable the required conclusion follows immediately. O

Corollary 6.2. Any stable theory S in a language with a natural number system
satisfies (an equivalent of) de Morgan’s law, viz., for any sentence 3, Fs ~3V —mﬁ.D

Remark. The proof of Proposition 6.1 is easily adapted to yield the following
strengthening of a result of §2 of [3], viz.:

Let T be a theory in the first-order intuitionistic e-calculus such that, for some
constants 0, 1, we have bp V(e =0V & # 0) A0 # 1. Then for any sentences 3, v,
Fr(B—=7V(y—5).0 ; k

Now we can establish the following diagram relating tlfe various properties we
have introduced, where the arrows indicate irreversible implications.

Hilbertian classical

Partially Hilbertian —— witnessed stable

It suffices, in view of what we already know, to establish the following nonimpli-
cations.

L. Hilbertian # classical. For this it suffices to produce a Hilbertian topos which
is not classical. To this end, let M be a monoid consistirl:; of two elements 1, e such
that e = e. Then since M is not a group, the topos Set™ of M-sets is not classical.
But it is Hilbertian. For let X be a non-empty sub-M-set of an M-set A. Choose
a€ X andlet b=e-a€ X. Then the diagram

X —> 1 ——>
0 b 0—b

X C——s 4 — 55

commutes, yielding the desired conclusion.

1. Classical # witnessed. For this we need only exhibit a Boolean topos which is
not witnessed. An example is the topos of G-sets, where (7 is a group with at least 2
elements.

111 Witnessed # partially Hilbertian. 1t suffices to produce a topos in which 1
is, but not all of its subobjects are, projective. To this end, let P be the ordered set
(w, >) augmented by a least element *. Consider the topos E = Set” of sets varying
over P. Since P has a least element, 1 is projective in E. But not every subobject of 1
is projective in E. For consider the E-object X defined by X(n) =w—{0,...,n—1},
X(*) =0, Xnn = insertion map X(m) < X(n) for m > n. Let U be the subobject
of 1 in E defined by U(n) = 1 for all n € w, U(*) = 0. Then the evident arrow X — [/
in E is epic but there is no E-arrow U/ — X.

IV. Partially Hilbertian # stable. It suffice, by Corollary 6.2, to produce a topos
E in which every subobject of 1 is projective but in which the law

(*)  —BvV--8

for sentences # is not valid. Such a topos can be extracted from [4]. In Exercise
5.4 on p. 162 of that volume, it is asserted that, if X is a topological space which is
separable and zero-dimensional, then every subobject of 1 is projective in the topos
Shv(X) of sheaves on X. In particular, this is the case for Shv(N*), where N* is the
one-point compactification of the discrete space of integers. But it is well known that
() is valid in Shv(X) iff X is extremally disconnected, which N* manifestly is not.
So (*) is not valid in Shv(N*), as claimed.
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Remark. Recall that a topos is said to be Boolean if its associated theory is
classical. Now while it is easy enough to find Hilbertian toposes which are Boolean —
for example, any topos in which the axiom of choice holds (cf. Section 7) —~ non-Boolean
examples such as the one presented in 1. above are harder to procure. A natural place
to start looking is among the toposes of the form Set” for a partially ordered set P.
However, we are doomed to disappointment here in view of the following observation.

Suppose the object F' in Set” has the property that every arrow U — F with
U ~— 1 can be extended to an arrow 1 — F (which would be the case if Set”
were Hilbertian and F — 1). Then every transition map Fpq with p < g in P is
surjective. For choose any ¢ € P and a € F(q) (if F(g) =0, then F is automatically
surjective for any p < ¢). Define U in Set” by U(r) = {Fer(a)} if g < 7, U(r) = 0
if ¢ £ r. Then U is a subobject of F and U — 1 in Set”. Suppose that there is
{:1 — F such that U C {t} in Set”. Given p < g, let b = ,(0) € F(p). Then
{a} = U(q) C {t}(q) = {t,(0)} = {Fpg(b)}. So a = Fpy(b) and Fpq is surjective as
claimed.

It follows from this that if Set” is Hilbertian, P is discrete and Set” Boolean.
(We note in passing that this leads to many more examples of non-Hilbertian toposes
in which every subobject of 1 is projective: for instance, any topos Set® with a an
ordinal > 2.) On the other hand, we might obtain non-Boolean Hilbertian toposes by
turning our attention to toposes of sheaves (as opposed to presheaves). For example,
is there a topological space whose category of sheaves meets these requirements?
1 have not been able to answer this question. |

7. The e-operator and the axiom of choice

We have only allowed the e-operator to act on formulas with at most one free variable,
thereby admitting only closed e-terms. What happens if we relax this restriction?
Suppose, for example, that in forming Le(S) and S. we drop the restriction that
eye can only be formed when « has at most y free and now allow « to contain an
additional free variable z. Then we would have

Jya(z,y) s, (@, y/ey9),
where the term ey now has a free variable z. So if f is the map z +— £, we have
s, Vz[3ya(z,y) — a(z, fz)).

Thus, if ks, Yz3ya(z,y), then ks, Vza(z, fr). That is, under these conditions we
. have derived the aziom of choice in S, (cf. 2], 4.29).

Therefore the admission of e-term with even one free variable to an intuitionistic
type theory enables the axiom of choice to be derived. But it is well known (see
4.31(iv) of [2], for le) that any intuitionistic type theory in which the aziom
of choice can be derived is classical. So the admission of e-terms with free variables
collapses an intuitionistic type theory to a classical theory. Since the e-calculus has
already been much investigated in a classical (albeit first order) context, the justice
of confining our attention to closed e-terms should now be evident.

Hilbert’s e-Operator in Intuitionistic Type Theories 337

In conclusion, we note that a type theory containing only closed e-terms can
be forced to become classical, albeit in a weakened sense, by adding as axioms the
sequents asserting that the e-terms satisfy an eztensionality principle, viz.,

Vz[a(z) = p(o)]leza = ez .

For' then, following the proof of the Theorem in Section 3 of [3], we will be able to
derive b v V -y for ‘all 7. For complet we briefly indicate how this is
done. Let T' be obtained by adding the above sequents to S. Let v be any sentence.
Then define a(z), #(z) by

oz)=z=0Vy, Ble)=z=1Vy
with z :P1. It is now easily shown that Fp (e # €.8) V 7. But extensionality now

givles v b €za = €8, whence e, # €. Fr —y. We conlude that Fp ~y V v as
claimed.

For more on extensionality in the first-order case, see [3].

Note added in proof (April 1993). ANDREAS BLAsS (private communication)
has shown that for any Hilbertian topos E, the algebra E(1,Q) of global E-elements
of Q is Boolean. It follows from this that any localic Hilbertian topos (in particular
any Hilbertian topos of sheaves) is Boolean, answering in the negative the question’
at the end of Section 6.
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