Brit. J. Phil. Sci. 37 (1986), 83-99  Printed in Great Britain 83

A New Approach to
Quantum Logic

by J. L. BELL

The Origins of Quantum Logic
Propositional Logic as a Logic of Attributes
The Manifestation of Attributes
Introducing Implication

Superposition of States
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The idea of a ‘logic of quantum mechanics’ or quantum logic was originally suggested by
Birkhoff and von Neumann in their pioneering paper [1936]. Since that time there has been
much argument about whether, or in what sense, quantum ‘logic’ can be actually considered a
true logic (see, e.g. Bell and Hallett [1982], Dummett [1976], Gardner [1971]) and, if so, how it
is to be distinguished from classical logic. In this paper I put forward a simple and natural
semantical framework for quantum logic which reveals its difference from classical logic in-a
strikingly intuitive way, viz. through the fact that quantum logic admits (suitably formulated
versions of ) the characteristic quantum-mechanical notions of superposition and incompatibility
of attributes. That is, precisely the features that distinguish quantum from classical physics also
serve, within this framework, to distinguish quantum from classical logic. Some light is shed on
the question of whether quantum logic is a genuine logical system by introducing a natural
entailment relation for quantum-logical formulas with the implication symbol. The novelty is
that, although implication behaves as it should (i.e. the ‘deduction theorem’ holds), the order of
introduction of premises is significant. The fact that a reasonable entailment relation can be
formulated for quantum logic supports the view that it is a genuine logical system and not
merely an algebraic formalism.

The paper is organised as follows. We begin with an account of the origins of
quantum logic, based on Birkhoff and von Neumann [1936]. In §2 a
common semantical framework for intuitionistic, classical and quantum
logic is formulated, employing the notion of an attribute over a space with a
distinguished lattice of subsets (this framework was first introduced in Bell
[1983]). In §3 we define the central concept of manifestation of attributes and
employ it to distinguish (intuitionistic and) classical logic from quantum
logic. In §4 we introduce the logical operation of implication and show how
the extension of the concept of manifestation to implication formulas leads
both to general notions of superposition and incompatibility characteristic of
quantum logic, and to the entailment relation mentioned above. Finally, in
§5 we observe that the concept of superposition introduced here satisfies the
conditions originally laid down by Dirac [1930] and that, interpreted within
the ‘orthodox’ framework for quantum mechanics, it coincides with the
usual notion of superposition of states.
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Readers not familiar with the mathematical formalism of quantum
mechanics may omit sections 1 and 5 without substantial loss.

1 THE ORIGINS OF QUANTUM LOGIC

Let & be a classical physical system and let X be its phase space. We may
regard an observable on & as being a function f: £ — Q where the codomain
Q, the observation space of f, is the set of ‘values’ that f can assume. (T'ypically
Q will be a set of real numbers.) If f,, ..., f, are observables on & with
observation spaces Q,, ..., Q,, the observation space associated with the n-
tuple of observables (fy,...,f,) is the Cartesian product Q; x,...,xQ,.
Each subset X of Q, x ... xQ,is correlated with a proposition Py concerning
the state of x of &, namely the assertion that the n-tuple of measured values
of f1,...,f, lies in X when & is in state x. X has a representative XinX
defined by

X ={xeX:(f1(x),..., fl(x)eX}.

Thus X is the set of states x of & such that Py is verified when & is in state x.
Accordingly we may also call X the representative in X of the associated
proposition Py.

Notice that the relation of entailment between propositions corresponds to
the relation of set-theoretic inclusion between their representatives; that the
representative of the negation of a proposition is the set-theoretical
complement (in X) of its representative; and that the representative of the
conjunction of two propositions is the set-theoretical intersection of their
representatives. It follows that the logic of propositions concerning a
classical system & is isomorphic to a Boolean algebra of subsets of the phase
space of &.

Turning now to the case of compatible observables in a quantum system,
we find that the situation is broadly similar. Thus let 2 be a quantum system,
H its phase space (Hilbert space) and 44, .. ., 4, compatible observables on
9, i.e. commuting self-adjoint linear operators on H. (For simplicity we shall
assume that the eigenvalues of 4,, ..., 4, are discrete and nondegenerate.)
Since 4,, ..., A, commute, H has a basis (b, b,, . . .) consisting of common
eigenstates for the A;. For each i=1,...,n, j=0,1,2,... let lj- be the
eigenvalue of 4; corresponding to the eigenstate b;. Then for each i, the set
{A% j =o0,1,2,...} lists all the possible values that the observable 4; can
assume, and may accordingly be regarded as being the observation space of
A;.

What is the observation space for the n-tuple of observables (f, ..., f,)?
To determine this, let (&, ...,k,) be an n-tuple of natural numbers, and
suppose that we are certain to get the result (,1,%,, ..., 4%,) by simultaneously
measuring A,, ..., A,. The only state of 2 in which we are certain to get the
result }.fq by measuring 4; is (up to a scalar factor) b,,. So we are only certain
to get the result (4, ..., 4; ) by measuring (4, ..., 4,) when all the b,, are
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identical, i.e. when by =k, = --+ = k,. (To put it another way, if 2isin a
state such that a measurement of one 4; is certain to give the result 1}, then a
measurement of any A; is certain to give the result ﬂ.j- for the same j.) It
follows that the observation space for (Ay,..., A,) is the set of n-tuples
{(4j,...,2):j =0,1,2,...}. Since the elements of this observation space are
indexed by the set N of natural numbers, each subset X of N is correlated
with a proposition Py concerning the state x of 2, viz., the assertion that the
n-tuple of measured values of 4 1r-+-,A, is certain to be in the set
{43, ..., 4j):j€ X} when 2 is in state x. For each subset X of N we define the
representative X of Py (or X) to be the closed subspace of H generated by the
set {b,: n€ X}: this is natural since the elements of X are precisely those
states x of 2 such that the proposition Py is verified when 2 is in state x.

In this case, too, we find that the relation of entailment between
propositions corresponds to set-theoretical inclusion of their representa-
tives and that the representative of the conjunction of two propositions is the
set-theoretical intersection of their representatives. However, the rep-
resentative of the negation of a proposition is no longer the set-theoretical
complement, but rather the orthogonal complement of its representative.
Nevertheless, it still follows that the logic of propositions involving
compatible observables on a quantum system 2 is isomorphic to a Boolean
algebra of (closed) subspaces of the phase space of 2.

So far so good. The difficulty arises when we try to extend the analysis to
incompatible (i.e. non-commuting) observables: since non-commuting oper-
ators have no common eigenbasis, the whole procedure collapses. Thus, for
example, given two incompatible observables A, B, we can perfectly well
form the observation spaces of 4 and B separately and then consider the
representatives in H of propositions involving only A and propositions
involving only B. But we have no way of representing propositions involving
both A and B, e.g. the conjunction of propositions of the above sort. In their
original paper [1936], Birkhoff and von Neumann propose to remove this
obstruction by postulating that the intersection of the representatives of any
pair of propositions—even those involving incompatible observables—is
still the representative of some proposition, namely the ‘conjunction’ of the
pair. (Of course, this is already the case for propositions involving only
compatible observables.) As they point out, the simplest (if Procrustean) way
of ensuring that this postulate holds is to assume that all self-adjoint
operators on H are (or correspond to) observables. In this event, every
closed subspace of H is the representative of a proposition and the
(ortho)lattice of closed subspaces may then be regarded as the mathematical
embodiment of a ‘logic’ of propositions, the so-called quantum logic.

The problem with this approach is that, while the mathematical meaning
of the operations of intersection and orthogonal complementation on the
subspaces of H is perfectly clear, the logical meaning of the corresponding
operations of ‘conjunction’ and ‘negation’ on the associated propositions is
not. Thus arises the fundamental problem of meaning of quantum logic.
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My attempt ro resolve this problem will hinge on two things: the
replacement of Hilbert spaces by more perspicuous structures, the so-called
proximity spaces, and the analysis of propositional quantum logic in terms of
the concept of an attribute defined over such a space. We turn to this now.

2 PROPOSITIONAL LOGIC AS A LOGIC OF ATTRIBUTES

Let us think of attributes or qualities like ‘blackness’, ‘hardness’, ‘having
positive charge’, etc. as being possessed by or manifested over parts of a space
(sometimes called a manifold or field). For instance, if the space is my
sensory field, part of it manifests blackness and part manifests hardness and,
e.g., a blackboard manifests both attributes. Each attribute is correlated
with a proposition (more precisely, a propositional function) of the form:
‘ __ has the attribute in question.’

We shall use symbols 4, B, C, to denote attributes. We assume that we are
initially provided with a supply of atomic or primitive attributes, i.e.
attributes not decomposable into simpler ones. For each such attribute 4
and each space S we also consider as given the total part of S which manifests
A; this will be called the A-part of S and denoted by [A]s. (Thus, for
instance, if S is my sensory field and A4 is the attribute ‘red’, then [ 4 J|s is the
total part of S that is coloured red: the red part of S.)

Attributes may be combined by means of the logical operators A (and), V
(or),— (not) to form compound or molecular attributes.! The term ‘attribute’
will accordingly be extended to include compound attributes as well as
primitive ones. It follows that (symbols for) attributes may be regarded as
the formulas of a propositional language £ —the language of attributes—and
we shall use the terms ‘attribute’ and ‘formula’ synonymously.

In order to be able to correlate parts of any given space S with compound
attributes, i.e. to be able to define the A-part of S for compound A4, we need
to assume the presence of operations A, V, # (correspondingto A, V,—)
on the parts of S. For then we will be able to define the A-part [A]s of the
space for arbitrary attributes A by recursion on the number of logical
operators in A according to the following scheme:

|[A A B]]s = [[A]]s A ‘[B]]s 1
[4V B]s=[4]s V [Bls (2.1)
[—41s = [4]9)* J

([A]s is also called the value of Ain S.) Once this is done, we can then define
the basic relation [=g of entailment or inclusion between attributes over S:

Aks B iff [A]s < [Bls.

Now the conventional meaning of ‘A’ dictates that, for any attributes 4

! Note that ‘-’ (implication) is for the moment omitted. We make up for this deficiency in 84.
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and B, we should have A A BlegA, A A Bl=egB and, forany C, if CEg A4
and Cl=gBthen Cl=gA A B. In other words, [4 A BJg should be taken to
be the largest part (with respect to set-theoretic inclusion) of S included in
both [4]sand [ B]s. By the first equation of (2.1), the same must then be true
of [A]s A [B]s. Consequently, for any parts U, V of S, U A V should be the
largest part of S included in both U and V.

Similarly, now using the conventional meaning of ‘ V’, we conclude that,
for any parts U, V of S, U V V should be the smallest part of S which
includes both U and V.

We suppose that ‘— satisfies the law of ex falso quodlibet: thus if 4 is an
attribute, then 4 A —AkEgB for any B. In other words [4
A — A]s < [B]s or, using (2.1), [A]s A [A]#& < [B]s for any B. If we
assume that there is a vacuous attribute B for which [B]s = ¢, the empty
part of S, it follows that [4]s A [A]# = ¢. Consequently, for any part U of
S we should require that U A U* = ¢, i.e. that U and U* be ‘mutually
exclusive’.

It follows from these considerations that we should take the parts of a
space S to constitute a lattice of subsets of (the underlying set of) S, on which
is defined an additional operation # (‘complementation’) corresponding to
negation (or exclusion) satisfying the condition of mutual exclusiveness
mentioned above. Formally, a lattice of subsets of a set S is a family L of
subsets of S containing ¢ and .S such that for any U, VV € L there are elements
UAV, UV VeL such that U A V is the largest (with respect to <)
element of L included in both U and IV and U V V is the smallest (with
respect to <) element of L which includesboth Uand V.U AV, U V Vare
called the meet and join, respectively, of U and V. A lattice of subsets of .S
equipped with an operation #: L — L satisfying U A U* = ¢ for all UeL
will be called a %-lattice of subsets of S.

We can now formally define a space to be a pair S = (S, L) consisting of a
set S and a #-lattice L of subsets of S. Elements of L are called parts of S, and
L is called the lattice of parts of S.

In practice we shall only need to consider the following sorts of space, so
henceforth the term ‘space’ will connote one of the following 3 kinds:

(1) Topological spaces. In this case S = (.S, L) is a set .S equipped with a
topology L. Here the meet and join operations in L are just set-theoretical
intersection and union, and the # operation is given by U* = interior of S
—U, for UelL.

(2) Discrete spaces. These are the special cases of (1) in which the topology
L on S is the family PSS of all subsets of S. The #-operation on L is then just
ordinary set-theoretic complementation in S.

(3) Proximity spaces. A proximity structure is a set S equipped with a
proximity relation, i.e. a symmetric reflexive binary relation ~. (The reason
for using the term ‘proximity’ is, as we shall see, that it is helpful to think of
x & y as meaning that x is near y. Caution: = is not generally transitive!) For
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each x €S we define the quantum at x, Q,, by
O, ={yeS:x = y}. (2.2)

Unions of families of quanta are called parts of S; thus a part of S is a subset
of the form

U 0.

xeAd

for A = S. It can be shown (see Bell [1983]) that the family Part(.S) of parts
of S forms a =-lattice! of subsets of .S, in which the join operation is set-
theoretical union, the meet of two parts of S is the union of all quanta
included in their set-theoretical intersection, and, for U € Part(S),

U*={yeS:Ix¢ U+ x = y}. (2.3)

The pair S = (S, Part(S)) is called a proximity space.

Observe that any discrete space is a proximity space in which = is the
equality relation. More generally, it is quite easily shown that a proximity
space S is a topological space if and only if its proximity relation is transitive,
and that in this case S is almost discrete in the sense that its lattice of parts is
isomorphic to the lattice of parts of a discrete space.

Proximity structures (or spaces) S admit several interpretations which
serve to reveal their significance.

(a) S may be viewed as a ‘space’ or field of perception, its points as
locations in it, the relation & as representing the indiscernibility of locations,
the quantum at a given location as the minimum perceptibilium at that
location, and the parts of S as the perceptibly specifiable subregions of S.
This idea is best illustrated by assigning the set S a metric J, choosing a fixed
¢ > o and then defining x & y <> d(x,y) < &.

(b) S may be thought of as the set of outcomes of an experiment and = as
the relation of equality up to the limits of experimental error. The quantum at
an outcome is then the ‘outcome within a specified margin of error’ of
experimental practice.

(c) S may be taken to be the set of states of a quantum system and s = ¢ as
the relation: ‘a measurement of the system in state s has a non-zero
probability of leaving the system in state ¢, or vice-versa.” More precisely, we
take a Hilbert space H, put .S = H— {0}, and define the proximity relation =
on Sbys &t {s,t) # o (sis not orthogonal to ¢). It is then readily shown
that the =-lattice of parts of .S is isomorphic to the #-(ortho)lattice of closed
subspaces of H. Consequently, #-lattices of parts of proximity spaces include
the #-lattices of closed subspaces of Hilbert spaces—the lattices associated with
Birkhoff and von Neumann’s ‘quantum logic’. This observation will be
employed later on.

1 Actually Part(S) has the structure of a complete ortholattice (see Bell [1983] or Birkhoff [ 1960])

for we have, for any U,VePart(S), U**=U, UuvU*=S, UA U* = ¢,
UcV=>U*2l*
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(d) S may be taken to be the set of hyperreal numbers in a model of
Robinson’s nonstandard analysis (see, e.g. Belland Machover [1977]) and =
as the relation of infinitesimal nearness. In this case x is transitive.

(e) S may be taken to be the affine line in a model of synthetic differential
geometry (see Kock [1981]). In this case there exist many square-zero
infinitesimals in .S, i.e. elements & # o such that £ = o, and we take x & y to
mean that the difference x—3 is such an infinitesimal, i.e. (x—y)? = o.
Unlike the situation in case (d), the relation & here is not generally
transitive.

Given a space S = (S, L) we define an interpretation of the language ¥ of
attributes to be an assignment, to each primitive attribute A (i.e. atomic
formula of %) of a part [A4]s of S. Then we can extend the assignment of
parts of S to all attributes recursively as in (2.1).

Letuscallaformula A S-validif [A]s = S. If # is aclass of spaces, we say
that A is # -valid if it is S-valid for all Se .#. The purpose of introducing
this concept of validity is that it enables us to characterise the tautological
statements (truths) of various logical systems. Let J0 £, Z¢s and Proz be the
classes of topological spaces, discrete spaces and proximity spaces, respec-
tively. It is well known (¢f. Rasiowa and Sikorski [1963], ch. IX, §3) that the
To f-valid formulas of £ coincide with the tautologies of intuitionistic logic in
£, and (ibid., ch. VII, §1)-the Dis-valid formulas with the tautologies of
classical logic. Now, as we have observed, the lattices of parts of proximity
spaces include the lattices associated with Birkhoff and von Neumann’s
‘quantum logic’. So it is natural to identify the Proz-valid formulas (of ¥) as
the tautologies of quantum logic (1n ¥).

Let us write I, K, Q for the sets of tautologies of intuitionistic, classical,
and quantum logic, respectively. Clearly we have the relation

IvQcK.
Moreover, we have

Ocl, IcQ, IVQO#K
# #*

since, for formulas A4, B,

AV -—A4eQ-1 (2.4)
~—[AA—(AABA—(AAN—B)]el-Q (2.5)
—AV(AABV(AA—BeK-(IU0Q). (2.6)

To prove (2.4), we note that 4 V — A € Q is an immediate consequence of
the evident fact that Uu U* = S for any part U of a proximity space S
(where U* is defined in (2.3)). That 4 V —A ¢ is, of course, well-known.

For (2.5), the formula C on the left-hand side is evidently a classical
tautology and contains no connectives except A and —. So by a well-known
result of Godel (¢bid., ch. IX, §5) C is an intuitionistic tautology and hence
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Cel. To show that C ¢ (Q, it is enough to construct a proximity space S and
an interpretation of primitive formulas 4, B in S for which [C]s # S. To
this end let S be the set {o, 1, 2, 3}; define the relation ~ on S by

mxner|m—n| #£ 2.

Clearly ~ is a proximity relation on S. Define an interpretation of 4, B in
the resulting proximity space S by [A]s = Q,, [B]s = O, (recalling the
definition of Q, given in (2.2)). It is then easily verified that

Q3=Q2: Qf=Qa» QOAQ1=QOAQ*=¢-

Consequently,

{[C]]s = U:—]A]]s A ﬂ'_—](A A B)]]s A I[_I(A A —]B)]]s
=QsASAS=0,#S.

The result follows.

As for (2.6), the formula D on the left-hand side is evidently a classical
tautology. It cannot, on the other hand, be an intuitionistic tautology since,
if it were, by taking 4 to be itself an intuitionistic tautology, it would follow
that B V — Bis an intuitionistic tautology, which as we know is not the case.
To see, finally, that D ¢ Q, one uses the proximity space S defined above and
verifies that

[Dls=[Cls #S.

Thus quantum logic (as we have defined it) may be distinguished from
classical (and intuitionistic) logic by the assertion that the formula displayed
in (2.5)—a weak, if recherché, version of the distributive law—is a tautology
of the latter systems but not of the former. But this, it seems to me, is a
technical and somewhat opaque method of drawing the distinction: in the
next section we show how to formulate it in a more striking and intuitively
convincing way.

3 THE MANIFESTATION OF ATTRIBUTES

Given a space S and an interpretation of the language of attributes £ in S, an
attribute 4 and a part U of S, it is natural to consider the relation U < [A4]s
as meaning that the part U is covered by the attribute 4. Now for topological
(and discrete) spaces there is another way of obtaining the covering relation,
which is reminiscent of the definition of set-theoretic forcing. Namely, we
define the relation U |-g A, which shall be read U manifests A in S, by
recursion on the number of logical symbols in 4 as follows:

UfRsA<Uc[A]s for primitive 4
UlsAABwUlsA&Uj-¢B

AT RRL AT L
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UlpsAVB=Vi-sA & WlisB for some parts V, W of S such that
U=Vuw

Ul-s— A< [VisdA=V < U*] forall parts V of S.

Thus U manifests a disjunction 4 V B provided there is ‘covering’ of U by
two ‘subparts’ manifesting A and B respectively, and U manifests a negation
— A provided any part of S manifesting 4 is included in the ‘complement’ of
U.

Now it is easily shown by induction on the number of logical symbols in
formulas that for topological (and discrete) spaces S,

UpsdA<=Uc[A]s. (3.1)

That is, for topological (and discrete) spaces, the covering relation and the
manifestation relation coincide. However, as we shall see, for proximity spaces
this is no longer the case. And, as we show presently, it is the manifestation
relation which is of real interest in this situation.

The coincidence of the manifestation and covering relations for topolo-
gical spaces has the following immediate consequence. Defining a space S to
support an attribute (formula) 4 if S |- A (which we shall abbreviate simply
to -5 A), then the tautologies of intuitionistic (resp. classical) logic are those
formulas which are supported by every topological (resp. discrete) space. At the
time of writing it is not known whether this result extends to quantum logic,
i.e. whether the tautologies of quantum logic coincide with the formulas
which are supported by every proximity space. (The claim in Bell [1983]
that this is the case was based on a result (Theorem 2.4 of that paper) which
has turned out to be false.) However, it can be shown that, for example, the
quantum-logical tuatology A V — A4 is supported by every proximity space
(as are, additionally, all quantum-logical tautologies not containing ‘V?).

Let us call an attribute 4 S-persistent (or persistent over S) if for all parts
U, VofS

VEU&UlgA=V|-sA.

(Note that a primitive attribute is always S-persistent. More generally, it is
not hard to show that the same is true for any attribute A not containing
occurrences of the disjunction symbol V .) And let us call a space S persistent
if every attribute is S-persistent (for any interpretation of % in S). By (3.1),
every topological (or discrete) space is persistent, so in particular the
tautologies of intuitionistic or classical logic are persistent over their
associated spaces (topological or discrete, respectively). As we now show, in
striking contrast, there are tautologies of quantum logic which are not
persistent over their associated spaces, viz., proximity spaces. This is
revealed by the following simple example of a non-persistent proximity space.

Consider the real line R with the proximity relation: x &~ y <> |x—y| < 4
and let R be the associated proximity space. The quantum at a point xe R is
then the closed interval of length [ centred on x. Suppose now we are given
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two primitive attributes B (‘black’) and R (‘red’). Define interpretations of
Band Rin R by

[Blr = v {[2n,2n+1]: ne Z}
[Rlg = v {l2n—1,2n]: ne Z}.

(Here Z is the set of all positive and negative integers and [a, b] is the closed
interval with endpoints a, b.) To put it more vividly, we ‘colour’ successive
unit segments of R alternately black and red. Clearly, then, R supports the
disjunction R V B. But if U is the quantum Q, = [3,3] then RV B is not
manifested over U, since U is evidently not covered by two subparts over
which R and B are manifested, respectively (indeed, U has no proper
subparts). Equally clearly, U does not manifest the quantum-logical
tautology R V — R (nor, of course, B V — B).

Thus arises the curious phenomenon that, although we can see, by
surveying (a sufficiently large part of) the whole space R, that the part U is
covered by redness and blackness, nonetheless U—unlike R—does not split
into a red part and a black part. In some sense redness and blackness are
conjoined or superposed in U: it seems natural then to say that U manifests a
superposition of these attributes rather than a disjunction.

This concept of superposition of attributes turns out to admit a very
simple rigorous formulation. In the example we have just considered, the
part U manifests a superposition of the attributes R and B just when there is
apart I of the space which includes U and manifests R V B (in this case, V'
may be taken to be the whole space R). Now this inevitably prompts the
following definition. Given a proximity space S, an interpretation of £ in S
and attributes 4, B, we say that a part U of S manifests a superposition of A
and Bif thereisapart Vof Ssuchthat U € Vand V |5 A4 V B. Now for any
attribute C, it is readily shown that

¥V = U'VH-—SC¢ UH—S—|——|C

(Consequently, — — C is persistent.) So the condition that U manifest a
superposition of 4 and B is just

Ul-s—— (A4 V B).

It follows that superpositions are double negations of disjunctions. We shall
have more to say about superpositions in the sequel; in particular in the final
section we shall see how this concept of superposition relates to the usual
quantum-mechanical notion.
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To conclude this section, we show how our space R can be enriched so as
to furnish an interpretation of the quantum-mechanical notion of incom-
patible attributes. To this end, suppose that, in addition to the two primitive
‘colour’ attributes R and B, we are given two primitive ‘charge’ attributes +
and —. Write Colour for the disjunction RV B and Charge for the
disjunction + V —. Interpret + and — in R by

' +
U{\:4n+1’4n 3]:1162}
2 2
U{[4n_l, 4n+1:|: neZ}.
2 2

[+]Ie

[-]Ia

kA

|
ks

!
=
N A
k=
[T

Figure 2.

Now clearly R supports Colour A Charge. But since, in R,
[+1A[RI=[+]1A[Bl=[-1A[R]=[-]1A[B]
= ¢,

we have

ba—i(+ AR A—(+ AB)A—(= AR A (= AB).

In other words, despite the fact that the whole space R manifests both Charge
and Colour, there is no non-empty part of the space which manifests both a
specific charge and a specific colour. This situation is sufficiently similar to
the familiar incompatibility of position and momentum measurements in
quantum mechanics (‘any particle has both a position and a momentum, but
not a specific position and a specific momentum’: ¢f. Putnam [1969]) to
justify calling Colour and Charge incompatible attributes (over R). We shall
have more to say about incompatibility once we have introduced the
implication operation, a task we turn to in the next section.

4 INTRODUCING IMPLICATION

So far we have scrupulously avoided considering what is, in classical and
intuitionistic logic, a logical operation of fundamental importance, viz.,
implication. We shall now remedy this by expanding our language of
attributes & to include the implication symbol —.

When S is a topological or discrete space, its lattice L of parts has a naturally
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defined ‘implication’ operation = defined on it by
U — V = largest open set included in Vou(S—U)
(=Vu(S—U)whenSis discrete).

So in either case U — V is the largest part of S whose intersection with U is
included in V. We can extend the interpretation in S of formulas of £ to
include implication formulas 4 — B by the rule

[4— B]s= [4]s = [Bls.

And it can then be readily shown that, if we extend the notion of validity to
implication formulas in the obvious way, the Jo 4- (respectively Dio-) valid
formulas (now also involving ‘—’) continue to coincide with the intui-
tionistic (respectively, classical) tautologies.

In the case of proximity spaces, however, there is no entirely satisfactory
way of defining the operation —* on the lattice of parts, and so no evident way
of interpreting ‘—’. (This, it may be said, is the source of the vexatious
question of the meaning of ‘=’ in quantum logic.) However, we can
overcome this difficulty by extending the manifestation relation to impli-
cation formulas as follows. For any space S, we define

Ul-gA— BNV c UV sA=VisBl

For topological and discrete spaces S, one can show that (3.1) continues to
hold for any formulas, now including those involving ‘—’, and so, again, the
tautologies of intuitionistic (or classical logic) coincide with the formulas
supported by every topological (or discrete) space. (Here the applicability of
the term ‘support’ has been extended to include implication formulas.)

The introduction of — into % leads to simple and striking characterisa-
tions of the difference between classical and quantum logic. Let us identify
the tautologies of what I shall term implicative quantum logic as those
formulas, (now involving ‘—’) supported by every proximity space. Now,
one easily shows that for any space & an attribute 4 is & -persistent if and
only if, for any attribute B, & supports the formula 4 = (B — A). Since, as
we have seen, attributes are not generally persistent over proximity spaces, it
follows that the formula 4 — (B - A) is not a tautology of implicative
quantum logic. This is consonant with the views of Mittelstaedt (cf., e.g.
Jammer [1974]) who regards the non-provability of A — (B — A) as being
characteristic of the difference between quantum and classical logic.

It is natural at this point to introduce the relation of entailment among
formulas. If € is any class of spaces, we say that a sequence Ay, . .., 4, (with
n > 1) of formulas €-entails a formula B, and write

A, ..., A, E B
if, for any S€ ¥ we have
H_SA1“’(A2-’""’(A'-"’B)~-')-
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We extend this notion of entailment to the case of the empty sequence of
formulas by agreeing that

keB< 5B forevery Se¥.
When € is Jo# or Dés this definition of entailment is the familiar one:
Ay, ..., A g, B4 AN...N4,)—B

is an intuitionistic tautology

(4.1)
Al’ S ’An'=9£4B¢>(A1 Ao A An) - B
is a classical tautology
Thatis, 44, ..., A, g.4Bifandonlyif 4,,...,4, intuitionistically entails
B and A4,,...,A,F ;B if and only if 4,,..., 4, classically entails B.
Analogously, it is natural to say that 4, . . ., 4, implicative quantum logically

entails B and write
Ay, ..., A FoB
when A,, ..., A, ... B-

Implicative quantum-logical entailment has the curious feature, not
shared by classical or intuitionistic entailment, that the order of the premises
A,,..., A, mustbe taken into account. (Consequently, in particular, there is
no analogy to (4.1) for k=,.) For instance, although it is evidently the case

that
A,BE, B,

it is not generally the case that
B, A4 B.

(To see this, take A = Colour and B = Charge in the example at the end
of §3.) It therefore seems appropriate to say, adapting a phrase of Saul
Bellow’s, that in quantum logic the postulates have a tendency to decay
before the end of the argument!

Observe also that the rule of introduction of premises on the left—valid
for classical and intuitionistic logic—fails for [ o. For instance it is certainly
the case that

FoB VYV —B,
but not generally that
AEoBV —B.

Indeed, if 4 and B are primitive attributes, then it is never the case that
Al o B V — B. To establish this, return to the space S used to verify (2.5).
It is easy to see that, with the interpretations of A and B given there, we have
Qol#sBV — B, and hence that 54— (BV —B), giving Aj#,B
V —B.
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This leads once again to the idea of (in)compatibility. Let us say that two
formulas (attributes) A, B are compatible if

AEgBYV—B and BE,4AV—4
and coassertable if

A,BEgA and B,AF4B.

Compatibility of 4 and B means that the introduction of the premise 4 does
not affect the assertability of B V — B (or mutatis mutandis). Coassertability
of A and B means that, given the premise 4, introducing the premise B does
not affect the assertability of A (or vice-versa); in other words, 4 and B are
simultaneously assertable.

It is easily shown that compatibility implies coassertability. However, the
converse is false since all primitive formulas are evidently coassertable but,
as we have shown above, incompatible. Note that it follows from this last fact
that 4 and B V — B are not coassertable for any primitive 4, B.

We infer that implicative quantum logic is distinguished from in-
tuitionistic (and, indeed, classical) logic by the presence of non-coassertable
formulas, and from classical logic by the presence of incompatible formulas.

The concept of quantum-logical entailment also yields a precise formu-
lation of a general notion of superposition of attributes. Given a space S, let
us say that an attribute 4 is a superposition of two attributes B, C over S
provided that, for any part U of S, if U manifests A, then U manifests a
superposition of B and C in the sense of §3. This condition is easily seen to be
equivalent to:

We say that A is a (quantum-logical) superposition of B and C if (4.2) holds
for every proximity space S, i.e. if

or in other words if

AFo—— BV O). (4-3)

In the classical case, of course, we would be allowed to infer from (4.3) that
A= B V C;butin the implicative quantum-logical context we cannot do so.
This follows from the evident fact that for any attributes A, B, 4 is a
superposition of B and — B, but if they are both primitive, A4 is, as we have
seen, incompatible with B. Thus implicative quantum logic is distinguished
from classical logic by the presence of superpositions which are not reducible to
disjunctions.

Despite the non-classical properties of = 5, we observe that the classically
valid law

A, AN BEgB (4-4)
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still holds. And as an immediate consequence, the weaker ‘orthomodular
law’ (¢f. Goldblatt [1974])

A,— AV (AAB)EyB

also holds. (To establish (4.4) let S be any proximity space and let U , V be
parts of S with IV < U. Suppose that U -5 A4 and Vi-s— A4V B. Then
there are parts W, Zof Ssuchthat Wu Z =V, W fs— Aand Z |- B. But
since W< U, Ul-sA4 and W |-5— 4 jointly imply W = ¢. Hence V = Z
and V }f-g B. This gives -4 — [(4 V B) - B] and (4.4) follows.) That
(4-4) holds is perhaps surprising since it is easily shown that the classical law
(modus ponens) governing implication

A,A-BE B

fails for |= 4. (To see this, take A = B = Colour in the example at the end of
§3.) However, we note that implication still satisfies the fundamental
deduction theorem as a trivial consequence of the definition of = o

Al)'--aAn'=QB¢>A1)---,An—1|=QAn—’B' o (4-5)

It is tempting to conjecture that the implicative quantum-logical entail-
ment relation is axiomatisable. That is, one should be able to specify a
‘quantum-logical provability relation’ |~ based on a set of formal axioms
and rules of inference and then proceed to show that

Ay,...,AoB=4,,...,A,} o B.

(As axioms and rules one would presumably include correct assertions such
as (4.4) and (4.5).) The logical calculus based on o would then be, in my
view, a promising candidate for the role of formal quantum logic. So far,
however, I have not succeeded in carrying this out and it remains an open
problem. Nevertheless, the fact that the quantum-logical entailment
relation is definable in a way similar to that for classical and intuitionistic
logic, and satisfies the deduction theorem, suggests that, from a semantical
standpoint at least, implicative quantum logic is a geniune logical system
and not merely an algebraic formalism.

5 SUPERPOSITION OF STATES

In this final section we relate the concept of superposition of attributes to the
quantum-mechanical notion of superposition of states.

We may regard a discrete space as being essentially the same as a classical
phase space (¢f. §1). In such a space S, a state may be identified with a one-
point subset of .S, 7.e. a minimal non-empty part of S. If every such partisthe
value in S of a primitive attribute, then we may identify states of S with
minimal primitive attributes over S, i.e. primitive attributes 4 such that, for
any part U of S,

Ubsd<=U=¢ or U=[A4]s. (5.1)

G



o8 J.L.Bell

We shall retain this definition of state when S is an arbitrary proximity space.
Given a proximity space S, and states A, B, C of S, we recall that A is a
superposition of B and C over S if

If we agree to identify two states A and B whenever

-s(4 — B) A (B— A),

it is then readily shown that some of the most important of Dirac’s rules
governing superpositions ([1936], chapter 1) are satisfied, e.g.

@ The result of superposing any state with itself is the same as the original
state.

@® For any states B, C, both are superpositions of B and C.

@ Superposition is independent of order.

@ Each pair of states has (in general) many different superpositions.

To complete the picture, consider finally the ‘orthodox’ quantum-
mechanical framework based on a Hilbert space H. Here the associated
proximity structure is (H —{0}, ) where =~ is the relation of non-
orthogonality of vectors. For each ¢ # o in H we introduce a primitive
attribute 4, and interpret A4, in the resulting proximity space H by setting

[[Ax]]=Qx={y¢o:xzy}.

Then the A4, are the minimal primitive attributes over H. Moreover, we
identify A, and A, precisely when Q, = Q,, which is easily seen to be
equivalent to: x is in the one-dimensional subspace of H generated by y. In.
other words, the (identified) minimal attributes over H—the states of H in
the above sense—correspond to the one-dimensional subspaces of H, i.e. to
the states of H in the usual quantum-mechanical sense. And lastly, it is easy
to show that A, is a superposition of 4, and A4, in our sense, i.e.

bgds——— 4,V 4)

if and only if O, € Q,u Q,, which is in turn equivalent to ‘x is in the
subspace spanned by y and 2’, i.e. ‘state x is a quantum-mechanical
superposition of states ¥ and 2’.

We conclude that the concept of superposition of minimal attributes is the
correct extension of the quantum-mechanical concept of superposition to
our more general framework.

Concluding Remark. Here we have only dealt with propositional logic. But
since all the lattices involved are complete, it is not difficult to extend the
framework to accommodate predicate logic (¢f. Bell [1983]). As far as I can
determine, however, no fundamentally new features emerge.

London School of Economics
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