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1. Devised by Eilenberg and Mac Lane in the early 1940s, category theory 

is a presentation of mathematics in terms of the fundamental concepts of 

transformation, and composition of transformations. While the importance of 

these concepts had long been recognized in algebra (for example, by Galois 

through the idea of a group of permutations) and in geometry (for example, by 

Klein in his Erlanger Programm), the truly universal role they play in 

mathematics did not really begin to be appreciated until the rise of abstract 

algebra in the 1930s. In abstract algebra the idea of transformation of 

structure (homomorphism) was central from the beginning, and it soon became 

apparent to algebraists that its most important concepts and constructions 

were in fact formulable in terms of that idea alone. Thus emerged the view that 

the essence of a mathematical structure is to be sought not in its internal 

constitution, but rather in the nature of its relationships with other structures 

of the same kind, as manifested through the network of transformations. This 

idea has achieved its fullest expression in category theory, an axiomatic 

framework within which the notions of transformation (as morphism or arrow) 

and composition (and also structure, as object) are fundamental, that is, are not 

defined in terms of anything else. 

From a philosophical standpoint, a category may be viewed as an explicit 

presentation of a mathematical form or concept. The objects of a category C are 

the instances of the associated form and the morphisms or arrows of C are the 

transformations between these instances which in some specified sense 

"preserve"  this form. As examples we have: 

 

 

 Category                Form                       Transformations 



 2

 

           Sets                       Pure discreteness         Functional correlations 

  Sets with relations                    " " " "                  One-many correlations 

        Groups                   Composition/inversion     Homomorphisms 

Topological spaces                    Continuity            Continuous maps 

Differentiable manifolds           Smoothness             Smooth maps 

  

Because the practice of mathematics has, for the past century, been 

officially founded on set theory, the objects of a category—in particular those of 

all the above-mentioned categories—are normally constructed as sets of a 

certain kind, synthesized, as it were, from pure discreteness. As sets, these 

objects manifest set-theoretic relationships—memberships, inclusions, etc. 

However, these relationships are irrelevant—and in many cases are actually 

undetectable—when the objects are considered as embodiments of a form, i.e., 

viewed through the lens of category theory. (For example, in the category of 

groups the additive group of even integers is isomorphic to, i.e. 

indistinguishable from, the additive group of all integers.) This fact constitutes 

one of the "philosophical" reasons why certain category theorists have felt set 

theory to be an unsatisfactory basis on which to build category theory—and 

mathematics generally. For categorists, set theory provides a kind of ladder 

leading from pure discreteness to the category-theoretic depiction of the real 

mathematical landscape. Categorists are no different from artists in finding the 

landscape (or its depiction, at least) more interesting than the ladder, which 

should, following Wittgenstein's advice, be jettisoned after ascent.  

 

 2. Interpreting a mathematical concept within a category amounts to a 

kind of refraction or filtering of the concept through the form associated with 

the category. For example, the interpretation of the concept group within the 

category of topological spaces is topological group, within the category of 

manifolds it is Lie group, and within a category of sheaves it is sheaf of groups. 
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This possibility of varying the category of interpretation leads to what I have 

called in [1] local mathematics, in which mathematical concepts are held to 

possess references, not within a fixed absolute universe of sets, but only 

relative to categories of interpretation of a certain kind—the so-called 

elementary toposes. Absolute truth of mathematical assertions comes then to 

be replaced by the concept of invariance, that is, "local" truth in every category 

of interpretation, which turns out to be equivalent to constructive provability. 

 

 3. In category theory, the concept of transformation (morphism or arrow) 

is an irreducible basic datum. This fact makes it possible to regard arrows in 

categories as formal embodiments of the idea of pure variation or correlation, 

that is, of the idea of variable quantity in its original pre-set-theoretic sense. For 

example, in category theory the variable symbol x with domain of variation X is 

interpreted as an identity arrow (1X), and this concept is not further analyzable, 

as, for instance, in set theory, where it is reduced to a set of ordered pairs. 

Thus the variable x now suggests the idea of pure variation over a domain, just 

as intended within the usual functional notation f(x). This latter fact is 

expressed in category theory by the "trivial" axiomatic condition  

 

f   1X = f, 

 

in which the symbol x does not appear: this shows that variation is, in a sense, 

an intrinsic constituent of a category. 

 

 4. In certain categories—Lawvere-Tierney's elementary toposes—the 

notion of pure variation is combined with the fundamental principles of 

construction employed in ordinary mathematics through set theory, viz., 

forming the extension of a predicate, Cartesian products, and function spaces. In 

a topos, as in set theory, every object—and indeed every arrow—can be 

considered in a certain sense as the extension {x: P(x)} of some predicate P. The 
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difference between the two situations is that, while in the set-theoretic case the 

variable x here can be construed substitutionally, i.e. as ranging over (names 

for) individuals, in a general topos this is no longer the case: the "x" must be 

considered as a true variable.  More precisely, while in set theory one has the 

rule of inference  

 

P(a) for every individual a 

∀xP(x) 

 

in general this rule fails in the internal logic of a topos. In fact, assuming 

classical set theory as metatheory, the correctness of this rule in the internal 

logic of a topos forces it to be a model of classical set theory: this result can be 

suitably reformulated in a constructive setting. 

 

 5. A recent development of great interest in the relationship between 

category theory and set theory is the invention by Joyal and Moerdijk [3] of the 

concept of Zermelo-Fraenkel algebra. This is essentially a formulation of set 

theory based on set operations, rather than on properties of the membership 

relation. The two operations are those of union and singleton, and Zermelo-

Fraenkel algebras are the algebras for operations of these types. (One notes, 

incidentally, the resemblance of Zermelo-Fraenkel algebras to David Lewis' 

"megethelogical" formulation of set theory in [4].) Joyal and Moerdijk show that 

the usual axiom system ZF of Zermelo-Fraenkel set theory with foundation is 

essentially a description (in terms of the membership relation) of the free or 

initial Zermelo-Fraenkel algebra, just as the Peano axioms for arithmetic 

describe the free or initial monoid on one generator. This idea can be extended 

so as to obtain a charcterization of the class of von Neumann ordinals as a free 

Zermelo-Fraenkel algebra of a certain kind. Thus both well-founded set theory 

and the theory of ordinals can be characterized category-theoretically in a 

natural way. 
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 6. Category theory does much more than merely reorganize the 

mathematical materials furnished by set theory: its function far transcends the 

purely cosmetic. This is strikingly illustrated by the various topos models of 

synthetic differential geometry or smooth infinitesimal analysis (see, e.g., [2]). 

Here we have an explicit presentation of the form of the smoothly continuous 

incorporating actual infinitesimals which is simply inconsistent with classical 

set theory: a form of the continuous which, in a word, cannot be reduced to 

discreteness. In these models, all transformations are smoothly continuous, 

realizing Leibniz's dictum natura non facit saltus and Weyl's suggestions in The 

Ghost of Modality [5], and elsewhere. Nevertheless, extensions of predicates, 

and other mathematical constructs, can still be formed in the usual way 

(subject to intuitionistic logic). Two further arresting features of continuity 

manifest themselves. First, connected continua are indecomposable: no proper 

nonempty part of a connected continuum has a "proper" complement—cf. 

Anaxagoras' c. 450 B.C. assertion that the (continuous) world has no parts 

which can be "cut off by an axe". And secondly, any curve can be regarded as 

being traced out by the motion of an infinitesimal tangent vector—an entity 

embodying the (classically unrealizable) idea of pure direction—thus allowing 

the direct development of the calculus and differential geometry using nilpotent 

infinitesimal quantities. These near-miraculous, and yet natural ideas, which 

cannot be dealt with coherently by reduction to the discrete or the notion of "set 

of distinct individuals" (cf. Russell, who in The Principles of Mathematics 

roundly condemned infinitesimals as "unnecessary, erroneous, and self-

contradictory"), can be explicitly formulated in category-theoretic terms and 

developed using a formalism resembling the traditional one.   

 Establishing the consistency of smooth infinitesimal analysis through the 

construction of topos models is, it must be admitted, a somewhat laborious 

business, considerably more complex than the process of constructing models 

for the more familiar (discrete) theory of infinitesimals known as nonstandard 
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analysis. I think the situation here can be likened to the use of a complicated 

film projector to produce a simple image (in the case at hand, an image of ideal 

smoothness), or to the cerebral activity of a brain whose intricate 

neurochemical structure contrives somehow to present simple images to 

consciousness. The point is that, although the fashioning of smooth toposes is 

by no means a simple process, it is designed to realize simple principles. The 

path to simplicity must, on occasion, pass through the complex. 
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