J. L. BELL

FROM ABSOLUTE TO LOCAL MATHEMATICS

In this paper (a sequel to [2]) I put forward a “local” interpretation of
mathematical concepts based on notions derived from category theory.
The fundamental idea is to abandon the unique absolute universe of
sets central to the orthodox set-theoretic account of the foundations of
mathematics, replacing it by a plurality of local mathematical frame-
works — elementary toposes — defined in category-theoretic terms. Such
frameworks will serve as local surrogates for the classical universe of
sets. In particular they will possess sufficiently rich internal structure to
enable mathematical concepts and assertions to be interpreted within
them. With the relinquishment of the absolute universe of sets,
mathematical concepts will in general no longer possess absolute
meaning, nor mathematical assertions absolute truth values, but will
instead possess such meanings or truth values only locally, i.e., relative
to local frameworks. There is an evident parallel between this ap-
proach to the interpretation of mathematical concepts and the inter-
pretation of physical concepts within the theory of relativity: this we
discuss in section 2. Section 3 examines the procedure of passing from
one local framework to another, observing that it is an instance of the
dialectical process of negating constancy. In particular, we show
(following F. W. Lawvere) how the construction of models of Robin-
son’s nonstandard analysis and the proofs of Cohen’s independence
results in set theory may be construed as instances of this procedure.

1. CATEGORY THEORY AND LOCAL MATHEMATICAL
FRAMEWORKS

Category theory (cf. [2] or [14]) provides a general apparatus for
dealing with mathematical structures and their mutual relations and
transformations. Invented by Eilenberg and MacLane in the 1940’s, it
arose as a branch of algebra by way of topology, but quickly tran-
scended its origins. Category theory may be said to bear the same
relation to abstract algebra as the latter does to elementary algebra.
For elementary algebra results from the replacement of constant
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quantities (i.e., numbers) by variables, keeping the operations on these
quantities fixed. Abstract algebra, in its turn, carries this a stage
further by allowing the operations to vary while ensuring that the
resulting mathematical structures retain a certain prescribed form
(groups, rings, or what have you). Finally, category theory allows even
the form of the structures to vary, giving rise to a general theory of
mathematical structure or form. Thus the genesis of category theory is
an instance of the dialectical process of replacing the constant by the
variable, a theme which will play an important role in what I have to
say here.

In category theory the transformations (called arrows) between
structures (called objects) play an autonomous role which is in no way
subordinate to that played by the structures themselves. (Thus cate-
gory theory is like a language in which the verbs are on an equal
footing with the nouns.) In this respect category theory differs cruci-
ally from set theory where the corresponding notion of function is
reduced to the concept of set (of points). As a consequence, the notion
of transformation in category theory is vastly more general than the
set-theoretic notion of function. In particular, for example, the
concept of category-theoretic transformation will admit interpre-
tations in which one variable quantity depends functionally on another
but where the corresponding “function” is not describable as a set of
(ordered pairs of) “points” (for instance when the functional depen-
dence arises as the phenomenological description of the motion of a
body).

The generality of category theory has enabled it to play an increas-
ingly important role in the foundations of mathematics. Its emergence
has had the effect of subtly undermining the prevailing doctrine that
all mathematical concepts are to be referred to a fixed absolute
universe of sets. Category theory, in contrast, suggests that mathema-
tical concepts and assertions should be regarded as possessing mean-
ing only in relation to a variety of more or less local frameworks. To
indicate what I mean, let us follow MacLane [14] in considering the
category-theoretic interpretation of the concept “group”. From the
set-theoretical point of view, the term “group” signifies a set (equip-
ped with a couple of operations) satisfying certain elementary axioms
expressed in terms of the elements of the set. Thus the set-theoretical
interpretation of this concept is always referred to the same frame-
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work, the universe of sets. Now consider the category-theoretic ac-
count of the group concept. Here the reference to the “elements” of
the group has been replaced by an “arrows only” formulation, thereby
enabling the concept to become interpretable not merely in the
universe (category) of sets, but in essentially any category. The
possibility of varying the framework of interpretation offered by
category theory confers on the group concept a truly protean general-
ity. Indeed, the interpretation of the term “group” within the category
of topological spaces is topological group, within the category of
differentiable manifolds it is Lie group and within the category of
sheaves over a topological space it is sheaf of groups.

We see that the category-theoretic meaning of a mathematical
concept such as group is now determined only in relation to an
ambient category, and this ambient category can vary. Thus the effect
of casting a mathematical concept in categorical language is to confer
a further degree of ambiguity of reference on the concept.

To some extent this ambiguity of reference of mathematical
concepts is already present within classical set theory, since its axioms
are formulated in first-order terms and therefore admit many essen-
" tially different interpretations. Indeed, as far back as 1922, Skolem
[15] remarked that for this reason set-theoretical notions — in par-
ticular, infinite cardinalities — are relative. He concluded that axioma-
tized set theory “was not a satisfactory ultimate foundation for
mathematics”. Skolem’s structures were largely ignored by mathema-
ticians, but a new challenge to the absoluteness of the set-theoretical
framework arose in 1963 when Paul Cohen constructed models of set
theory (i.e., Zermelo-Fraenkel set theory ZF) in which important
mathematical propositions such as the continuum hypothesis and the
axiom of choice are falsified (Godel having already in the late 1930’s
produced models in which the propositions are validated). The resul-
ting ambiguity in the truth values of mathematical propositions was
regarded by many set-theorists (and even by more “orthodox”
mathematicians) as a much more serious matter than the “mere”
ambiguity of reéference of mathematical concepts already pointed out
by Skolem. In fact, the techniques of Cohen and his successors have
led to an enormous proliferation of models of set theory with essen-
tially different mathematical properties, which in turn has engendered
a disquieting uncertainty in the minds of set-theorists as to the identity
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of the “real” universe of sets, or at least as to precisely what mathe-
matical properties it should possess. The upshot is that the set concept
—.in so far as it is capturable by first order axioms — has turned out to
be radically underdetermined.

" What 1 suggest is that we accept the radically underdetermined
nature of the set concept and abandon the quest for the absolute
universe of sets in the form proposed by classical set theory. It should
be emphasized that this does not necessarily require that we espouse
the extreme formalist/finitist view (or gospel of despair) that set-
theoretical concepts (or those involving the infinite, at any rate) are
meaningless. No, I think the answer lies in recognizing that the
meaning (or reference) of these concepts is determined only relative to
models of ZF, or, more generally, to the local frameworks of inter-
pretation to be introduced in a moment. In this event, an assertion like
the continuum hypothesis will no longer be regarded as the possessor
of an absolute but unknown truth value, for the unique universe of sets
which was presumed to furnish the said truth value will no longer
exist. Note, however, that although the concept of absolute truth of
set-theoretical assertions will have vanished from the scene, there will
appear in its place the subtler concept of invariance, that is,
validity in all local frameworks. Thus, e.g., whereas the theorems of
constructive arithmetic will turn out to possess the property of in-
variance, set-theoretical assertions such as the axiom of choice, or the
continuum hypothesis, will not, because they will hold true in some
local frameworks but not in others.

Having reached the point where models of set theory are treated as
local frameworks of interpretation for mathematical concepts, or in
other words, having replaced the concept of the unique universe of
sets by the concept of a varying framework of interpretation, it
becomes natural to attempt to formulate these ideas within the con-
ceptual language best equipped to handle variation: the language of
category theory. Thus the first thing we require is a category-theoretic
formulation of the notion of model of set theory. This we find in
Lawvere and Tierney’s concept of an (elementary) topos (see, e.g., [3],
[9], [10)).

To arrive at the concept of a topos, we start with the familiar
category S of sets whose objects are all sets (in a given model M of set
theory) and whose arrows are all mappings (in M) between sets in M.
We observe that S has the following properties.

<
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(1) There is a ‘terminal’ object 1 such that, for any object X,
there is a unique arrow X—1 (for 1 we may take any
one-element set, in particular {0}).

(ii) Any pair of objects A, B has a Cartesian product A X B.

(iii) For any pair of objects A, B one can form the ‘exponential’
object B# of all mappings A— B.

(iv) There is an ‘object of truth values’ ) such that for each
object X there is a natural correspondence between
subobjects (subsets) of X and arrows X — . (For () we
may take the set {0, 1}; arrows X — ) are then characteristic
functions on X, and the exponential object QX corresponds
to the power set of X.)

All four of the above conditions can be formulated in purely category-
theoretic (arrows only) language: a (small) category satisfying them is
called a topos.

The concept of a topos is in fact much more general than that of
(the category of sets in) a model of set theory in the original sense.
This is revealed by the fact that, in addition to S, all of the following
are toposes: (1) the category V® of Boolean-valued sets and map-
pings within a Boolean extension (cf. [1]) of a model of set theory; (2)
the category of sheaves (or presheaves) of sets on a topological space;
(3) the category of all diagrams of mappings of sets

Xo— X1—> Xp—> -,

Evidently the objects of each of these categories may be regarded as
sets which are varying in some manner: in case (1) over a Boolean
algebra, in case (2) over a topological space and in case (3) over
discrete time. (So, in this parlance, the category § itself is the category
of sets “varying” over the one point set 1.) These examples suggest
that a topos may be conceived of as a category of variable sets: the
familiar category S we started with is the “limiting” case in which the
variation of the objects has been reduced to zero. For this reason, S is
called a topos of constant sets. Thus, the category-theoretic for-
mulation of the set concept — the notion of topos — turns out to be, as
does the notion of category itself, another consequence of the dialec-
tical procedure of replacing the constant by the variable.

In any model of set theory one has natural “logical operations” A
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(conjunction), v (disjunction), —1 (negation), — (implication), defined
on the object of truth values 2 = {0, 1} corresponding in the usual way
to the set theoretical operations N, U, —, = of intersection, union,
complementation and residuation. The richness of a topos’ internal
structure enables this correspondence to be carried through there as
well. Thus, in any topos E we get natural arrows defined on its object
Qg of truth values which may be thought of as internally defined
“logical operations” in E. Since these logical operations are defined
entirely in terms of the internal mathematical structure of E, a topos
may be regarded as an apparatus for synthesizing logic from mathe-
matics. The remarkable thing is that the logic so obtained is, in
general, intuitionistic; in other words, the logical algebra Qg =
(g, A, v, 1, ) is a Heyting algebra (cf. [9]). For example, when E is
the topos Shv(X) of sheaves on a topological space X, Qg is the
Heyting algebra of open sets in X. On the other hand, when E is a
Boolean extension V®, Qg is the Boolean algebra B, so in this case
the internal logic of E is classical.

The fact that propositional logic is interpretable in any topos E is
really only the beginning. For by employing the “internal complete-
ness” of the truth value object () one can provide interpretations of
the quantifiers V and 3 and so enable statements of first-order logic to
become interpretable in E. Moreover, by exploiting the presence, for
any object A of E, of the exponentials O, Q%) etc., which may be
regarded as representing the collections of properties, properties of
properties, etc., defined over A, we find that statements of higher-
order logic become interpretable in E, just as in an ordinary model of
set theory. (And then the truth value object Q of E represents the
domain of possible “truth values” of such statements in E.) In fact, it
can be shown (cf. [7]) that toposes are precisely the models for
theories formulated within a natural typed higher order language
based on intuitionistic logic. Each topos E is associated with such a
language whose types match the objects of E and whose function
symbols match the arrows of E. A theory in such a language is a set of
sentences closed under intuitionistically valid deductions. Given such
a theory T, a topos E+ can be constructed which is a model of T, and
conversely, given a topos E, we can form a theory Tg (the set of
sentences “true” in E) whose associated topos Er, is categorically
equivalent to E.

Thus higher-order typed intuitionistic theories (which we shall call
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simply “theories™) and toposes are essentially equivalent. Each topos
E may be regarded as being formally described by its associated theory
Tg, and each theory T as being concretely realized or embodied by its
associated topos Er. A theory T may be regarded as a generalized set
theory and a topos which is a model of T as a local universe of
discourse within which the mathematical assertions made by T are
true and the constructions sanctioned by T can be carried out.

Two constructions of paramount importance in mathematics are
those of the natural numbers and real numbers. In set theory the
construction of the set of natural numbers is sanctioned by the axiom
of infinity, and the set of real numbers then essentially obtained as the
power set of the set of natural numbers. The procedure in topos theory
is similar, except that the axiom of infinity is replaced by the so-called
Peano-Lawvere axiom (cf. [9]) which asserts the existence of an object
of natural numbers characterized by the universal possibility of
defining functions on it by recursion. Given such an object N (which
can be shown to be unique up to isomorphism) in a topos E, the object
of real numbers (the counterpart within E of the set of reals) may then
be defined in terms of the exponential object Q" by imitating the usual
classical procedures (i.e., Cauchy sequences or Dedekind cuts: but
note that, in contrast with the classical case, in a general topos these
techniques may lead to non-isomorphic resuits!).

Henceforth I shall use the term local (mathematical) framework for
topos with an object of natural numbers. These local frameworks now
become the generalized models of set theory or local universes of
discourse to which mathematical concepts are to be referred: thus
arises the local interpretation of mathematical concepts. Analogously,
the theories associated with these local frameworks are the generalized
set theories in which mathematical constructions and assertions are to
be codified.

Return for a moment to the case of the topos (now a local frame-
work) Shv(X) of sheaves over a topological space X. Thinking of the
Heyting algebra O(X) of open sets as a domain of truth values, it is
natural to regard Shv(X) as the generalized model of set theory
“generated” by this domain of truth values. (When X is the one-point
space 1, O(X) is essentially the two element set {0, 1} so, since Shv(1)
is a topos S of constant sets, the latter is, as one would confidently
expect, the model of set theory generated by the classical truth value
domain {0, 1}.) It is also suggestive (and consonant with the origins of
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the concept of topos) to regard Shv(X) as the generalized topological
space obtained from X by building a set-theoretical structure on the
open sets of X. With this idea in mind, any topos (local framework!)
may also be conceived as a generalized space as well as a generalized
model of set theory. (This is the viewpoint suggested by algebraic
geometry: the original source of the concept of topos.) The resulting
interplay of topological and set-theoretical concepts is a key feature of
topos theory.

I have emphasized that it is in the spirit of category theory to regard
no framework as absolute. This tendency is realized by the possibility
of moving from one category to another via the concept of functor. A
functor may be regarded as a transformation between categories that
preserves their basic categorical structure. Now when the categories
concerned are local frameworks (toposes!), there is a stronger notion
of transformation available, which we shall call admissible or con-
tinuous transformation. Formally, an admissible transformation f:E—
F between a local framework E and a local framework F is a pair of
functors f*:E—F, fx:F—E where fx is right adjoint to f*, which in
turn is left exact. (Topos theorists will note that this is the opposite of
a geometric morphism.) In the “geometric” case where E and F are
the toposes of sheaves over topological spaces X and Y and we think
of E and F as generalized spaces, the admissible transformations
between E and F correspond exactly to the continuous maps from Y to
X- this is the source of the term ‘“continuous”. The functors f*, fx are
called the components of f. If there is an admissible transformation
between a framework E and a framework F, then F is said to be
defined over E. This terminology is suggested by the fact that, if Sis a
framework of constant sets and f:S—F is any admissible trans-
formation to a framework F, then the components of f are given by
(for I, X objects of S, F respectively):

f*(I) = I-fold copower (disjoint union) of 1 in F; f«(X) = set
in S of “elements” of X, i.e., arrows 1— X in F.

That is, we may think of f*(I) as the “representative” in F of the
constant set I and fx(X) as the “‘extent” or “projection in §” of the
““variable” set X.

The possibility of shifting via admissible transformations from one
local framework to another is central to the interpretation of mathe-
matical concepts proposed here, and points up its essentially kinetic
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and relational character. In this connection one is struck by the
evident analogy with the physical geometric notion of change of
coordinate system. And indeed, just as in astronomy one effects a
change of coordinate system to simplify the description of the motion
of a planet, so also it proves possible to simplify the formulation of a
mathematical concept by effecting a shift of local mathematical
framework. Consider, for example, the concept “real-valued con-
tinuous function on a topological space X’ (interpreted in a topos S of
constant sets). Any such function may be regarded as a real number
(or quantity) varying continuously over X. Now consider the topos
Shv(X) of sheaves over X. Here everything is varying (continuously)
over X, so shifting to Shv(X) from S essentially amounts to placing
oneself in a framework which is, so to speak, itself “moving along”
with the variation over X of the given variable real numbers. This
causes the variation of any variable real number not to be “noticed” in
Shv(X); it is accordingly there regarded as being a constant real
number. In this way the concept “real-valued continuous function on
X" is transformed into the concept “real number” when interpreted in
Shv(X). (To be strictly precise, the objects in Shv(X) satisfying the
condition of being (Dedekind) real numbers correspond, via the
admissible transformation S— Shv(X), to the real-valued continuous
functions on X.) Putting it the other way around, the concept ‘“‘real
number” interpreted in Shv(X) corresponds to the concept “real-
valued continuous function on X interpreted in S. This observation
provides the basis for various proofs of independence in intuitionistic
analysis (analysis interpreted in Shv(X): cf. [8)).

We give two other examples of this procedure. Let B be a complete
Boolean algebra of commuting projections on a Hilbert space H.
Then the real numbers in V), the Boolean extension of V by V®,
correspond to those self-adjoint operators on H whose spectral com-
ponents lie in B (cf. [16]). This provides the basis for Takeuti and
Davis’s approach ([6]) to the foundations of quantum mechanics in
which they suggest that “quantizing” a statement of classical physics
amounts to interpreting it in V®, Finally, if B is the reduced measure
algebra of a measure space Z, then the real numbers in V® cor-
responds to measurable functions on Z. This yields Takeuti’s Boolean-
valued analysis according to which real analysis interpreted in V&
corresponds to the theory of measurable functions in S (cf. [16]).

We see, then, that varying the local framework of interpretation
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transforms the concept “real number” into the concepts ““‘continuous
function”, “‘measurable function” or even “self-adjoint operator”.
This provides striking testimony that under the local interpretation a
mathematical concept possessing a fixed sense now inevitably has a
variable reference. Indeed, we may think of the sense of the concept of
“domain of all real numbers” (i.e., the continuum) as being fixed by its
definition within an appropriate theory, while, as we have seen, its
reference varies with the local framework of interpretation. This
resolves, or rather dissolves, the dilemma of classical set theory in
which a concept such as “domain of all real numbers”, although surely
intended to possess a unique reference in fact cannot because of the
first-order formulation of its definition within the language of set
theory. The local interpretation not only accepts this variability of
reference but welcomes it and assigns it a central position.

2. SOME ANALOGIES WITH THE THEORY OF RELATIVITY

The local interpretation of mathematical concepts, based as it is on
category theory, has an essentially relational character. According to
the local interpretation, the. reference of a mathematical concept,
insofar as it can be construed as an enity, is no longer to be regarded
as being a thing in itself, whose nature is independent of other things,
and whose characteristic properties are entirely intrinsic to it. On the
contrary, the properties of a mathematical entity are now determined
by, and indeed only have meaning in terms of, the totality of its
relationships with other entities.

The recognition that properties originally held to be intrinsic must
instead be treated as relational has arisen frequently in the history of
thought. For example, Leibniz recognized that a state of rest or
motion of a material body is not an intrinsic state of the body but only
has meaning in relation to other bodies. One of the profoundest
instances of this phenomenon arose in the transition from classical
(Newtonian) to relativistic physics, when physical concepts such as
simultaneity of events and mass of a body formerly ascribed an
absolute meaning were seen to possess meaning only in relation to
local coordinate systems.

There is an evident analogy between local mathematical frame-
works and the local coordinate systems of relativity theory: each serve
as the appropriate reference frames for fixing the meaning of mathe-
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matical, or physical concepts respectively. (And we have already
mentioned the analogy between admissible transformations of frame-
works and changes of coordinate system.) Pursuing this analogy sug-
gests certain further parallels.

Thus, for example, consider the concept of invariance. In relativistic
physics invariant physical laws are statements of mathematical phys-
ics (e.g., Maxwell’s equations) which, suitably formulated, hold uni-
versally, i.e., in every local coordinate system. Analogously, invariant
mathematical laws are mathematical assertions which again hold uni-
versally, i.e., in every local mathematical framework. These in fact
turn out to be the theorems of higher order intuitionistic logic with a
natural number system, which include, for instance, the theorems of
intuitionistic arithmetic but not the axiom of choice or the law of
excluded middle. Thus the invariant mathematical laws are those
which are demonstrable constructively: this points up the significance
of constructive reasoning for the local interpretation. Notice in this
connection that a theorem of classical logic which is not constructively
provable (e.g., the law of excluded middle) will not in general hold
universally until it has been transformed into its intuitionistic correlate
(which, e.g., in the case of the excluded middle A v A is (A v
1A)). The procedure of translating classical into intuitionistic logic
(see, e.g., [S5]) is thus the counterpart of casting physical laws into
invariant form.

The physical concept of inertial coordinate system also has its
counterpart in the local interpretation of mathematics. An inertial
coordinate system is one in which undisturbed bodies undergo no
accelerations, i.e., in which Newton’s first law of motion holds. Thus
inertial coordinate systems act as surrogates for Newtonian absolute
space. Analogously, a classical local mathematical framework is one
in which objects undergo no variations (i.e., are ‘““constant”), in other
words, one which resembles the classical universe of constant sets as
closely as possible. This resemblance can be ensured by the satis-
faction of the axiom of choice suitably formulated in a strong cate-
gorical form (see, e.g., [3]). For the truth of the (strong) axiom of
choice in a framework E implies not only that the internal logic of E is
classical and bivalent (i.e., there are only two truth values “true” and
“false”) but also that the arrows of E resemble set-theoretic mappings
in that they are determined by their action on “points” of their
domains. These features may be taken as distinguishing frameworks of
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constant sets among arbitrary frameworks. Since the axiom of choice
ensures the presence of these features, we may define a classical
framework to be one in which this axiom is satisfied while at the same
time observing that it is an accepted principle of classical set theory.
Accordingly, classical local frameworks correspond to inertial coordinate
systems and the axiom of choice to Newton’s first law of motion.

These observations suggest the idea that the local interpretation of
mathematical concepts bears the same relation to classical set theory
as relativity theory does to classical physics.

3. THE NEGATION OF CONSTANCY

We have remarked that the transition from the notion of model of set
theory to the notion of topos (local framework) is an instance of the
dialectical process of replacing the constant by the variable. A par-
ticularly striking form of this process arises when the transition is
made by an admissible transformation. Suppose that we are given a
classical local framework S (i.e., one satisfying the axiom of choice:
the objects of S may then be regarded as being “‘constant”), and a
local framework E defined over S, i.e., for which there is an admissible
transformation S — E. We may regard E as a framework which results
when the objects of S are allowed to vary in some manner. (For
example, when E is Shv(X), the objects of E are those varying
smoothly over the open sets of X.) Thus, in passing from S to E we
dialectically negate the “constancy” of the objects in S, and introduce
‘“variation” or “change” into the new objects of E. In passing from a
classical framework to a framework defined over it we are, in short,
negating constancy.

Now in certain important cases we can proceed in turn to dialectic-
ally negate the “‘variation” in E to obtain a new classical framework
S$* in which constancy again prevails. $* may be regarded as arising
from S through the dialectical process of negating negation. In
general, $* is not equivalent to S and is therefore, according to a
well-known result of topos theory (cf. [4] or [10]) not defined over S,
so that the second “negation”, i.e., the passage from E to $*, cannot
be an admissible transformation (but it is a functor, in fact a “logical”
functor). Thus the action of negating negation in this sense transcends
admissibility. This is the price exacted for reinstating constancy in
passing to S*.
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To establish the importance of this process of negating negation we
show that it underlies two key developments in the foundations
of mathematics: Robinson’s nonstandard analysis and Cohen’s in-
dependence proofs in set theory. (The discussion here owes much to
Lawvere’s seminal article [12].)

Fix a classical framework S, which we shall think of as consisting of
constant sets: we shall reserve the term “set” for “object of S”.

Given a set I, each element ie [ may be identified with the
principal ultrafilter U;={AcI:ie A} over I. This identification
suggests that we think of arbitrary ultrafilters over I as “generalized
points” of I. The collection of generalized points of I forms a new set
BI (the Stone-Cech compactification of I). Elements of | (now
identified as a subset of BI) are called standard points of I, and
elements of BI — I ideal points of I. If I is infinite, ideal points always
exist.

Now consider the local framework E=S§! of sets varying over I.
Objects of S’ (which we shall call variable sets) are I-indexed families
of sets X =(X;:ieI). An element of an object X is an I-indexed
family (x;:ie I) such that x; € X; forie I , i.e., a “choice function” on
X. Thus the Cartesian product [];c; X; is the set of “elements” of the
variable set X.

Each (constant) set A is associated with the variable set A given by
the constant function with value A. The set of ‘elements’ of the
variable set A is then A”.

The framework S’ is defined over S via the admissible trans-
formation S— §’ given by f*(A) = A, [+(X) =[licr X..

Given an element iy e I, we can arrest the variation of any variable
set X by evaluating X at i, i.e., by considering X,. If we apply this
in particular to the set A’ of “elements” of the variable set A, that
is, if we evaluate each such ‘element’ at ip, we just retrieve A. So in
this case, if we negate the constancy of (the elements of) A by passing
to the set A’ of (variable) “elements” of A, and then negate the
variation of these “elements” by evaluating at a standard point of I,
we come full circle. This instance of “negation of negation” is,
accordingly, frivial. The situation is decidedly different, however,
when the evaluation is made at an ideal point of I.

Given an ideal point U of I, i.e., a non-principal ultrafilter over I,
how shall we “evaluate” functions in A’ at U? To this end, observe
that the result of evaluating at a standard point io of I is essentially the
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same as identifying functions in A’ provided their values at ip coin-
cide, i.e., stipulating that for f, ge A’,

f~i 8« flio) = glio)
<{iel:f(i)=g()}e U,

We use this last equivalence as the basis for evaluating functions in A’
at an ideal point U of I. That is, we define

f~ugelieI:f(i)=g()}e U.

Then the result of “evaluating” all the elements of A’ at U is the set
A* of equivalence classes of A’ modulo ~g. (Thus A* is the
ultrapower A’/U.) If I is infinite (and U an ideal point of I), then A*
is well known never to be the same as A. In particular if, for example,
A is the real line R, then R* will have the same elementary properties
as R but will in addition contain new “infinitesimal” elements. Thus
R* will be a nonstandard model of the real line. This, in essence, is the
basis of Robinson’s nonstandard analysis.

In sum, we get Robinson’s infinitesimals by the dialectical process of
first negating the constancy of the classical real line, and then negating
the resulting variation by arresting it at an ideal point.

If we arrest the variation of all the objects of S’ simultaneously at an
ideal point of I we obtain a new classical framework $* (an ultrapower
or enlargement of S) which has the same elementary properties as S.
So this instance of negation of negation leads to a classical framework
which, although different, is nonetheless internally indistinguishable
from the initial classical framework. The whole purpose of Cohen’s
method of forcing in set theory is to obtain new classical frameworks
which are internally distinguishable from the initial one. We now
describe this process, bringing out its dialectical character.

Let P be a partially ordered set in S: think of the elements of P as
states of knowledge and p < q as meaning that q is a deeper (or later)
state of knowledge than p. A set varying over P is a map X which
assigns to each pe P a set X(p) and to each pair P, q € P such that
p=q a map X,,:X(p)—> X(q) such that X, = X, o X,, whenever
p=<gq-=<r. Let E be the framework defined over S whose objects are
all sets varying over P (and in which an arrow f: X — Y is a collection
of maps F,: X(p)— Y(p) such that fa° Xpg = Ypqof, for p<gq).

Within E we consider objects X for which X(p) < X(q) and X, is
the inclusion map for p < q. Such an object will be called a set varying
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steadily over P. If we think of X (p) as the collection of elements of
the variable set X secured at state D, then the “steadiness” condition
means that no secured elements are ever lost. For pP€ P and sets X,
Y varying steadily over P we write

pFXcY

for
Vq=pVxe X(q)Ar=q[x e Y(r)],

that is, given state p, X is eventually contained in Y. We write
PFX=Y

for
plFX<c Yand ptYcX,

that is, given state p, X eventually coincides with Y.

Two elements p, ge P are mutually consistent if Jre Plpsr &
g <r). A set of mutually consistent elements of P is called a body of
knowledge. A body of knowledge K is said to be complete if whenever
p € P is mutually consistent with every member of K, then p belongs
to K.

Given a complete body of knowledge K, define the equivalence
relation ~g on the collection of sets varying steadily over P by

X~xYeo3dpeK[pkX=Y].

Thus, X ~x Y means that our body of knowledge K vyields the
assertion that X and Y eventually coincide. The collection $* of
equivalence classes modulo ~; of steadily varying sets forms a new
classical framework, in general internally distinguishable from § in the
sense that it does not possess all the elementary properties of S: S$* is
in fact a (possibly nonstandard) Cohen extension of S.

To recapitulate: the framework E was obtained by negating con-
stancy in allowing variation (“growth”) over states of knowledge, and
the Cohen extension $* obtained from (the steadily varying objects in)
E by using a complete body of knowledge to determine the “eventual”
identities between the variable sets, in other words, to negate their
variation.

In the “Cohen extension” case passage from S to S* (negation of
negation) preserves some of the principles associated with constancy
of sets (e.g., axiom of choice, classical logic) but, as Cohen showed, P
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may be chosen in such a way ~ now familiar to every set theorist — so
as to ensure that other such principles (e.g., axiom of constructibility,
continuum hypothesis) are violated in this passage. In passing from S
to E (negation of constancy) the classical bivalent logic of § is
replaced by the intuitionistic logic of E. And passage from E to S*
(negation of negation) restores classical logic and constancy but, as we
have remarked, not all principles associated with constancy.

Now, we could have refrained from performing the return passage
to constancy (i.e., the second “negation’) and instead remained in the
framework E of variable sets. The set-theoretic independence proofs
can be obtained by scrutinizing the internal properties of E (more
precisely, by employing the Scott-Solovay method of replacing E by
its associated Boolean-valued framework). If we agree more generally
to abstain from returning to constancy then some startling possibilities
begin to emerge. For example in certain more radical choices of the
framework E of variable sets (where the “sets” vary over a category of
rings in a natural way), the “real line” in E will contain non-trivial
square zero infinitesimals, i.e., real numbers € # 0 such that €>=0. In
such frameworks (cf. [11] or [13]) every function defined on the real
line is infinitesimally linear, hence smooth, and therefore corresponds
to the motion of a classical body. In these circumstances one can then
proceed to develop the calculus along the lines of Fermat and Newton,
with no mention of infinite processes or limits. But for this to be
possible we must remain within a framework of variable sets, resolutely
adopting a local viewpoint in which constancy and classical logic no
longer prevail.

4. SUMMARY AND CONCLUSION

My proposal is that the absolute universe of sets be relinquished in
favour of a plurality of local mathematical frameworks. Mathematics
interpreted in any such framework is appropriately called local
mathematics; an admissible transformation between frameworks
amounts to a (definable) change of local mathematics. The reference of
any mathematical concept is accordingly not fixed, but changes with
the choice of local mathematics.

Constructive provability of a mathematical statement now means that
it is invariant or valid in every local mathematics. So, on this account,
the use of constructive proof procedures, far from hobbling mathema-
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tical activity as (classical) mathematicians are wont to claim, has
instead the opposite effect of extending the validity of mathematical
reasoning to the widest possible spectrum of contexts, including those
in which “variation” is taking place. The role of the axiom of choice is
to eliminate as much of this “variation” as possible, ensuring that any
framework in which it is satisfied is sufficiently similar to the classical
universe of ‘“constant” sets to allow classical mathematical (i.e.,
set-theoretical) reasoning to become valid there.

The replacement of absolute by local mathematics results, in my
view, in a considerable gain in flexibility of application of mathematical
ideas, and so offers the possibility of providing an explanation of their
“unreasonable effectiveness” (cf. [17]). For now, instead of being
obliged to force an intuitively given concept onto the Procrustean bed
of absolute mathematics, with the attendant distortion of meaning, we
are at liberty to choose the local mathematics naturally fitted to
express and develop the concept. To the extent that the given concept
embodies aspects of (our experience of) the objective world, so also
will the associated local mathematics; the “effectiveness” of the latter,
Le., its conformability with the objective world, thus loses its
“unreasonableness” and instead is shown to be a product of design.

So the local interpretation of mathematics implicit in category
theory accords closely with the unspoken belief of many mathemati-
cians that their science is ultimately concerned, not with abstract sets,
but with the structure of the real world.
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