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Introduction 

 

The principle of set theory known as the Axiom of Choice (AC) 1 has 

been hailed as “probably the most interesting and, in spite of its 

late appearance, the most discussed axiom of mathematics, second 

only to Euclid’s Axiom of Parallels which was introduced more 

than two thousand years ago.”2 From this description one might 

expect AC to prove to be as startling an assertion as, say, the 

Principle of the Constancy of the Velocity of Light or the 

Quantum Uncertainty Principle. But, unlike the Axiom of 

Parallels, in its actual formulation AC seems humdrum, almost 

self-evident. As stated by Zermelo in 1904 it amounts to no more 

than the claim that, given any family S of nonempty sets, it is 

possible to select a single element from each member of S. More 

formally, let us term a choice function on S  to be a function f with 

domain S  such that, for each nonempty set X in S, f(X) is an 

element of X. Then Zermelo’s 1904 formulation of AC is the 

assertion that, for any family S  of nonempty sets, there is at least 

one choice function on S.  If S  is finite, the existence of a choice 

function on S  is a straightforward consequence of the basic 

principles of set formation and the rules of (classical) logic. When 

S  is infinite, however, these principles no longer suffice and so the 

existence of a choice function on S must be the subject of 

postulation.  

 
1  Throughout this book we shall use AC as an abbreviation for the Axiom of Choice. 
2 Fraenkel, Bar-Hillel and Levy [1973]. It is not quite correct, however, to refer to 
Euclid’s parallel principle as an “Axiom”. In the Greek sense the parallel principle is a 
postulate rather than an axiom, and, and as we shall see, the Axiom of Choice may be 
construed as both an axiom and a postulate. 
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 Zermelo’s purpose in introducing AC was to establish a 

central principle of Cantor’s set theory, namely, that every set 

admits a well-ordering and so can also be assigned a cardinal 

number. The boldness of Zermelo’s proposal excited considerable 

comment from the mathematicians of the day: while AC seems to 

assert the possibility of making indefinitely many arbitrary 

"choices" —or at least of crystallizing such an imagined procedure 

into a genuine function—it provides no indication whatsoever of 

how these "choices" are to be made, or how the resulting function 

is to be defined. Thus the scepticism of the French mathematician 

Émile Borel concerning such a possibility was sufficient to move 

him to declare that "any argument where one supposes an 

arbitrary choice a non-denumerably infinite number of times is 

outside the domain of mathematics."  

 In response to these and other criticisms, in 1908 Zermelo 

offered a formulation of AC along with a derivation of the well-

ordering principle therefrom, couched in somewhat different 

terms from that given in his earlier paper. At the same time he 

made explicit the set-theoretic assumptions underlying his proof, 

codifying these in the form of postulates which constituted the 

first axiom system for set theory. These moves did not, however, 

succeed in silencing his sterner critics.  

 The tenability of AC was later questioned on the grounds 

that it had "paradoxical" consequences. In 1914 Hausdorff derived 

from it the startling result that the surface S of a sphere can be 

decomposed into disjoint sets S = A  B  C  Q in such a way 

that A, B, C and B  C are mutually congruent and Q is countable. 

In succinct terms, AC implies that two-thirds of the surface of a 

sphere is congruent to one-third of it. In 1924 Banach and Tarski 

extended Hausdorff’s work to three dimensions by showing that 

any solid sphere can be decomposed into finitely many (later 
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shown by Raphael Robinson to be reducible to 5!) subsets which 

can themselves be reassembled to form two solid spheres, each of 

the same size as the original. They also established that AC yields 

another version of the “paradox”, namely, given any pair of solid 

spheres, either one of them can be decomposed into finitely many 

subsets which can be reassembled to form a solid sphere of the 

same size as the other. To put it graphically, AC implies that a 

sphere the size of the sun can be decomposed and the pieces reassembled 

so as to form a sphere the size of a pea.  

 Despite the “paradoxical” consequences of AC, in 1938 

Gödel succeeded in establishing its relative consistency with 

respect to the usual systems of set theory, and this, coupled with 

its indispensability in the proofs of many significant mathematical 

theorems, eventually led, if only on pragmatic grounds, to its 

acceptance by the majority of mathematicians. 

 Judging by the vast number of its mathematical 

consequences, AC is unquestionably the most fertile principle of 

set theory. Remarkably, many of these consequences turn out to 

be formally equivalent to it: more than 200 of these equivalents have 

been recorded. Among the most significant of these equivalents 

are: 

 Zermelo's well-ordering theorem: every set can be well-

ordered; 

 Trichotomy Principle: of any pair of cardinal numbers, one is 

less than the other, or they are equal; 

 The Kuratowski-Zorn Lemma: any nonempty partially 

ordered set in which each totally ordered subset has an upper 

bound posseses a maximal element; 

 Tychonov's theorem: the product of any family of compact 

topological spaces is compact;  
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 The model existence theorem for first-order logic: every infinite 

consistent set  of first-order sentences has a model of cardinality 

no greater than that of ; 

 The Hamel basis theorem: every vector space has a basis. 

 While the (relative) consistency of AC was not established 

until almost four decades after its formulation, the first steps in 

confirming its formal independence of the basic axioms of set theory 

were taken by A. Fraenkel as early as 1922. He showed that AC is 

independent of a certain system of set theory allowing the 

presence of atoms, that is, objects possessing no members, yet not 

identical with the empty set. Remarkable as this advance was, 

however, it neither answered the question of whether AC is 

independent of the full set-theoretic system of Zermelo-Fraenkel, 

nor did it demonstrate the independence of the most important 

consequence of Zermelo's original invocation of AC, namely, the 

existence of a well-ordering of the set of real numbers. The issue 

was finally resolved in 1964 when P. J. Cohen devised his method 

of forcing. Cohen in fact established the independence of a 

surprisingly weak form of AC, namely that asserting the existence 

of a choice function on a countable family of pairs. Subsequent 

work by R. M. Solovay and others has established the 

independence of certain important consequences of AC, notably, 

the Hahn-Banach theorem and the existence of non-Lebesgue 

measurable sets of real numbers.     

 Recent work has shown that AC plays an even more central 

role in mathematics and its foundations than was traditionally 

acknowledged. In 1975,  R. Diaconescu, building on ideas of F. W. 

Lawvere, proved within a category-theoretic setting a result 

which essentially showed that the classical logical Law of 

Excluded Middle—the assertion that each proposition is either 

true or false—can be derived within intuitionistic set theory (in 
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which that law is not assumed) augmented by AC. Put succinctly, 

AC  implies the Law of Excluded Middle. It was later shown that this 

pivotal law of classical logic can be derived just from the 

classically trivial version of AC that any family of sets with at 

most two members has a choice function. It is quite remarkable 

that a combinatorial principle can yield a law of logic. 

 A new twist in the story of AC has recently occurred in 

connection with the development of systems of constructive1 

mathematics, in particular Martin-Löf’s Constructive Type 

Theory. This can be most easily described by considering the 

following equivalent form of AC: 

 (*)      for any relation R between sets A, B,    

xAyB R(x,y)  f: A → B xA R(x, fx). 

Now under the constructive interpretation of quantifiers implicit 

in constructive mathematics, and later given explicit form in 

Constructive Type Theory, the assertability of an alternation of 

quantifiers xyR(x,y) means precisely that one is given a function 

f for which R(x,fx) holds for all x. It follows that AC in the form (*) 

is actually derivable in such constructive settings. On the other 

hand this is decidedly not the case for the Law of Excluded 

Middle. At first sight this seems to clash with the derivability of 

the Law of Excluded Middle from AC in intuitionistic set theory. 

But it turns out that for the derivation of the Law of Excluded 

Middle from AC to go through it is necessary that sets or 

functions be extensional—that is, are wholly determined by their 

elements or values. This condition is built into the usual set 

 
1 In this book the term “constructive” will normally be used in the sense of “compatible 
with the rules of intuitionistic logic”. There is a stricter construal of the term, associated, 
for example,  with Constructive Type Theory, which, in addition to the adherence to 
intuitionistic logic, also demands  the avoidance of impredicative definition. On the rare 
occasions we need to draw attention to this narrower rendering, we shall use the term 
“strictly constructive”.  
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theories but is incompatible with Constructive Type Theory. 

Another condition, formally independent of extensionality, which 

ensures that the derivation of the Law of Excluded Middle from 

AC goes through is that any equivalence relation determines a 

quotient set. This is the basic set-theoretic procedure of moving 

from an equivalence relation to the associated set of “equivalence 

classes”, which amounts to the reduction of equivalence to literal 

identity. The Law of Excluded Middle can also be shown to follow 

from a suitably extensionalized version of AC itself1. The 

arguments establishing these intriguing results reveal a novel, 

subtle interplay between AC and some of the most fundamental 

concepts of mathematics and logic. These arguments were 

originally formulated within Constructive Type Theory, but as is 

shown in Chapter V of this book, analogous results can be 

established within a more familiar (to most mathematicians and 

analytic philosophers at least) set-theoretic framework. The core 

principles of this framework form a theory – weak set theory – 

which lacks the Axiom of Extensionality and supports only 

minimal set-theoretic constructions. In particular,  just as for 

Constructive Type Theory, within weak set theory the derivation 

of the Law of Excluded Middle from AC cannot be carried out. 

But, again as with Constructive Type Theory, augmenting weak 

set theory with extensionality principles or quotient sets enables 

the derivation to go through. 

  It seems fair to say that the reputation of AC as “probably 

the most interesting axiom of mathematics” remains undimmed. 

 

 

 

 
1 In fact, a form essentially amounting to that given by Zermelo in 1908. See Chapter VII. 



THE AXIOM OF CHOICE 
 

 

 

 

7 

I 

The Axiom of Choice: Its Origins and Status within Set 

Theory 

 

THE ORIGINS OF AC 

In 1904 Ernst Zermelo formulated AC1 in terms of what he called 

(in English translation) coverings. He starts with an arbitrary set M 

(German Menge: “set”) and uses the symbol M to denote an 

arbitrary nonempty subset of M;  the collection of all these latter 

he denotes by M.  He continues:  

 Imagine that with every subset M there is associated an 

 arbitrary element m1,that occurs in M itself; let m1 be called 

 the “distinguished” element of M. This yields a “covering”  

 of the set M by certain elements of the set M. The number of these 
 coverings is equal to the product [of the cardinalities of all the 

 subsets M] and is certainly different from 0. 

The last sentence of this quotation—which asserts, in effect, that 

coverings always exist for the collection of nonempty subsets of 

any (nonempty) set—is, in essence, Zermelo’s first formulation of 

AC, although he does not give the principle an explicit name at 

this point. In inviting one to “imagine” a covering it might seem 

that Zermelo was engaged in mere speculation. But he next 

asserts that “the number of these coverings is certainly different 

from 0” on what, given the usual understanding of the term 

“number”, seem to be objective combinatorial grounds—

presumably in much the same way that, given a concrete set of, 

say, 3 elements, one sees immediately that the set of coverings is 

surely different from 0, (and, with a bit of effort, in fact consists of 

 
1 Zermelo [1904].  
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precisely 18 elements). Thus it seems likely that, right from the 

start, Zermelo regarded AC as an essentially combinatorial, 

“objective” principle  governing the concept of set as conceived by 

Cantor, who, in extending the ancient Greek conception of 

number, had seen sets as pluralities of individuals, “numbers” of 

distinct things.  

 Zermelo’s first formulation of AC is now usually stated in 

terms of choice functions: here a choice function on a collection S  

of nonempty sets is a map f with domain S  such that f(X)  X for 

every X  S.  Zermelo’s first formulation of AC then reads: 

AC1         Any collection of nonempty sets has a choice function. 

  In introducing AC1 Zermelo’s purpose was to establish a 

central principle of Cantor’s set theory, namely, that every set 

admits a well-ordering and so can also be assigned a cardinal 

number. Zermelo’s introduction of AC, as well as the use to which 

he put it, provoked considerable criticism from the 

mathematicians of the day. The chief objection raised was to what 

some saw as its highly non-constructive, even idealist, character: 

while AC asserts the possibility of making a number of—perhaps 

even uncountably many—arbitrary “choices”, it gives no 

indication whatsoever of how these latter are actually to be 

effected, of how, otherwise put, choice functions are to be defined. 

For this reason Bertrand Russell regarded the principle as dubious 

at best. The French Empiricists Baire, Borel and Lebesgue, for 

whom a mathematical object could be asserted to exist only if it 

can be uniquely defined, went further in explicitly repudiating the 

principle in the uncountable case1.  

 
1 Still, a number of mathematicians came to regard AC as being true a priori. These all 
broadly shared the view that for a mathematical entity to exist it was not necessary that 
it be uniquely definable. In [1904] Zermelo himself calls AC a “logical principle” which 
“cannot … be reduced to a still simpler one” but which, nevertheless, “is applied 
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 In response to these and other criticisms, in 1908 Zermelo 

offered1 a formulation of AC (and a derivation of the well-

ordering principle therefrom) couched in somewhat different 

terms from that given in his earlier paper. He uses the term 

“postulate of choice” or “general principle of choice” to refer to 

the principle introduced there, which he now formulates as 

follows: 

 a simultaneous choice of distinguished elements is in principle 
 always possible for an arbitrary set of sets, or, to be more precise, 
 ... the same consequences hold as if such a choice were possible. 
He goes on to admit that, in this formulation, the principle still 

appears to be “somewhat tainted with subjectivity”. To remedy 

this he proposes to replace it with (or “reduce it to”) the following 

 AXIOM. A set S that can be decomposed into a set of disjoint 
 parts A, B, C, ... , each containing at least one element, possesses 
 at least one subset S1 having  exactly one element with each of the 
 parts A, B, C, ... , considered. 
Of this Axiom he observes that its “purely objective character is 

immediately evident.”  Perhaps Zermelo regarded the move from 

his 1904 version of AC, with its “taint of subjectivity” to its 

“objective” 1908 formulation as the transformation of a mere 

postulate into a true axiom. 

 Let us call a transversal for a family of sets S any subset   

T  S  for which each intersection T  X for X  S  has exactly 

one element. Zermelo’s 1908 version of the axiom then amounts to 

 
without hesitation everywhere in mathematical deductions.”  F. P. Ramsey asserts that 
“the Multiplicative Axiom seems to me the most evident tautology” (Ramsey 1926) . 
Hilbert employed AC in his defence of classical mathematical reasoning against the 

attacks of the intuitionists: indeed his -operators are essentially just choice functions. 
For him, “the essential idea on which the axiom of choice is based constitutes a general 
logical principle which, even for the first elements of mathematical inference, is 
indispensable” (Hilbert 1926). 
1 Zermelo [1908]. 
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the assertion that any family of mutually disjoint nonempty sets 

has a transversal.   

 In claiming that his new axiom possesses a “purely 

objective character”, Zermelo seems to have intended to 

emphasize the fact that in this form the principle makes no appeal 

to the idea of making “choices”, whose presence in its original 

formulation had excited so much criticism.  It may also be that 

Zermelo had something like the following “combinatorial” 

justification of the principle in mind. Given a family S of 

mutually disjoint nonempty sets, call a subset S   S  a cross-

section of S  if S  X    for all X  S . Clearly cross-sections of 

S  exist; S  itself is an example. Now one can imagine taking a 

cross-section of S of S  and “thinning out” each intersection          

S  X  for X  S until it contains just a single element. The 

result3 is a transversal for S .  

 Let us accordingly call Zermelo’s 1908 version of AC the 

Combinatorial Axiom of Choice:  

CAC4  Any collection of mutually disjoint nonempty sets has a 

transversal. 

 It is to be noted that AC1 and CAC for finite collections of 

sets are both provable (by induction) in the usual set theories.  

 AC1 can be reformulated in terms of indexed sets. Given an 

indexed family of sets A = {Ai: i  I}, each Ai may be conceived of 

as the “value” of the indexed  set A at stage i. A choice function on A  

is a map f: I → i

i I

A


such that f(i)  Ai for all i  I.  A choice 

 
3 This argument, suitably refined, yields a rigorous derivation of AC in this formulation 
from Zorn’s lemma (see Chapter II) 
4 It is this formulation of AC that Russell and others refer to as the multiplicative axiom, 
since it is easily seen to be equivalent to the assertion that the product of arbitrary 
nonzero cardinal numbers is nonzero. 
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function on A thus “chooses” an element of the indexed set A at 

each stage; a choice function on A is thus, as it were, an indexed 

element of A . AC1 is then equivalent to the assertion: 

AC2 Any indexed family of nonempty sets has a choice function.  

Metaphorically speaking, AC2 amounts to the assertion that an 

indexed set with an element at each stage has an indexed element. 

 The set of choice functions on A is identical with the product 

i

i I

A


 of the indexed family {Ai: i  I}. Thus AC2 may also be 

written in the form if, for each i  I, Ai  , then i

i I

A


  . 

AC1 can also be reformulated in terms of relations, viz.  

AC3                        for any relation R between sets A, B,    

xAyB R(x,y)  f: A → B xA R(x, fx). 

In fact it is easily shown that AC3 is equivalent to its special case 

in which A coincides with B, that is, 

AC3*              for any binary relation R on a set A,    

xy R(x,y)  f: A → A x R(x, fx). 

 Three other equivalent formulations of AC1 are: 

AC4.   Every surjective function has a right  inverse.  

AC4*.  For any set X   and any function f: X → Y, there is  

 a function g: Y → X such that fgf = f. 

AC5. Unique representatives can be picked from the equivalence classes 

of any given equivalence relation.5 

 

THE INDEPENDENCE AND CONSISTENCY OF AC WITHIN SET THEORY 

Although the debate concerning AC rumbled on for some time, it 

soon became apparent that the proofs of a number of significant 

mathematical theorems made essential use of it, so leading many 

 
5 In this connection we recall Bishop’s [1967] observation that the axiom of choice is used 
[in classical mathematics] to extract elements from equivalence classes where they should never 
have been put in the first place.  
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mathematicians to adopt it as an indispensable tool of their trade. 

But while the usefulness of AC quickly become clear, doubts 

concerning its soundness remained. These doubts were 

compounded by the discovery that AC had a number of highly 

counterintuitive geometrical consequences, the most spectacular 

of which was Banach and Tarski’s6 paradoxical decompositions of the 

sphere. They showed that, under the assumption of AC, any solid 

sphere can be split into finitely many pieces which can be 

reassembled to form two solid spheres of the same size; and any 

solid sphere can be split into finitely many pieces in such a way as 

to enable them to be reassembled to form a solid sphere of 

arbitrary size. 

 There was also the question of AC’s independence of the 

system of set-theoretic axioms that Zermelo had put forward in 

19087. It was in connection with this problem that the first major 

advance was made in 1922 when Fraenkel proved the 

independence of AC from a system of set theory containing 

“atoms”. Here by an atom is meant a pure individual, that is, an 

entity having no members and yet distinct from the empty set (so 

a fortiori an atom cannot be a set). In a system of set theory with 

atoms it is assumed that one is given an infinite set A of atoms. 

That being the case, one can build a universe V(A) of sets over A 

by starting with A, adding all the subsets of A, adjoining all the 

subsets of the result, etc., and iterating transfinitely. V(A) is then a 

model of set theory with atoms. The kernel of Fraenkel’s method 

for proving the independence of AC is the observation that, since 

atoms cannot be set-theoretically distinguished, any permutation 

of the set A of atoms induces a structure-preserving 

permutation—an automorphism—of the universe V(A) of sets built 

 
6 Banach and Tarski [1924]. 
7 Zermelo [1908a] 
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from A. This idea may be used to construct another model Sym(V) 

of set theory—a permutation or symmetric model—in which a 

mutually disjoint set of pairs of elements of A has no choice 

function8.  

 Now suppose that we are given a group G of 

automorphisms of A. Let us say that an automorphism  of A fixes 

an element x of V(A) if (x) = x. Clearly, if   G fixes every 

element of A, it also fixes every element of V(A). Now it may be 

the case that, for certain elements x  V(A), the fixing of the 

elements of a subset of A by any   G suffices to fix x. We are 

therefore led to define a support for x to be a subset X of A such 

that, whenever   G fixes each member of X, it also fixes x. 

Members of V(A) possessing a finite support are called symmetric.  

 We next define the universe Sym(V) to consist of the 

hereditarily symmetric members of V(A), that is, those x  V(A) 

such that x, the elements of x, the elements of elements of x, etc., 

are all symmetric. Sym(V) is also a model of set theory with set of 

atoms A, and  induces an automorphism of Sym(V). 

 Now suppose A to be partitioned into a (necessarily 

infinite) mutually disjoint set P of pairs. Take G to be the group of 

permutations of A which fix all the pairs in P. Then P  Sym(V); it 

can now be shown that Sym(V) contains no choice function on P. 

For suppose f were a choice function on P and f  Sym(V). Then f 

has a finite support which may be taken to be of the form                          

{a1, ..., an, b1, ..., bn} with each pair {ai, bi}  P. Since P is infinite, we 

may select a pair {c, d} = U  from P different from all the {ai, bi}. 

Now we define    G so that  fixes each ai and bi and 

interchanges c and d. Then  also fixes f. Since f was assumed to be 

a choice function on P, and U  P, we must have f(U)  U, that is, 

 
8 For a full account of permutation models, see Jech [ 1973  ].  



THE AXIOM OF CHOICE 
 

 

 

 

14 

f(U) = c or f(U) = d. Since  interchanges c and d, it follows that 

(f(U))  f(U). But since  is an automorphism, it also preserves 

function application, so that (f(U)) =  f ((U)). But (U) = U and 

f = f, whence (f(U)) = f(U). We have duly arrived at a 

contradiction, showing that the universe Sym(V) contains no 

choice function on P. 

 The point here is that for a symmetric function f defined on 

P there is a finite list L of pairs from P the fixing of all of whose 

elements suffices to fix f, and hence also all the values of f. Now, 

for any pair U in P but not in L , a permutation  can always be 

found which fixes all the elements of the pairs in L, but does not 

fix the members of U. Since  must fix the value of f at U, that 

value cannot lie in U. Therefore f cannot “choose” an element of 

U, so a fortiori f cannot be a choice function on P. 

 This argument shows that collections of sets of atoms need 

not necessarily have choice functions, but it fails to establish the 

same fact for the “usual” sets of mathematics, for example the set 

of real numbers. That had to wait until 1963 when Paul Cohen 

showed that it is consistent with the standard axioms of set theory 

(which preclude the existence of atoms) to assume that a 

countable collection of pairs of sets of real numbers can fail to 

have a choice function9. The core of Cohen’s method of proof10—

the celebrated method of forcing—was vastly more general than 

any previous technique; nevertheless his independence proof also 

made essential use of permutation and symmetry in essentially 

the form in which Fraenkel had originally employed them. 

Cohen’s method was later applied to establish the independence 

 
9 Notice that any collection of pairs of real numbers has a choice function, since from 
each pair one may “choose” the lesser of its two elements. 
10 For a full account of Cohen’s method of proof, see Bell [2005] or Jech [1973]. A 

compressed account is offered in Chapter IV of the present book. 
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of AC from “weaker” versions of it such as the Axiom of 

Dependent Choices and the Boolean Prime Ideal Theorem, as well 

as the independence of these weaker versions from the standard 

axioms of set theory. 

 Fraenkel’s and Cohen’s methods of demonstrating the 

independence of AC both rest on the idea of enlarging the universe 

of sets V to a universe V’ in which a new permutation has been 

“adjoined”, in something like the way that a root to an equation 

can be “adjoined” to a field. This is to be contrasted with the 

method that Gödel employed in 1938 to resolve the soundness 

problem for AC. Far from enlarging the universe of sets, Gödel 

shrank it, defining a subuniverse of V in which AC can be proved 

to hold. In doing so Gödel established the relative consistency of 

AC with respect to the standard axioms of set theory11, namely 

that, if these latter are mutually consistent, then the addition of 

AC will leave that consistency undisturbed.  It is interesting to 

note the similarity between the method used to prove the 

consistency of AC and that used in the 19th century to prove the 

independence of the parallel postulate (the method of “inner 

models”). In each case a model of the theory in question (set 

theory or geometry, respectively) augmented by the principle at 

issue (AC or the Bolyai-Lobachevsky postulate, respectively) is 

“carved out” from a “standard” model of the theory (the universe 

of sets V or Euclidean space, respectively). 

 Gödel’s method of shrinking the universe of sets so as to 

obtain a model of AC rests on an essentially logical, or linguistic—

as opposed to mathematical— idea, namely that of definability. He 

introduced a new hierarchy of sets—the constructible hierarchy —

 
11 By that time, the standard axioms of set theory took the form of ZF (Zermelo-Fraenkel 
set theory with the axiom of foundation) or VNB (von Neumann- Bernays set theory). 
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by analogy with the cumulative type hierarchy. The latter is 

defined by the following recursion on the ordinals:  

   


=  = = 0 +1        V  V       V     for limit V VP  

Here, for any set X, PX is the power set of X. The constructible 

hierarchy is defined by a similar recursion on the ordinals: 

 0 +1L         L  Def(L )      L L     for limit    


=  = =   

In this case, for any set X, Def(X) is the set of all subsets of X 

which are first-order definable in the structure (X, , (x)xX). The 

constructible universe is the class 
Ord

L L


= ; the members of L are 

the constructible sets. Gödel showed that (assuming the axioms of 

Zermelo-Fraenkel set theory ZF) the structure (L, ) is a model of 

ZF and also of AC (as well as the Generalized Continuum 

Hypothesis). The relative consistency of AC with ZF follows12.    

 It was also observed by Gödel13 (and, independently, by 

others14) that a simpler proof of the relative consistency of AC can 

be formulated in terms of ordinal definability.  If we write D(X) the 

set of all subsets of X which are first-order definable in the 

structure (X, ), then the class OD of ordinal definable sets is 

defined to be the union 
ORD

D(V )


. The class HOD of hereditarily 

ordinal definable sets consists of all sets a for which a, the members 

of a,  the members of members of a, ... etc.  are all ordinal definable. 

It can then be shown that the structure (HOD, ) is a model of ZF 

+ AC, from which the relative consistency of AC with ZF again 

follows15. 

 

 
12 For a detailed exposition of this proof, see Bell and Machover [1977]. 
13 Gödel [ 1964]. 
14 e.g. , Myhill and Scott [1971]. 
15 For a detailed exposition, see Kunen [1980]. A compressed version is provided in 
Chapter IV. 
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CHRONOLOGY OF AC 16 

1904/1908.  Zermelo introduces axioms of set theory, explicitly 

formulates AC and uses it to prove the well-ordering theorem, 

thereby raising a storm of controversy. 

1904. Russell recognizes AC as the Multiplicative Axiom: the 

product of arbitrary nonzero cardinal numbers is nonzero. 

1914.  Hausdorff derives from AC the existence of nonmeasurable 

sets in the “paradoxical” form that ½ of a sphere is congruent to 
1

3  of it17.  

1922. Fraenkel introduces the “permutation method” to establish 

independence of AC from a system of set theory with atoms18.  

1924.  Building on the work of Hausdorff, Banach and Tarski 

derive from AC their paradoxical decompositions of the sphere: any 

solid sphere can be split into finitely many pieces which can be 

reassembled to form two solid spheres of the same size; and any 

solid sphere can be split into finitely many pieces in such a way as 

to enable them to be reassembled to form a solid sphere of 

arbitrary size. 

1926.   Hilbert introduces into his proof theory the “transfinite” or 

“epsilon” axiom as a version of AC19. 

1936.   Lindenbaum and Mostowski extend and refine Fraenkel’s 

permutation method. 

1935-38.   Gödel establishes the relative consistency of AC and the 

generalized continuum hypothesis with the standard axioms of 

set theory20. 

 
16 For a detailed history of the development of AC, see Moore [1982].  
17 Hausdorff [1914], 
18 Fraenkel [1922]. 
19 Hilbert [1926]. 
20 Gödel [1938], [1939], [1940]. 
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1939-1954. In their famed work Éléments de Mathématique, 

Bourbaki adapts Hilbert’s epsilon axiom so as to embed AC as a 

basic formal-logical principle21 .  

1963. Cohen proves the independence of AC and continuum 

hypothesis from the standard axioms of set theory22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
21 Bourbaki [1939]. Bourbaki employs the symbol “” in place of Hilbert’s “ε”. This may 

have been done to avoid typographical confusion with “”, the basic symbol of set 
theory. Curiously, however, in first introducing a transfinite axiom, Hilbert used the 

symbol “”,  only there it was intended to represent the dual notion to that he later 

represented by “ε”. Hilbert used the symbol “” to denote the operation of selecting an 
object which, if it happens to have a given property, then necessarily every object has 
that property. In his definitive later formulation of the transfinite axiom—that of the so-
called “ε-calculus”—he used “ε" to denote the dual operation of selecting an object 
which, if some object happens to have a given property, then it necessarily has that 
property.  
22 Cohen [1963], [1963a], [1964]. 
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II  

Maximal Principles and Zorn’s Lemma 

 

THE NATURE AND ORIGINS OF MAXIMAL PRINCIPLES 

AC is closely allied to a group of mathematical propositions 

collectively known as maximal principles.  Broadly speaking, these 

propositions assert that certain conditions are sufficient to ensure 

that a partially ordered set (henceforth: poset) contains at least one 

maximal element, that is, an element such that, in the given partial 

ordering, no element strictly exceeds it.  

 To grasp the connection between the idea of a maximal 

element and AC, let us return to the latter’s formulation AC2 in 

terms of indexed sets. Thus suppose given an indexed family of 

nonempty sets A = {Ai: i  I}. Let us term a partial choice function on 

A any function f with domain J  I  such that f(i)  Ai for all  i  J.  

The set F of partial choice functions on A can be partially ordered 

by inclusion: we agree that, for  f, g  F, f   g provided that the 

domain of f is included in that of g and the value of f at an element 

of its domain coincides with the value of g there. It is now easy to 

see that each maximal element of P with respect to this partial 

ordering is a choice function on A (and conversely).  For if m is a 

maximal element of F , and the domain J of m fails to coincide 

with I, then there is i0  I such that i0 J. Now, choosing an 

arbitrary element a0 of 
0i

A , the set m  {<i0, a0>} is a member of F  

properly including m, contradicting the latter’s maximality. 

Accordingly the domain of m coincides with I and so m is a choice 

function on A.23 

 
23 Notice, however, that this argument presupposes the correctness of the Law of 
Excluded Middle of classical logic. It does not go through if only intuitionistic logic is 
assumed. See Chapter VI below. 
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 The existence of maximal elements yields a similar 

derivation of AC3. Thus suppose given a relation R with domain 

A and codomain B. Taking F  to be the set of subfunctions of R, 

partially ordered by inclusion, one finds just as before that 

maximal elements of P are precisely the subfunctions of R with 

domain A. 

Thus the existence of choice functions, and hence also AC, 

follows from the presence of maximal elements in sets of partial 

choice functions24. Zorn’s Lemma is the best-known principle 

ensuring the existence of such maximal elements. To state it, we 

need a few definitions.  Given a poset (P, ) , a subset C of P is 

called a chain in P if, for any x, y  C, we have  x  y or  y  x. An 

element m of P is maximal if, for all x  P,   m  x implies m = x. P 

is said to be inductive if each chain in P has an upper bound in P. 

Zorn’s Lemma may then be stated: 

ZL   Any nonempty inductive poset has a maximal element25. 

 ZL can also be stated in an equivalent dual form. An 

element m of the poset P is minimal if, for all x  P, x  m implies  

m = x. P  is said to be reductive if each chain in P has a lower bound 

in P. The dual form of Zorn’s Lemma may then be stated: 

DZL   Any nonempty reductive poset has a minimal element. 

 ZL has an interesting history. In 1935 Zorn introduced it26 

as a “certain axiom on sets of sets” serving as a replacement for 

the “well-ordering theorem and its theory”, which, he says, “are 

barred, from the algebraic point of view” in proving “the 

theorems of Steinitz concerning algebraic closure and the degree 

 
24 This holds only if classical logic is assumed. See previous footnote. 
25 Note that since the subset  is a chain, an inductive set is always nonempty. 
26 Zorn [1935]. 
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of transcendence”. In so doing, he says, his purpose is “to make 

the proofs shorter and more algebraic”. He seems to have been 

unaware of the fact that his principle had been previously given 

explicit formulation by Kuratowski in 192227, and even, in implicit 

form, by Hausdorff in 1909. Zorn refers to his principle as “a 

certain axiom” and later identifies it as “our maximum principle“, 

so he presumably regarded it as less as a theorem (or lemma) than 

as a kind of postulate, on a par with AC, but superior to the latter 

in not requiring in its application the use of the cumbrous 

apparatus of ordinals and transfinite induction associated with 

the well-ordering theorem28, which had come to be regarded by 

algebraists, particularly those of the Noether school, as 

“transcendental” devices, extraneous to the progress of 

mathematics. In the eyes of these mathematicians choice functions 

were no more than useful auxiliary devices, invested with no 

intrinsic mathematical significance. Thus it was natural that 

algebraists and other “working” mathematicians should come to 

prefer ZL, with its direct focus on maximality, to AC, given the 

fact that maximal objects had arisen naturally, and with striking 

frequency, within the abstract mathematics of the first half of the 

 
27 For this reason Zorn’s Lemma is also known, particularly in Eastern Europe, as the 
“Kuratowski-Zorn” Lemma. While this is historically just, it is under the slick term 
“Zorn’s Lemma” that the principle has entered the parlance of most mathematicians.  
28 The demonstration that every linear space has a basis using well-ordering, ordinals 
and transfinite induction provides a typical illustration of this cumbrousness. Thus 

suppose we are given a linear space L. Well-order L as {a:  < } for some ordinal . 

Using transfinite recursion define the sequence <b> of elements of L as follows. First 

take b0 = a0.  Then, for each ordinal  > 0, if  {b:  < } does not generate L, let b = a, 

where  is the least ordinal such that a is linearly independent of {b:  < }. Otherwise 

let b = a0. There must be an ordinal  <  such that {b:  < } generates L, for otherwise 

the map   b would be an injection of the class of all ordinals into L, in violation of the 

Axiom of Replacement. Let 0 be the least such . An argument using transfinite 

induction then shows that {b:  < 0} is linearly independent and is therefore a basis for 
L.  
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20th century. Consider, for example, the fact that a basis of a linear 

space is simply a maximal independent subset; an algebraic 

closure of a field coincides with a maximal algebraic extension; a 

real closed field is a maximal real subfield of an algebraically 

closed field; a maximal ideal in a ring is just the kernel of an 

epimorphism to a field; a vertex of a convex figure is a minimal 

edge; a complete theory is a maximal consistent theory. There are 

very few analogous associations with choice functions29, and none 

at all with well-orderings.  It is therefore little wonder that  ZL 

speedily replaced AC in the mathematicians’ toolkit.  

 It is worth noting the fact that, unlike AC, ZL is still 

identified as a “Lemma” or a “Theorem”, as opposed to an 

“Axiom”. This suggests that ZL is, in the minds of 

mathematicians, a derivative principle, which, however useful 

and elegant it may be, still requires justification30. Its sole 

justification is, of course, AC. So it is of interest to see just how 

mathematicians have responded to the genuine challenge of 

presenting ZL as if it was a typical result of mathematics, 

straightforwardly provable without entanglement in the trappings 

of axiomatics. To quote from Serge Lang’s influential book 

Algebra, ZL “could be just taken as an axiom of set theory”. 

“However,” he continues, “it is not psychologically satisfactory as 

an axiom, because its statement is too involved, and one does not 

visualize easily the existence of the maximal element asserted in 

the statement.” The proof he then proceeds to give of ZL (based 

on the Bourbaki Fixed Point Lemma as stated and proved below) 

he describes as being based on “other properties of sets which 

 
29 A few examples are provided in Chapter III. 
30 Indeed a mathematical wag (Jerry Bona) has observed: “the Axiom of Choice is 

obviously true, the well-ordering theorem is obviously false, and, as for Zorn’s Lemma, 
who can tell? 
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everyone would immediately grant as acceptable 

psychologically.” Tellingly, in his proof he fails even to mention 

the use of AC! So it would seem that, along with Zermelo, Lang 

regards AC to be “acceptable psychologically”31. Bourbaki32 goes 

even further in concealing the use of AC. Here, while remaining 

completely unmentioned (with the exception of a reference in the 

Fascicule de Résultats of the Théorie des Ensembles), AC is cleverly 

smuggled into the formal infrastructure of the Élements de 

Mathématique  disguised as Hilbert’s -symbol. By this means AC 

transcends mere psychological acceptability by simply vanishing 

into thin air!  

AC is in fact easily derived from ZL. For the poset of partial 

choice functions, partially ordered by inclusion, on an indexed 

family of sets A is readily shown to be inductive; so, by the 

argument given at the beginning of the chapter, ZL yields the 

existence of a choice function on A , that is, AC2. In a similar way, 

ZL yields AC3, in view of the fact that the set of subfunctions of a 

relation, partially ordered by inclusion, is also inductive.33 

 There is a less familiar way of deriving AC from DZL 

which echoes the “combinatorial” justification of AC sketched in 

Chapter I. Thus suppose given a family S of mutually disjoint 

nonempty sets; call a subset S  S a sampling for S  if, for any    

X  S ,  either X  S or  S  X is nonempty and finite. Consider 

the set S of samplings, partially ordered by inclusion. Minimal 

elements of S —minimal samplings — are precisely the 

 
31 Which of course it is, indeed even objectively, at least for “pure” sets: see the final 
section of Chapter VI. 
32 Bourbaki [1939]. 
33 The derivation of AC from ZL (but not the inductiveness of sets of partial choice 
functions) presupposes classical logic. 
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transversals for S 34; and the collection S of samplings is clearly 

nonempty since it contains S . So if it can be shown that S is 

reductive35,  Zorn’s lemma will yield a minimal element of S and 

so a transversal for S  . The reductiveness of S can be seen as 

follows: suppose that  {Si : i  I} is a chain of samplings; let             

S = 


i

i I

S .  If we can show that S is itself a sampling, it will 

constitute a lower bound in S to {Si : i  I}. To this end let X  S  

and suppose that  X  S. Then there is  i  I for which X  Si; since 

Si is a sampling, Si   X is finite nonempty, say Si  X = {x1, …, xn}. 

Clearly S  X is then finite; suppose for the sake of contradiction 

that S  X = . Then for each k = 1, …, n there is ik  I for which  

xk 
ki

S . It follows that Si   
ki

S  for k = 1, …, n,  so, since the Si  

form a chain, each 
ki

S is a subset of Si . Let Sj  be the least of        

1i
S , ..., 

ki
S ; then Sj   Si  But since  xk  jS for k = 1, …, n, it now 

follows that Sj   X = , contradicting the fact that Sj  is a 

sampling. Therefore S  X  ; and S is a sampling as claimed. 

 
34 That minimal samplings are transversals requires demonstration. Suppose S is a 

minimal sampling; then, given X  S , either (1) S  X is finite nonempty or (2) X  S. In 

case (1) S  X cannot contain two distinct elements because the removal of one of them 
from S would yield a sampling smaller than S, violating its minimality. So in this case S 

 X must be a singleton. In case (2) B cannot contain two distinct elements a, b since, if it 

did, S = [(S – X)  {a}] would be a sampling smaller than S (notice that S  X = {a} and 

the relations of S with the members of S – {X} are the same as those of S), again 

violating the minimality of S. So in this case X, and a fortiori S  X, must be a singleton. 
35 Notice that, had we elected to follow more closely the intuitive combinatorial 
derivation of AC as sketched in Chapter I by using cross-sections instead of samplings 
we would have encountered the obstacle that—unlike the set of samplings—the set of 
cross-sections is not necessarily reductive.  
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 As we have seen, deriving AC from ZL is a comparatively 

straightforward matter36. The converse derivation, which serves to 

establish their equivalence37, is considerably more laborious. Let 

us call a poset strongly inductive if each chain in it has a least upper 

bound.38  We shall derive ZL from AC by first proving the 

Bourbaki Fixed-Point Lemma.39 Let (P, ) be a strongly 

inductive poset , and let f be an inflationary self-map on P, i.e., a 

map f: P → P satisfying x  f(x) for all  x  P. Then f  has a fixed 

point. 

Proof.  Let us call a subset X of P f-closed if f[X]  X and f-inductive 

if it contains the join (in P) of each of the f-closed chains it 

includes. Now fix some element  a  P and let K  be the collection 

of all subsets X of P satisfying the following conditions: 

(i) a  X; 

(ii) X  {x  P: a  x}; 

(iii) X is f-closed; 

(iv) X is f-inductive. 

Since by hypothesis P itself satisfies these conditions, K is 

nonempty. Its intersection K is easily shown to satisfy (i) –(iv), and 

is accordingly the smallest subset of P to satisfy these conditions.  

We are going to show that K is a chain. 

 To establish this we define  

K* = {xK: yK[x  y or f(y)  x]},  

 
36 Assuming classical logic. 
37 Assuming classical logic. 
38 When the poset is a family F of sets partially ordered by inclusion, strong 

inductiveness is frequently established by showing that F  is closed under unions of chains, 

that is, the set-theoretical union of any chain in F  is again a member of F. 
39 Bourbaki [1950]. 
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and, for b K*, 

Kb = {xK: x  b or f(b)  x}. 

We first show that, for any b  K*, Kb = K. For this it suffices to 

show that Kb satisfies conditions (i) – (iv).  

 For condition (i) we observe that b  K, so that a  b since K 

satisfies (ii), and hence a  Kb.  

 Condition (ii) follows immediately from the fact that K 

satisfies it. 

 To verify (iii),  take x  Kb. We have to show that f(x)  Kb, 

i.e. f(x)  K and 

     (1)                                         f(x)  b or f(b)  f(x). 

That f(x)  K follows from the fact that K is f-closed. To establish 

(1), note that since b  K* and x  K we have  

     (2)                                           b  x or f(x)  b. 

and since x  Kb we have 

      (3)                                       x  b or f(b)  x. 

Taking the conjunction of (2) and (3) and using the distributive 

law of propositional logic, we get 

       (4)    (b  x and x  b)  or (b  x and f(b)  x)   

                                    or (f(x)  b and x  b)   

                                              or  (f(x)  b and f(b)  x). 

 

The first disjunct of (4) gives b = x, so a fortiori f(b)  f(x). The 

second gives f(b)  x  f(x) since f is inflationary. The third and 
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fourth both give f(x)  b. So (1) holds in all cases, and condition 

(iii) follows. 

  To establish (iv), let C be an f-chain in Kb. Then the join c of 

C is a member of K since the latter satisfies (iv). Since C  Kb ,  

         xC[x  b or  f(b)  x].  

It follows that 

    (5)                                xC(x  b) or  xC (f(b)  x) 40.  

The first disjunct of (5) yields c  b, so that c  Kb. The second 

disjunct gives f(b)  c; and so again c  Kb. Condition (iv) follows. 

 Accordingly Kb satisfies (i) – (iv), so that Kb = K. 

 We next show in a similar way that K* = K. Again it suffices 

to show that K* satisfies conditions (i) – (iv).  

 Condition (i) follows immediately from the facts that a  K 

and K satisfies (ii). 

 Condition (ii) follows immediately from the fact that K 

satisfies it.  

 For condition (iii), suppose that x  K*. We need to show 

that f(x)  K*, i.e. f(x)  K and, for all y  K, 

   (6)                                    yK[ f(x)  y or f(y)  f(x)]. 

That f(x)  K follows from the fact that K is f-closed. To establish 

(6), take y  K. Then since Kx = K (as shown above), y  Kx, so we 

have  

 
40 As noted in Lawvwere and Rosebrugh [2003], This step uses the (intuitionistically 

invalid) logical law x [p(x)  q(x)]  xp(x)  xq(x), which is equivalent to the (also 

intuitionistically invalid) law  x [p(x)  q]  xp(x)  q. Both of these may be seen as 

distributive laws. In Chapter V The latter of these is shown to be equivalent (over 
intuitionistic logic) to a choice rule. 
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(7)                                    y  x or f(x)  y. 

Also x  K, whence 

      (8)                                    x  y or f(y)  x. 

(7) and (8) now yield (6) by means of an argument similar to the 

derivation of (1) from (2) and (3) above. Thus K* satisfies 

condition (iii). 

 For condition (iv), let C be an f-chain in K*. Then the join c 

of C is a member of K since the latter satisfies (iv).  For each x  C, 

x  K*, so Kx = K.  Hence, for each y  K, y  Kx, so that, for all           

x  C, 

                                         xC[y  x or f(x)  y] 

It follows that, for each y  K, 

(9)                                    xC(f(x)  y) or xC(y  x).  

The first disjunct of (9) yields x  f(x)  y for every x  C, whence 

c  y. If the second disjunct holds, then there is x  C for which     

y  x. Now x  K*,  so either f(y)  x or x  y. The first disjunct 

here gives f(y)  c; and from the second, conjoined with y  x, we 

infer that y = x. Hence f(y) = f(x); but f(x)  C since C is an f-chain. 

It follows again that f(y)  c.  

 We have accordingly shown that, for every y  K, either      

c  y or f(y)  c, that is, c  K*. This establishes condition (iv). 

 To complete the proof that K is a chain, take x, y  K. Then 

x  K* and y  Kx  since K = K* = Kx. So y  x or f(x)  y, whence      

y  x or x  y since f is inflationary. Hence K is a chain. 
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 Since K is a chain and also satisfies (iii), it is an f-closed 

chain in K, and so has a join k which must be a member of K since 

K satisfies (iv). Also , since K is f-closed, f(a) is a member of K. 

Therefore f(k)  k, and so, since f is inflationary, f(k) = k. 

Accordingly k is a fixed point of f, completing the proof of the 

lemma. ■ 

 By the Modified Zorn’s Lemma we shall mean the assertion 

 MZL. Any strongly inductive poset has a maximal element. 

 We can now use the Bourbaki fixed point lemma to derive 

MZL from AC1. For suppose given a strongly inductive poset    

(P, ). Let g be a choice function for the family of sets              

{XP: X  }, and define f: P → P by 

f(x) = x  if x is maximal in P 

f(x) = g({yP: x  y and x  y}) if x is not maximal in P. 

Then f is inflationary and so by the Bourbaki lemma has a fixed 

point a; obviously a is a maximal element of P.  ■ 

 Finally we show that ZL follows from MZL, completing the 

demonstration of ZL from AC. In fact we shall show that both of  

these are equivalent to  Hausdorff’s Maximal Principle: 

HMP      Every poset contains a maximal chain. 

Here by a maximal chain in a poset P we mean a chain in P which 

is maximal in the family of all chains in P.  

 Theorem. ZL, MZL and HMP are all equivalent.41 

Proof. First  note that MZL is an immediate consequence of 

ZL, so we need only prove the implications MZL  HMP and     

HMP  ZL. 

 
41 From the proofs given below, in which no use of the Law of Excluded Middle is 
made, it will be seen that these equivalences are constructively valid. 
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 MZL  HMP. Let (P, ) be a poset and let C  be the family 

of all chains in P, partially ordered by inclusion. Then C  is 

strongly inductive, since it is easily shown that the union of a 

chain (under ) of members of C  is itself a member of C . It 

follows now from MZL that C  has a maximal element C; by 

definition C is a maximal chain in P. 

 HMP  ZL. Let (P, ) be an inductive poset. Assuming 

HMP, P contains a maximal chain C. Since P is inductive, C has an 

upper bound c. We claim that c is a maximal element of P. For if   

x  P is such that c  x, then  C  {x} is a chain in P which includes 

C; the maximality of C implies that C   {x}= C, so that x  C.  

Since c is an upper bound for C, it follows that x  c, whence x = c.  

So c is maximal, completing the proof. 

 

CHRONOLOGY OF MAXIMAL PRINCIPLES42. 

1909. Felix Hausdorff introduces the first explicit formulation of a 

maximal principle (essentially ZL) and derives it from AC. 

1914.  Hausdorff’s Grundzüge der Mengenlehre (one of the first 

books on set theory and general topology) includes a number of 

maximal principles, including what we have called HMP. 

1922. Kazimir Kuratowski formulates and employs several 

maximal principles, including ZL. 

1926-28. Salomon Bochner and others independently introduce 

maximal principles.  

1935. Max Zorn, seemingly unacquainted with previous 

formulations of maximal principles, publishes his definitive 

 
42 For a detailed history of maximal principles, see Moore [1982]. 
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version thereof later to become celebrated as ZL. First formulated 

in Hamburg in 1933, ZL as quickly “adopted” by Claude 

Chevalley and Emil Artin. It seems to have been Artin who first 

recognized that ZL would yield AC, so that the two are set-

theoretically equivalent.  

1939-40. Teichmüller, Bourbaki and Tukey independently 

reformulate ZL in terms of “properties of finite character”. If A is a 

set, and P a property of subsets of A (in this case we shall say that 

P is A-based), then P is said to be of finite character if, for any subset 

X of A, X has P if and only if every finite subset of X has P. Then 

ZL is equivalent to the assertion that, for any set A, and any A-

based property P of finite character, there is a maximal subset of A 

possessing P. 
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III 

Mathematical Applications of the Axiom of Choice  

 

When Zermelo introduced AC he recognized its fundamental 

nature, and so also grasped its potential significance for the 

development of mathematics. But even Zermelo himself could not 

have anticipated the extraordinary wealth of mathematical 

propositions whose demonstrations ultimately depend on his 

principle, many of which have turned out to be formally 

equivalent to it43. It is of interest to note that by the 1930s 

mathematicians had come to realize that the simplest and most 

direct way of deriving the majority of such propositions is in fact 

not to employ AC per se, but rather to use a maximal principle 

such as ZL. Indeed, as already pointed out, Zorn introduced his 

Lemma precisely so as to avoid the use of the well-ordering 

theorem, with the attendant apparatus of ordinals and transfinite 

induction whose use was often required when applying AC.  

 In this chapter we list, and, where it seems appropriate, 

sketch proofs of, a number of propositions, from a range of areas 

of mathematics, whose demonstrations require the use of AC or 

ZL. We begin with those propositions—call them AC-

propositions—whose simplest demonstrations employ AC (or the 

well-ordering theorem) and then turn to the considerably 

lengthier list of propositions—ZL-propositions—which are much 

more directly proved by using ZL. 

 

 

 

 

 
43 For equivalents of AC, see Rubin and Rubin [1985]; for consequences, see Howard 
and Rubin [1998]. 
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AC-PROPOSITIONS 

 

• The Multiplicative Axiom44 The product of any set of 

non-zero cardinal numbers is non-zero.  This is equivalent to AC. 

• Each infinite set has a denumerable subset.  This amounts 

to showing that, for any infinite set A, there is an injective map     

 45→ A. Using AC1, let f be a choice function on the family of 

non-empty subsets of A (note that since A is infinite, it is itself 

non-empty. Now define the map g:  → A by recursion as follows:    

g(0) = f(A), g(n +1) = f(A – {g(0), ..., g(n)}). Then g is an injection of 

 into A.  

• The equivalence of various definitions of finiteness. 

These include: (1) a set is finite provided it is equipollent to a set 

of the form {0, ..., n}; (2) Dedekind-Peirce finiteness: a set A is DP-

finite iff every injection A → A is surjective; (3) Kuratowski-

finiteness: a set is K-finite iff it is a member of the least class K of 

sets that contains  and all singletons, and is closed under unions 

of pairs of its members; (4) Tarski-finiteness: a set A is T-finite iff 

every total ordering on it is a well-ordering. 

• The Principle of Dependent Choices46 .  For any nonempty 

relation R on a set A for which range (R)  domain(R), there is a 

function  g :  → A such that, for all  + ., ( ( ), ( 1))n R g n g n   To 

prove this, again let f be a choice function on the family of non-

empty subsets of A, and let a be some element of range(R). Now 

define the map g:  → A by recursion as follows: g(0) = a, g(n + 1) 

= f({x: (g(n), x)  R}. Then g satisfies the required conditions. 

 
44 Russell [1906]. 
45 As is customary, we use  to denote the set of natural numbers. It is hoped that this 

will not cause confusion with other uses of  in this book, notably in Chapter VII. 
46 Bernays [1942], Tarski [1948]. 
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• Distributive laws: for any doubly indexed family of sets                       

{Aij: <i,j>  I  J},  

 
( )

I

ij if i

i I j J i If J

A A
  

=           
( )

I
ij if i

i I i Ij J f J

A A
  

=  . 

 

It is not difficult to show that both of these are equivalent  to 

AC1.47 

• Existence of a Lebesgue non-measurable set of real 

numbers48. To indicate how it is derived from CAC, let E be the 

equivalence relation on the interval (0, 1) defined by xEy iff x – y is 

rational, and, using CAC, let  A  (0, 1) be a transversal for the 

family of E-equivalence classes. It is then not hard to show that A 

is non-measurable49.  

• Projectivity of sets and freely generated objects. An object 

E of a category C  is projective if the diagram (with f epi) 

                                                                         B 
                                                                              

                                                                             f 

                                            E                            A    

can be completed to a commutative diagram                                                                      

                                                                          B 
                     

                                                                            f 

                                               E                         A    

 

 
47 As also are the corresponding assertions with “=” replaced by “”. 
48 Vitali [1905]. This was shown much later to be a consequence of BPI (see below) and 
hence weaker than AC. Solovay [1970] established its independence of the axioms of set 
theory. 
49 For a full proof of this see, e.g. Kestelman [1960]. 
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An object E of C 50 is freely generated by a set I (or simply free  on I) 

if I  E and, for any object A of C,  each map f: I → A is uniquely 

extensible to a C- arrow  E → A. It is easily shown that AC1 is 

equivalent to the assertion that every set is projective. AC1 also 

implies that every free Abelian group, and every free Boolean 

algebra, is projective51. To  prove the first assertion (the 

proof of the second being similar) , suppose that E is an Abelian 

group free on the set I, and that f: E  → A and g:B  A are 

morphisms, with g epi. Since g is epi, AC1 gives a map k: I → B for 

which  k(i)g–1(f(i)) for all i  I, from which it follows that g  k = f. 

Since E is free on I, k extends uniquely to a  morphism h: E → B. 

Then g  h = f  because both have the same restrictions to I.  

• Neilsen-Schreier Theorem: each subgroup of a free group 

is free. This is usually proved by means of the well-ordering 

theorem, but it can also be proved using ZL. The details are, 

however, too involved to be presented here. 

• Łoś’s Theorem. For each i  I let Ai be a relational structure 

<Ai, Ri> with Ri a binary relation on Ai. If U is an ultrafilter (i.e., a 

maximal proper filter) in PI, define the relation ≈F on i

i I

A


 by        

f  ≈F g iff {iI: f(i) = g(i)}  U. It is easily shown that ≈F is an 

equivalence relation on i

i I

A


 . For each f  i

i I

A


 write fU for the 

≈F –equivalence class of f, and let i

i I

A


 /U = {fU : f 


 }.i

i I

A
 

Define the relation RU on i

i I

A


 by stipulating that <fU, gU >  RU  

 
50 Here we assume that the category C is concrete in that the sense that its objects is a set 
with additional structure and its arrows are mappings in the set-theoretical sense. 
51 The projectivity of free Abelian groups was proved equivalent to AC by Blass [1979]. 
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iff {iI: <f(i) , g(i)>  Ri}  U. Finally we define the ultraproduct 

/i

i I

U


A of the family of structures {Ai: i  I}  over U to be the 

structure < i

i I

A


 , RU>. If each Ai is identical with a fixed structure 

A, /i

i I

U


A is called an ultrapower of A  and is written AI/U. 

Łoś’s Theorem asserts that, for any formula   (x1, ..., xn)  of the 

first-order language for binary relational structures, and any        

f1, ..., fn  i

i I

A


 ,  

/i

i I

U


A  [ f1/F, ..., fn/F]  iff   {iI: Ai  [ f1(i), ..., fn(i)] }  U 

52. 

As an immediate consequence, for any sentence , 

 (*)                        AI/ U    iff   A   53. 

The theorem is proved by induction on the logical symbols in ; 

AC is invoked in the case in which  is the form xψ(x) 54. 

The implication from AC to Łoś’s Theorem cannot be reversed. 

For a model M of ZF has been constructed55 within which every 

ultrafilter in a power set is principal, that is, generated by a 

singleton. In M, AC fails but Łoś’s Theorem holds trivially since 

AI/U is isomorphic to  A whenever U is principal. 

On the other hand AC can be derived from (and so is 

equivalent to)  Łoś’s Theorem + the Boolean Prime Ideal Theorem 

BPI56. This new proof seems sufficiently neat to merit 

 
52 Here we write A  [a1, ..., an]  for “a1, ..., an satisfies the formula  in the structure A”. 

53 Here we write A   for “the sentence  holds in the structure A”. In model-theoretic  

jargon, (*) asserts that A and AI/ U  are elementarily  equivalent. 
54 See, e.g. Bell and Slomson [2006]. 
55 Blass [ 1977 ] 
56 Originally proved by Howard [ 1975 ]. For the BPI see below. 
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presentation. We shall actually derive AC3* from (*) above + BPI. 

First, assuming (*), we prove the following. Let   R  A  A satisfy 

xAyA xRy. For  f  AA let S(f) =    {x  A: xRf(x)}. Then: 

(**)     for any ultrafilter U in PA, there is f  AA for which       

 S(f)  U. 

To prove (**), let A be the structure <A, R> and let U be an 

ultrafilter in PA. Then A  xy xRy, so by (*)  AI/ U  xy xRy . 

It follows that, if we write i for the identity function on A, there is  

f  AA for which i/U RU f/U, whence S(f) = {x A: i(x) R f(x)}  U.  

To derive AC3* we need to show that there is  f  AA for which 

S(f) = A. We note first that, for any  f, g  AA , S(f)  S(g) = S(h), 

where h  AA is defined by  

h(i) = f(i)  if i  S(f) or i  S(g)  

h(i) = g(i)  if i  S(g) and i  S(f). 

Now suppose for contradiction’s sake that S(f)  A for all           

f  AA . Then, using what we have just noted, the ideal in PI 

generated by {S(f): f  AA} is proper and so, by BPI, included in a 

maximal ideal M. Then U = {A\X: X  M} is an ultrafilter in PI not 

containing any S(f), in contradiction with  (**). Thus S(f) = A for 

some f  AA . AC3* follows.   

• Löwenheim – Skolem – Tarski Theorem57—a first-order 

sentence having a model of cardinality  also has a model of 

cardinality  provided 0    . This was proved equivalent 

to AC by Tarski.  

 

 

 

 

 
57 Löwenheim [1915], Skolem [1920], Tarski and Vaught [1957]. 
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ZL-PROPOSITIONS 

• The Well-Ordering Theorem58: every set can be well-

ordered. This is equivalent to AC. While Zermelo’s original proof 

of this was based on AC, the use of ZL furnishes a much more 

efficient proof. Thus let B be the set of all pairs ,B   with       

B  A and  a well-ordering of B. Then B   ; partially order B 

by  

,B    ', 'B     B  B,  is the restriction of  to B, and B is an 

                                                                   initial  segment of B. 

A straightforward argument shows that  B,    is closed 

under unions of chains, hence (strongly) inductive. Consequently, 

ZL applies to furnish a maximal element ,D  . This maximal 

element is easily shown to be a well-ordering of A.  

• The Ordinal Covering Principle: for each set X, there is a 

surjection from an ordinal onto X. This is an immediate 

consequence of the well-ordering theorem and is easily seen to be 

equivalent to AC. 

• The Order Extension Principle: every partial ordering on 

a set can be extended to a total ordering. Let (P, ) be a poset and 

consider the set R  of all partial orderings on P extending . It is 

easy to show that R  is closed under unions of chains and so by 

ZL has a maximal element R. We shall show that R is a linear 

ordering extending . For this it suffices to show that, for any      

p, q  P, either pRq or qRp. Suppose on the contrary that there exist 

p, q  P such that  pRq   qRp. Let S be the relation              

{(x,y): xRp  qRy} and R the relation R  S. We show that R is a 
 

58 Zermelo [1904], [1908]. 
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linear ordering of P, contradicting the maximality of R since          

R  R and  R  R.  

Clearly R is symmetric. To show that it is transitive, 

suppose that xRy and yRz. Then one of the following cases holds: 

(i) xRy  yRz; 

(ii) xRy  yRp  qRz; 

(iii) xRp  qRy  yRz; 

(iv) xRp  qRy  yRp  qRz. 

Case (iv) is impossible, since it implies qRp, which contradicts the 

hypothesis. In case (i) the transitivity of R gives xRz, and so also 

xRz. In cases (ii) and (iii) the transitivity of R gives xRp  qRz, i.e. 

xSz, and consequently xRz. This shows that  R is transitive.  

To show that R is antisymmetric, suppose that xRy and yRx. 

We then have 4 cases analogous to (i) – (iv) where z is replaced by 

x. Cases (ii) – (iv)  are impossible, and case (i) implies x = y. This 

proves the Order Extension Principle.  

• The Comparability Principle for cardinal numbers: for 

any cardinal numbers m, n, either m  n or n  m.59 This 

amounts to showing that, for any pair of sets A, B, there is an 

injection of one into the other. This is efficiently proved by means 

of ZL. For consider the set F  of all injective maps of subsets of A 

into B, partially ordered by inclusion. It is readily shown that F  is 

closed under unions of chains, and accordingly (strongly) 

inductive. ZL then supplies a maximal element F of F ; it is not 

difficult to show that either domain(F) = A or range(F) = B. In the 

first case, we have an injection of A into B; in the second case, 

vice-versa. 

 
59 The comparability principle was shown to be equivalent to AC by Hartogs [1915]. 
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• The Idempotency Principle for infinite cardinal numbers: 

each infinite cardinal number is equal to its square.60 This is 

most efficiently derived from ZL. For the proof, in addition to ZL, 

one uses the already established fact that each infinite set has a 

denumerable subset; the elementary set theoretic facts that            

   ≈61 ; km  m2 for any infinite cardinal m and any natural 

number k; and finally the Schröder-Bernstein theorem (whose proof 

does not require AC) that, for any cardinals m, n, if  m  n and      

n  m, then  m = n. 

Accordingly let m be an infinite cardinal; we show that     

m2 = m. Let m = |A|62 and let B  A satisfy B  . Then there is a 

bijection  f0: B → B  B. Let F be the set of pairs <X, f> where         

B  X  A and f is a bijection between X and  X  X such that        

f0   f. Partially order F  by stipulating that  

<X, f>    <X, f>    X  X and f  f.63 

Then  F,    is easily shown to be  (strongly) inductive and 

hence by ZL has a maximal element  <C, g>.  We show that  

|C| = m; since  C  C  C , it will follow that  m = m2. 

Suppose on the contrary that |C|< m. Then since n = |C| is 

infinite and n2 = n (recall that C  C  C), we have 

n  2n  3n  n2  = n. 

 
60 This was originally proved by Hessenberg [1906] and shown to be equivalent to AC by 

Tarski [1924]. The proof given here, based on that of Zorn [1944], is Bourbaki’s [1963]. 
61 For sets A, B we write A ≈ B to assert the existence of a bijection between A and B, so 
that A and B have the same cardinality. 
62 We use |A| to denote the cardinality of A. 
63 In the sequel we shall call such a partial ordering a partial ordering by extension. 
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It follows from the Schröder-Bernstein theorem that  3n =  2n = n.  

From  n < m we infer that |A  C| > n; for, if not, then  

|A|  n + n = 2n = n, 

contradicting |A| > |C| = n. Accordingly there is a subset            

Y   A  C such that |Y| = n; put Z = C  Y. We show that there 

is  a bijection h: Z  → Z  Z such that g  h. For we have 

Z  Z = (C   C)   (C  Y)  (Y  C)  (Y  Y), 

and the sets on the right hand side of this equality are  disjoint. 

Since C  Y, we have 

|C  Y| = |Y  C| = |Y  Y| = n2 = n, 

so that 

|(C   Y)  (Y  C)  (Y  Y)| = 3n = n. 

Thus there is a bijection g of Y onto (C  Y)  (Y  C)   (Y  Y). 

Now let h be the unique map h of Z into  Z  Z  whose restriction 

to C is g and whose restriction to Y is g . Then h is a bijection and 

g  h. But this contradicts the maximality of <C, g>. Therefore  

|C| < m is impossible, and so, since evidently |C|  m, it follows 

that |C| = m and the result is proved.  

• The Boolean Prime Ideal Theorem (BPI). This is the 

assertion that every Boolean algebra contains a prime ideal, or 

equivalently, a prime filter. It is proved by showing that any 

maximal ideal in a Boolean algebra is prime, and then invoking 

the fact above that every distributive lattice, and a fortiori every 

Boolean algebra, has a maximal ideal.  BPI was shown to be 

weaker than AC by Halpern and Levy [1971]. BPI is equivalent to 

the Boolean Ultrafilter Theorem which asserts that every Boolean 

algebra contains an ultrafilter, that is, a maximal filter. This can be 

strengthened to the assertion that, for any Boolean algebra B, any 
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subset X with the finite meet property is contained in an 

ultrafilter. Here X has the finite meet property if the meet of any 

finite subset of X is  0.64 

• The Stone Representation Theorem for Boolean 

algebras—every Boolean algebra is isomorphic to a field of 

sets.65 This is proved by considering, for a given Boolean algebra 

B, the set S(B) of all prime ideals of B, and the map u: B → PS(B) 

defined by u(x) = {IS(B): x  I}. Then u is an epimorphism of B 

onto the field of sets {u(x): x  B}, and injective —hence an 

isomorphism—because of BPI. 

• The Sikorski Extension Theorem for Boolean algebras—

every complete Boolean algebra is injective66.  A Boolean algebra 

C is injective if, for any Boolean algebra B, and any subalgebra A of 

B, any morphism A → C can be extended to a morphism B → C.  

To prove the theorem using ZL, let C be a complete Boolean 

algebra, A a subalgebra of B, and h: A → C a morphism. Let F be 

the set of pairs <D, f>, where D is a subalgebra of B containing A, 

and f: D → C is a morphism extending h. Then F, partially 

ordered by extension, is (strongly) inductive, and so by ZL has a 

maximal element <M, g>. We show that M = B, from which the 

theorem immediately follows.  

Let b be an arbitrary element of B, and let c be any  element of 

C satisfying 

{g(x): x  b & x  M}   c  {g(y): b  y & y  M}. 

Let Mb be the subalgebra of B generated by M  {b}. Each 

element u of Mb can be expressed in the form                                     

 
64 When the Boolean algebra in question is a field of sets, the finite meet property is 
referred to as the finite intersection property. 
65 This was first proved by Stone [1936]. It is equivalent to the BPI and hence weaker 
than AC.  
66 Sikorski [1948]. 
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u = (xu  b)  (yu  b*) with x, y  M. If we now define   g : Mb → C 

by g(u) = (g(xu)  b)  (g(yu)  b*), then g is a (well-defined) 

morphism extending g, and so <Mb, g> is  an extension of  <M, g> 

in F. From the maximality of <M, g> it follows that Mb  M, so 

that b  M.  

Since b was arbitrary, we conclude that M = B, and the 

theorem follows67. 

The question of the equivalence of this theorem with AC is one 

of the few remaining open questions of interest in this area; it was  

proved independent of BPI by Bell [1983]68. In Bell [1988a] the 

Sikorski Extension Theorem was  shown to be equivalent to the 

following strengthening of BPI: for any Boolean algebra A and 

any subalgebra B of A, there is an ideal I in A maximal with 

respect to the property  I  B = {0}. 

• The Disjointness Principle for complete Boolean 

algebras: choice functions as elements of Boolean fuzzy sets. 

The Disjointness Principle for complete Boolean algebras is the 

following assertion. Let B be a complete Boolean algebra, I a set 

and {ai: i  I} an I-indexed subset of B satisfying 1i
i I

a


= 69. Then 

there exists an I-indexed subset {bi: i  I} of B such that  (1) bi  ai 

 
67 Observe that, unlike the majority of the derivations from ZL, no use of the Law of 
Excluded Middle has been made in this instance. In fact, the Sikorski extension theorem 
is (as far as I know) one of the very few results of significance constructively derivable 
from ZL. 
68 There it is shown, inter alia, that the Sikorski Extension Theorem holds in a model M 

of set theory iff BPI holds in every Boolean extension of M. Accordingly to prove the 
independence of AC from the Sikorski Extension Theorem it would appear to be 

necessary to construct a model M of set theory in which AC fails but in every Boolean 

extension of M BPI holds. A daunting task indeed.  

69 If X is a subset of a partially ordered set P, X and X denote, respectively, the join 

or least upper bound and the meet or greatest lower bound, respectively, of X, assuming 
these exist. 
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for all i  I; (2) bi  bj = 0 for  i  j; (3) 1i
i I

b


= . This can be proved 

using ZL as follows. Let D be the collection of all I-indexed 

subsets X = {xi: i  I} of B such that (i) xi  ai for all i  I;                  

(ii) xi  xj = 0 for  i  j. Partially order D by decreeing that X  Y  iff     

i (xi  yi). Then D is (strongly) inductive. For suppose                  

X ={Xk: k  K} is a chain in D with Xk = {xik: i  I} for each k  K. 

For each i  I let i ik
k K

c x


= and let C = {ci: i  I}. We show that      

C  D. Since each xik  ai, ci  ai, i.e. C satisfies (i). To show that C 

satisfies (ii), let i  j and note that 

            (*)        i j ik jk ik jk
k K k K k K k K

c c x x x x 
    

 =  =  . 

Now since X  is a chain either i (xik  xik) or i (xik  xik). In the 

first case xik  xjk   xik  xjk  = 0, and similarly in the second case. 

So in either case  ci  cj = 0 follows from (*),  which shows that C 

satisfies (ii). So C  D. Since C is obviously a (least) upper bound 

for X , it follows that D is inductive. Therefore by ZL D has a 

maximal element   M = {bi: i  I}. Clearly M satisfies (1) and (2); it 

remains to show that it satisfies (3). Suppose not; then                     

d = *i
i I

b


 0. Since 1i
i I

a


= , it follows that   0  d = i
i I

d a


 = 

i
i I

d a


 . Therefore 
0i

d a  0 for some i0. Now define bi by 

0 0 0
( )i i ib b d a =   , bi = bi for i  i0 and let M = {bi: i  I}. It is 

easily verified that M  D , M  M, and M  M. This contradicts 

the maximality of M, and we conclude that M satisfies (3). The 

disjointness principle is accordingly proved.  
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 The disjointness principle has a natural formulation in 

terms of Boolean fuzzy sets. Given a complete Boolean algebra B, a 

B-fuzzy set is a pair I = (I, a) consisting of a  set I and a map             

a: I → B. We write ai for a(i); think of ai as the “Boolean truth 

value” of the statement i  I. A   fuzzy map p: (I, a) → (J, b) is a map              

p: I  J → B  such that  (1) iI jJ  (pij   bj );  (2) pij   pij  = 0   if    

j  j; (3)  
j J

pij = ai . Here we think of pij  as the “Boolean truth 

value” of the statement  p(i) = j; in that case (1), (2) and (3) are the 

Boolean versions of, respectively, range (p)  J; p is single valued; 

and domain (p) = I. B-fuzzy sets and maps comprise the objects 

and arrows of a category FuzB in which the identity arrow  on I 

= (I, a) is the map 1I: I  I → B defined by 1I(i, i) = ai and 1I(i, i) = 0 

if i  i; while the composite qp of two arrows  p: (I, a) → (J, b) and 

q: (J, b) → (K, c) is given by ( )ik ij jk
j J

qp p q


=  . FuzB has a 

terminal object 1 = ({0}, u) with u: {0} → B the map with value 1.  

 It is now easily shown that an arrow 1 → I = (I, a) in FuzB, 

that  is,   an  element  of   I  in  FuzB  corresponds   precisely  to  an        

I-indexed subset {bi: i  I} of B satisfying conditions (1) – (3) above: 

let us call such a Boolean element of I. Moreover, the Boolean 

formulation of the condition “I is nonempty” is 1i
i I

a


= . 

Accordingly the disjointness principle may be translated as any 

nonempty Boolean fuzzy set has a Boolean element. Let us call this 

latter the Boolean element principle (BEP).  

 Since the disjointness principle is a consequence of ZL, and 

hence of AC, so is BEP. In fact these are all equivalent. It suffices 

then to show that BEP implies AC. A nice way of doing this is to 

show that, for any indexed family of nonempty sets  A = {Aj: j  J}, 
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choice functions on  A  correspond precisely to Boolean elements 

of a certain nonempty Boolean fuzzy set. In fact, let B be the 

complete Boolean algebra PJ of all subsets of J and                             

I = {<j,x>: x  Aj}.   Now  define : I → B by (<j,x>) = {j}. Then 

i

i I

 = J = 1  in B, so (I, ) is a nonempty B-fuzzy set.  

We now show that Boolean elements of (I, ) correspond to 

choice functions on A. In fact, each Boolean element corresponds 

to an I- indexed family {Pi: i  I}  for which Pi  (i) for i  I,       

Pi  Pi =  for i  i, and  i

i I

P


= J. These in turn correspond to 

choice functions on A. For if {Pi: i  I} is such a family, there is for 

each j  J a unique  i  I for which j  Pi.   Then i = <j, x> with      

x  Aj. But  j  Pi  (i) = {j}, so j = j and x  Aj. Assigning to each 

j  J the unique x  Aj obtained in this way yields a choice 

function on A. 

 Reciprocally, if : j

j J

f J A


⎯⎯→ is a choice function on A, 

define  Pi   for  i  I  by  Pi  =  {j}  if  x = f(j),  Pi =    if  x   f(j), 

where i = <j, x>. Clearly  {Pi: i  I} satisfies the required 

conditions. 

  The moral is:  while  the  assertion  every  nonempty set has 

an element is (in classical logic) a truism, to assert it in   the context 

of Boolean fuzzy sets is equivalent to asserting  AC.  

• Every divisible abelian group is injective70.  An Abelian 

group G is injective if, for any Abelian group B, and any subgroup 

A of B, any homomorphism A → G can be extended to a 

homomorphism B → G.  G is divisible if, for any a  G, and any 

integer n  0, there is an element b  G for which a = nb. Given a 

 
70 Proved equivalent to AC by Blass [1979].  
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divisible group G, a subgroup A of an Abelian group B, and a 

morphism h: A → G, consider the set F of pairs <D, f>, where D is 

a subgroup of B containing A, and f: D → G is a morphism 

extending h. Then F, partially ordered by extension, is (strongly) 

inductive, and so by ZL has a maximal element <M, g>. We show 

that M = B, from which the injectivity of G immediately follows.  

 Suppose  that  M  B. Choosing  an element  a  BM, let 

Ma be the subgroup of B generated by M  {a}: each element u of 

Ma is then of the form xu + nua, with   xu  Ma and nu  Z.  There 

are then two cases:  (i) na  M for all n  0, and (ii) na  M for 

some n  0. In case (i), let  g: Ma → G be defined by g (u) = g(xu). 

Then the pair  < Ma, g > is a member of F  properly extending    

<M, g>, contradicting the maximality of the latter. In case (ii), 

there  is  a  least positive integer n0  for which n0a  M. Then   

g(n0a)  G and so there is a*  G for which n0a* = g(n0a). If we now 

define g: Ma → G by g (u) = g(xu) + nua*, then the pair <Ma, g > is 

a member of F  properly extending <M, g>, again contradicting 

the maximality of the latter. Accordingly M = B and the result is 

proved. 

• In a commutative ring with identity, any (proper) ideal 

can be extended to a maximal (and hence prime) ideal.71 This 

follows quickly, using ZL, from the easily established fact that the 

family of ideals in such a ring is closed under unions of chains. 

• Every field has an algebraic closure.72 Recall that a field F 

is algebraically closed if every nonconstant polynomial in F[x] has a 

zero in F, and that an algebraic closure of a field K is an 

 
71 Proved equivalent to AC by Hodges [1979].  
72 (Steinitz [1910]). The simple proof given here is based on that formulated by Jelonek 
[1993]. The assertion is also a consequence of the compactness theorem for first-order 
logic, and hence of BPI, which is weaker than AC. 
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algebraically closed field which is an algebraic extension of K. To 

show that each field has an algebraic closure, we shall need the 

elementary algebraic fact that, for any field K, and any 

nonconstant polynomial f  K[x],  there is an algebraic extension L 

of K in which f has a zero. In fact, one need only take L to be the 

quotient field K[x]/(f).  

For each pair (K, f) consisting of a field K and a  polynomial 

f over K, write (K, f)* for K[x]/(f). 

 A set-theoretic argument using the Axiom of Replacement 

shows that there exists a set S such   that  K  S and for any field  

L  S and  any  polynomial  f  L[x],  (L, f)*  S. Now let                    

F  = {L S: L is an algebraic extension of K}. Partially order F  by 

stipulating that L  L if L is an  algebraic extension of L. It is 

readily shown that F  is closed under unions of chains and so ZL 

yields a maximal element M in F . We shall show that M is an 

algebraic closure of K. Since M is an algebraic extension of K, it is 

enough to show that M is algebraically closed. Let  f   M[x]; then 

f has a zero, a say, in (M, f)*. But the latter is a member of S, and 

hence also of F,  which extends M. Since M is maximal,               

(M, f)*  M and so a fortiori  a  M. So f has a zero in M and the 

latter is algebraically closed. 

• Every extension field has a transcendence basis. A 

transcendence basis for an field G over a subfield F is a subset S of G 

which is algebraically independent over F and is also such that G 

is algebraic over the subfield F(S) generated by F  S. To show 

that G has a transcendence basis over F, one observes that the 

family of independent sets is closed under unions of chains, then 

applies ZL to yield a maximal independent set, and finally notes 

that any maximal independent set is a transcendence basis. A 
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similar argument yields the stronger result that any algebraically 

independent set can be extended to a transcendence basis. 

• Any automorphism of a subfield of an algebraically 

closed field A can be extended to the whole of A. In proving this 

ZL is actually applied twice. We shall require three facts. Let F 

and G be two subfields of A, and let  be an isomorphism between 

F and G. For each polynomial p(x) over F let p —the -transform 

of p—be the polynomial over G obtained by applying  to the 

coefficients of p.

 Fact I. If a  A is algebraic over F with minimal polynomial 

p, then for any zero b of p there is an isomorphism extending  of 

the subfields F(a) and G(b) generated by F  {a} and G  {b} 

respectively. 

 Fact II. If a, b  A are transcendental over F, G respectively, 

then there is  an isomorphism of F(a) and G(b) extending   and 

sending a to b. 

In both cases the isomorphism in question is given by  

 
( )

( )
p a

q a
 ( )

( )
p b

q b



 . 

Fact III. For each subfield F of A, let F* consist of all the 

elements of A which are algebraic over F. Then F* is an 

algebraically closed subfield of A. 

Using these facts, we first show that  

 (*)       any isomorphism  between subfields F and G of A can be      

        extended to an isomorphism between F* and G*. 

To prove this, we apply ZL to the set F = {:  is an isomorphism 

extending  between a subfield of F* and a subfield of G*}. Partially 

ordered by inclusion, F  is closed under unions of chains and so 

ZL yields a maximal element  of F . We show that              

domain() = F* and range() = G*. 
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 If domain()  F*, choose a in F \ domain(). Since a is 

algebraic over F and (according to Fact III) G* is 

algebraicallyclosed, there is at least one b  G* which  is a zero of 

the -transform of the minimal polynomial of a over F. Thus by 

Fact I there is at least one way of extending  to a larger 

isomorphism still in F . This contradicts the maximality of  and 

shows that domain() = F*.  

 Now since F* is algebraically closed and  is an 

isomorphism,  range()  is an algebraically closed subfield of G     

containing G. But the only such subfield of G* is G itself; hence 

range() = G*, and we are done. 

 Finally we can show, again using ZL, that any 

automorphism  of a subfield of A can be extended to an 

automorphism of A. To this end let F = {:  is an automorphism 

extending  to some subfield of A}. Ordered by inclusion, F  is closed 

under unions of chains and so by ZL has a maximal element . We 

must show that F =  domain() = A. If not, choose  a  A\F. If a is 

algebraic over F, then F*  F and by (*) above  can be  extended to 

an automorphism of F*, contradicting the maximality of . If a is 

transcendental over F, then, by Fact II,  can be extended to an 

automorphism of F(a). This again contradicts the maximality of . 

So there can be no element of A outside F and the proof is 

complete.  

Remark.  The fundamental theorem of algebra (whose proof does not 

require AC in any form) asserts that the field  of complex 

numbers is algebraically closed. Therefore ZL implies that any 

automorphism of a subfield of  is extensible to an automorphism 
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of 73. Thus, for example, the automorphism of (5) which sends 

5 to –5 can be extended to an automorphism of  with the same 

property. Also, since e and  are transcendental over the rational 

field  we may take transcendence bases (whose existence is 

ensured by ZL) S and T of  over  containing e and  

respectively. All transcendence  bases of  over   have  the  same  

cardinality (that of the continuum), so there is a bijection between  

S and T which sends e to . The algebraic independence of S and T  

enables this bijection to be  extended to an isomorphism between 

(S) and (T) and,  using (*) above, this isomorphism in turn 

extends to an isomorphism  of (S)* and (T)*. Since (S)* = 

(T)* = ,   is an automorphism of    sending e to . 

 In fact any permutation of a transcendence basis of  over 

 extends to an automorphism of . Since any such 

transcendence basis has cardinality 
02 , there are 

0
0

02 2(2 ) 2
 


=  

such permutations, and hence also 
022



automorphisms74 of .  

This is one of the most remarkable consequences of ZL (or AC).  

For consider the fact that, in the absence of AC, one can exhibit 

 
73 The problem of the existence of nontrivial automorphisms of  was propounded by C. 

Segre in 1889 in connection with the question of the existence of non-projective 
collineations in a bicomplex plane. 

74 I learned recently that the group of 
022



automorphisms of  is known as the 

absolute Galois group. 
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just two automorphisms of , namely the identity and conjugation     

(x + iy  x – iy) . Now it is known that the  presence of a single 

automorphism  of    different   from  either   of  these  entails  the  

existence of Lebesgue nonmeasurable subsets  of the 

continuum76. So it follows from Solovay’s construction77  of a 

model of set theory in which all subsets of the continuum are 

Lebesgue measurable that without AC none of these 
022



automorphisms of  —apart from identity and conjugation— 

necessarily exist. Yet what might be called the concrete traces of 

these “fugitive” automorphisms of  are often identifiable, as can 

be seen from the example above of the (5) automorphism. 

While the action on (5) of any extension  to  (whose 

existence is guaranteed by AC) is perfectly clear, its action on the 

rest of  is decidedly otherwise – and this despite the fact that 

since the end of the 18th century  itself has been regarded as a 

perfectly definite mathematical object. Indeed, aside from some 

general facts concerning nontrivial automorphisms of   (for 

example  that  they  must send at least some real numbers to 

complex ones, that they are everywhere discontinuous, andthat 

they map discs to nonmeasurable sets in the  complex plane) all 

one knows about  is that it extends the (5) automorphism.  

 
76 See, e.g., Kestelman [1951] 
77 Solovay [1970]. 
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• Every real field has a real closure. A field K is said to be 

real if –1 is not a sum of squares in K. A field is said to be real closed 

if it is real, and if any algebraic extension of K which is real must 

coincide with K. In other words, a real closed field is maximal 

with respect to the property of being a real subfield of an algebraic 

closure79. A real closure of a real field K is a real closed field which 

is algebraic over K.  

 Now to show that every real field has a real closure, let A 

be an algebraic closure of  K and consider the set F  of subfields F 

of A which are both real and extend K. Then F , partially ordered 

by inclusion, is closed under unions of  chains and so by ZL  has 

a maximal element. This latter is  real closed and, as a subfield of 

A, algebraic over K. 

• Tychonov’s Theorem80—the product of compact 

topological spaces is compact. Let {Xi: i  I} be a family of 

compact spaces. To show that their product i

i I

X


 = X is compact 

it suffices to show that, if F is any family of closed subsets of X 

with the finite intersection property (fip)—that is, satisfying the 

condition that the intersection of any finite subfamily is 

nonempty—, then  F  . So let F  be such a family and let ZZ be 

the collection of all families of subsets of X which include F and 

have the fip. It is a simple matter to verify that ZZ is closed under 

unions of chains, and so by ZL it has a maximal member M. We 

show that  
M

M
M

 .

 First of all observe that M satisfies the two following 

conditions:

 
79 This definition comes from Lang [ 2002 ]. 
80 Tychonov [1935]. 
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 (i) M1 ,..., Mn  M    M1 … Mn  M; 

 (ii) A  X & A  M   for all M  M    A  M. 

 To verify (i): if M1,...,Mn  M, then clearly the family                 

M  {M1 … Mn} is a member of ZZ; since it  includes  M,  and  M  

is  maximal in ZZ,  it  must  coincide  with  M,  so  that,  a  fortiori,  

M1 … Mn  must be a member of M. For (ii), suppose that A is a 

subset of X which meets every  member   of   M.  Then, for  each  

finite  subset {M1 ,..., Mn} of  M   we  have by (i) M1 … Mn  M, 

so that A  (M1 … Mn)  . Therefore M  {A} has the fip,and 

so is a member of ZZ including M. The latter's maximality implies 

then that A  M. This proves (ii).    

         Now write i  for the (continuous) projection of  i

i I

X


  onto 

Xi. Then for each i  I the family {  ][
i
M : M  M} of closed subsets 

of the compact space Xi has the fip (since M itself does) and hence 

nonempty intersection. For each i  I choose a member xi of this 

intersection. Then x = (xi: i  I)  X has the property that each 

open neighbourhood U of xi meets i[M], and so i –1[U] meets M, 

for any M  M. Therefore, by (ii), –1[U]  M. It follows now from 

(i) that, for any open neighbourhoods U1, ..., Un of 
1
,...,

ni ix x  

respectively, 
1

1 1

1[ ] ... [ ]
ni i nU U− −    M. In other words, every 

basic  neighbourhood of x is a member of M.  Since M   has the fip, 

each basic neighbourhood of x meets each member of M, that  is,  

x  is  in  the  closure of each  member  of M. Thus  x 
M

M
M

 . 

 Finally, since each member of F is closed, and F  M, it 

follows that 
M

M
M  

  F,  so that F   and the result follows.   
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 Tychonov’s theorem is actually equivalent to AC. It is 

interesting to note that, like the derivation of AC from ZL,  the 

derivation of AC from Tychonov’s theorem is remarkably 

straightforward. Here is surely the simplest derivation81. Given an 

indexed family of nonempty sets {Xi: i  I}, let a be an element 

such that i

i I

a X


 , and for each i  I let Yi = Xi  {a}. Topologize 

each Yi by declaring just the subsets , {a}, Yi to be open. 

Evidently each space Yi is  then compact and so, by Tychonov’s 

theorem, the product i

i I

Y


 is also. Since each Xi is closed in Yi, i–

1[Xi] is closed in i

i I

Y


 ; and it is  easily shown that the family {i–

1[Xi] : i  I} has the fip. Hence its intersection, which clearly 

coincides with i

i I

X


 , is nonempty.  

        The original derivation of AC from Tychonov’s theorem, due 

to Kelley [1950], used more complicated topologies, but each was 

T1 (“points are closed”), so showing that AC is derivable from 

Tychonov’s theorem restricted to spaces satisfying this natural 

condition. Using the above notation, in Kelley’s derivation each Yi 

is topologized by first equipping Xi with the so-called cofinite 

topology, that is, by declaring open, along with  and Xi, all 

complements of finite (“cofinite”) subsets thereof, and then 

regarding Yi as a one-point compactification of Xi. This amounts to 

assigning to each Yi  the topology  consisting of the subsets ,  {a}, 

all cofinite subsets of Xi, the unions of these with {a}, and Yi. Each 

resulting space is then both T1 and compact, and the argument 

goes through as above. 

 
81 Alas [1969]. 
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 But for compact Hausdorff spaces Tychonov’s theorem is 

equivalent to BPI82 and hence is weaker than AC.   

• Every lattice with a largest element has a maximal 

(proper) ideal (or, equivalently every lattice with a least element 

has a maximal filter). Just as for rings, this assertion follows 

quickly from ZL. It was proved equivalent to AC by Scott [1954]. 

Later the corresponding assertion for distributive lattices was 

proved by Klimovsky [1958], and for lattices of sets by Bell and 

Fremlin [1972]. The best result along these lines so far is due to 

Herrlich [2002], who shows that AC holds iff  

(#)    the lattice of closed subsets of any nonempty topological space 

 contains a maximal (proper) filter.  

 AC2  can be derived from (#) as follows.  For each 

topological space X write CX for the lattice of closed subsets of X. 

Now let A = {Ai: i  I} be an indexed family of nonempty sets. 

Choose an individual  not contained in any Ai, and let                

Ai* = Ai  {}. Topologize each Ai* by declaring  Ai* itself and any 

finite subset of Ai to be a closed subset. Clearly the product space 

A* = 


 *i

i I

A is then nonempty, and it is easy to show that the 

minimal members of CA* are precisely the singletons {a} with a a 

choice function on A.   

 We now show that each maximal filter in CA*  is generated 

by a minimal closed set, and hence each determines a choice 

function on A. Write i  for the (continuous) projection of  


 *i

i I

A  

onto Ai*, let F  be a maximal, hence prime, filter in CA* , and let 

Fi  be the family of closed subsets X of Ai* for which 1[ ]i X−  F.  

Each Fi  is then a prime filter in CAi*. Since Ai* is obviously 

 
82 Rubin and Scott [1954]. 
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compact, and Fi  has the finite intersection property it follows that 

Ci  = iF  Fi  (in fact Fi is generated by Ci). Now let J = { :i I  Ci  

 Ai}; it is easy to see that i  J iff there exists some finite subset X 

of Ai with 1[ ]i X−  F. If i  J, then Ci is finite and so since Fi is 

prime there is a unique ai   Ai such that 1( ).i i iC a−=    If ,i J then 

  Ci.  

 Now define, for i   I,  

Zi = { }ia ,  zi = ai  if  i  J    

Zi  = Ai * , z  =   if  i J,  

and Z = 
i

i I

Z


 . Then Z is the closure of { }z in A*.  

 We claim that every neighbourhood of z meets every 

member of F. From this it will follow that z  F , and hence    

Ø ≠ Z  F . Since Z meets every member of F, and the latter is 

maximal, Z  F , so that Z generates F.  From the maximality of 

F  it follows that Z is minimal, and so determines a choice 

function on A . 

 Finally, to prove the claim, take F  F , i  I and let U be a 

neighbourhood of zi  in Ai*. If i  J, then zi = ai and so 

1 1( ) ( )i i i iz a− − =   F , whence 1( )i iz F−     so a fortiori 

1[ ]i U F−    . On the other hand, if i J, and 1[ ]i U F−  =  , 

then F  1[ * \ ]i iA U− , so that  1[ * \ ]i iA U−   F . Since *\iA U  is a 

finite subset of Ai*, this violates the condition that i J.  Thus 
1[ ]i U−  meets every member of F  ; the claim now follows easily 

from the primeness of F .  
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• Stone-Čech compactification theorem: for each 

completely regular space X there is a compact Hausdorff space 

X into which X can be densely embedded.83 Here X is the 

space whose underlying set is the set of maximal ideals in the ring 

C(X) of continuous real-valued functions of X (ZL is required to 

show that there are enough of these). The topology on X—the 

Stone-Zariski topology—is defined by taking the family of sets              

{S(a): a  X} as a base, where S(a) = {M  X: a  M}. X is densely 

embedded in X by the map a  {f C(X): f(a) = 0}. 

• Gelfand-Kolmogorov theorem: if X and Y are compact 

Hausdorff spaces and C(X)   C(Y), then X is homeomorphic to 

Y.84 For, writing  for “is homeomorphic to”, if X and Y are 

compact Hausdorff and C(X)  C(Y), then X  X  Y  Y.  

• Gelfand-Naimark-Stone theorem: each real C*-algebra is 

isomorphic to C(X) for some compact Hausdorff space X.85  

Here, given a C*-algebra A, the space X is the space of maximal 

ideals in A with the Stone-Zariski topology. 

• Every linear space has a basis86. Here it is only necessary 

to observe that a basis for a linear space is precisely an inclusion-

maximal independent subset, and that the family of all such 

subsets is closed under unions of chains, so that ZL yields a 

maximal member.   

• All bases of a linear space have the same cardinality. Let 

B and C be bases of a linear space L. Without loss of generality it 

may be assumed that B and C are disjoint. By the symmetry of 

these assumptions, together with the Schröder-Bernstein theorem, 

 
83 Čech [1937], Stone [1937]. 
84 Gelfand and Kolmogorov [1939] 
85 Gelfand [1939, 1941], Gelfand and Naimark [1943], Stone [1940]. 
86 The essential idea behind the proposition is due to Hamel [1905]. It was proved 
equivalent to AC by Blass [1984].  
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it suffices to show that there is an injection of B into C. Let F  be 

the set of pairs <X, f> where X B  and f is an injection X → C 

such that range(f)  (BX) is a linearly independent set. Partially 

order F  by extension. It is straightforward to show that F  is then 

(strongly) inductive and hence by ZL has a maximal element    

<M, g>. We claim that   M = B.  

         For suppose not. Then R = range(g)  C, for each    element of 

BM  is linearly dependent on  the  basis C but not on R. That 

being the case, we may choose  c0  CR; then either c0 is linearly 

independent of R  (BM) or is dependent on it. In the former 

case, for arbitrary b  BM, the pair <M   {b}, g  {<b,c0>}> is a 

member of F  properly extending <M, g>, contradicting its 

maximality.  In the  latter case, c0 can be represented as a finite 

sum 

0 c b

c R b M

c c b
 

=  +   , 

where the c and the b are elements of the underlyincoefficient 

field. Because c0 is independent of R, there must be at least one b, 

b0 say, in this representation for which 
0b  0. Let g be the map    

g  {<b0, c0>}. Then the pair  <M  {b0}, g> is a proper extension of   

<M, g> which is also a member of F , since the choice of b0 ensures 

that range(g )  (B  (M  {b0})) is linearly independent. This 

again  contradicts the maximality of <M, g>. 

 We conclude that M = B, so that g is an injection of B into C, 

and the proof is complete. 

• The Hahn-Banach Theorem87. Suppose that the real-

valued function p on the linear space88 L satisfies 

 
87 Originally proved in 1929, this theorem was later shown to be a consequence of BPI and hence 
weaker than AC. 
88 Henceforth all linear spaces will be presumed to have the real numbers as scalar field. 
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p(x + y)  p(x) + p(y), p(x)  = p(x)   for   0, x, y  L. 

Let f  be a linear functional defined on a subspace K of L such that 

f(x)  p(x)  for x  K. Then there is a linear functional F on L 

extending f such that F(x)  p(x)  for x  L. 

 To prove this from ZL, let F  be the set of all pairs <X, g> 

consisting of a subspace X of L containing K and a linear 

functional g on X extending f for which the inequality g(x)  p(x) 

holds for all x  X, Then F , partially ordered by extension, is 

(strongly) inductive and so ZL applies to yield a maximal member 

<M, F>. Thus F is a linear extension of f such that F(x)  p(x) for 

all  x  M. It remains to show that M = L. 

 For contradiction's sake, suppose that there is a point u in L 

which is not in M. Then any point in the subspace U of L 

generated by M  {u} has a unique representation in  the  form      

z + u. For any constant , the function G defined on U by setting 

G(z + u) = F(z)  +  

is a linear functional properly extending F. The desired 

contradiction will be obtained and the proof completed if we can 

show that  can be chosen in such a way that  

 (*)               G(x)    p(x)  for all x  U.  

 Let x, y  U; then the inequality 

F(y) – F(x) = F(y – x)  p(y – x)  p(y + u) + p(–u – x) 

gives  

–p(–u – x) – F(x)  p(y + u) – F(y). 
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Since the left-hand side of this last inequality is independent of y 

and the right hand side is independent of x, there is a constant  

such that 

    (i)    p(y + u) – F(y)    (ii) –p(–u – y) – F(y)  , 

for y  Z. For x = z + u in U, the inequality   

G(x) = F(z) +     p(z) + u = p(x), 

which holds for  = 0 by hypothesis, is obtained for  > 0 by 

replacing y by –1z in (i), and for  < 0 by replacing y by –1z in 

(ii). 

 Thus we obtain (*) in all cases, and hence the required 

contradiction.  

 The Hahn-Banach theorem has numerous consequences. 

We shall require one in particular for linear topological spaces.  A 

subset A of a linear space L is convex if, for arbitrary x, y  A,         

x + (1 – )y  A whenever 0    1. Now suppose that L is a 

topological linear space. L is said to be locally convex if 0 has a 

neighbourhood base consisting of open convex sets. (Note that 

every  normed space is locally convex with the norm topology.) 

Then the Separation Principle for Locally Convex Spaces, which 

can be proved from the Hahn-Banach theorem, asserts that, if L is 

a locally convex Hausdorff linear  topological  spaces, then, for 

any distinct points x and y of L, there is a continuous linear 

functional f on L such that  f(x)  f(y). 

• The Krein-Milman Theorem—a compact, convex subset 

of a locally convex Hausdorff linear topological space has at 

least one extreme point. Let us call an extreme subset of  a convex 

subset A of a linear space any closed subset X  A such that, for 

any x, y  A, if x + (1 – )y  X for some 0 <  < 1, then both x 

and y belong to X. An extreme point of A is an element e of A for 
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which {e} is an extreme subset of A. It is easily verified that e is an 

extreme point of A if and only if it belongs to no open line 

segment in A, that is, e can be represented in the form                   

x + (1 – )y with x, y  A with 0    1 only when   = 0 or       

 = 1.  

 Before deriving the Krein-Milman theorem we note the 

following fact: if A is a nonempty compact convex subset of a 

linear topological space L, and f is a continuous linear functional 

on L, then, writing  for inf f[A], the set B = A  f-1() is a 

nonempty extreme subset  of A. For the continuity of f ensures 

both that B is closed, and that f attains its infimum on A, so that    

B  . Finally, suppose that x, y  B and (1 – )x + y  B with      

0 <  < 1. Then both x and y belong to B. For if x  B, then f(x) >  

so that 

f((1 – )x + y) = (1 – )f(x) + f(y) > (1 – ) +  = , 

which contradicts the hypothesis that (1 – )x + y  B. Thus x 

must belong to B. Similarly  y  B. Accordingly B  is an extreme 

subset of B. 

 Now let L be a locally convex Hausdorff linear  topological 

space, and A a closed convex subset of L. Let E  be the set of all 

nonempty extreme subsets of A, partially ordered by inclusion. By 

the above fact, E is nonempty. Also E is reductive, since if C is 

any chain in E, C  is extreme, nonempty since A is compact, and 

hence a lower bound for C  in E . So by DZL E  has a minimal 

member E. We claim that E is a singleton. For otherwise E would 

contain two distinct points x and y. By the Separation Principle, 

there is a continuous linear functional on L such that f(x) < f(y). By 

the fact above, B = E  f-1(inf f[E]) is a nonempty extreme subset of 

E which does not contain y, contradicting the minimality of E. So 

E is a singleton, and its solitary element is an extreme point of A.  
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 It has been shown89 that, while AC cannot be derived from 

the Krein-Milman theorem alone, it can be derived from the 

assertion that the unit ball  of the dual of a real normed linear 

space has an extreme point, which is itself a consequence of the 

Krein-Milman theorem + BPI. There it is shown that, given any 

indexed family A = {Ai: i  I}  of nonempty sets, there is a 

correspondence between choice functions on A and the extreme 

points of the unit ball of a certain real normed linear space L(A) 

(itself the dual of another normed linear space) constructed from 

A. Writing A for i

i I

A


, L(A) is the linear space 

 { : sup | ( )| < }
i

A

i I t A

x x t
 

 
 

with the norm x = sup | ( )|
i

i I t A

x t
 

 .  

 Let  B(A) = {xL(A): x  1}  be the unit ball of L(A).  We 

describe a natural bijection between extreme points of  B(A) and 

the set PI  i

i I

A


 90.  

 Given a subset J  I, and a choice function f on A, the 

extreme point eJ correlated with <J, f>   is   obtained  by setting 

eJ(f(i)) = 1 for i  J, eJ(f(i)) = –1 for  i  I \ J, and    eJ(t) = 0 for             

t  A \ {f(i) : i  I}.  

 Inversely, let e be an extreme point of B(A). We are going to 

show that, for each  i  I, there is a unique t*  Ai such that   

|e(t*)| = 1 and e(t) = 0 for all   t  Ai \ {t*}.  

 
89 Bell and Fremlin [1972]. 

90 Here PI is the power set of I ; also recall that i

i I

A


  is the set of choice functions on  

{Ai: i  I}.      
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 We show first that, for any i  I, e cannot take the value 0 

everywhere on Ai. For if it did, choose a point    t0  Ai and define 

x, y  B(A) by x(t) = y(t) = e(t) for t  A – {t0}, x(t0) = 1, y(t0) = –1. 

Then  x ≠ e ≠  y and e = 1
2 ( )x y+ , contradicting the extremeness of 

e .  Thus e does not take the value 0 everywhere on Ai.   

  Next, we show that e is nonzero at exactly one point in Ai. 

For  suppose that e(t0)  0  e(t1) for two distinct points t0 , t1  Ai.                                                                                                                                                             

Define x, y  B(A) by  

x(t) = y(t) = e(t)  for  t  A \ {t0, t1}, 

x(t0) = e(t0)(1 + |e(t1)|)         x(t1) = e(t1)(1 – |e(t0)|) 

y(t0) = e(t0)(1 – |e(t1)|)         y(t1) = e(t1)(1 + |e(t0)|). 

Then x  e  y and  e = ½(x + y), again contradicting the 

extremeness of e.  

 Thus  there  is  a  unique t*  Ai for which e(t*)  0 and     

e(t) = 0 for all t  Ai \ {t*}. And in fact |e(t*)| = 1. For if           

|e(t*)| < 1,      define     x, y  B(A)    by     x(t) = y(t) = e(t)  for                       

t  A  \ {t*}, y(t*) = 0 and x(t*) = +1 or –1 according as    e(t*) > 0 or 

e(t*) < 0. Then, writing  = |e(t*)|, we have  0 <  < 1 and               

e = x + (1 – )y, yet again contradicting the extremeness of e. 

 Accordingly for each  i  I, there is a unique t*  Ai such 

that |e(t*)| = 1 and e(t) = 0 for all  t  Ai \ {t*}. Let f  be the  choice 

function on A defined by setting  f(i) to be this unique t*  Ai; and 

let J = {i I: e(t*) =1}.  Finally, we  correlate the pair                        

<J, f>  PI  i

i I

A


 with e.  

 It should be clear that the foregoing procedure  establishes 

the required  bijection. 

• Model Existence Theorem for first-order logic91: each 

consistent first-order theory has a model. This was shown by 

 
91 Gödel [1930]. 17], Henkin [1954]. 
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Henkin [1954] to be equivalent to BPI, and hence weaker than AC. 

If the cardinality of the model is specified in the appropriate way, 

the assertion becomes equivalent to AC. The model existence 

theorem is proved by first using ZL to produce a maximal 

consistent extension M of a given consistent first-order theory T 

and then noting that M is complete, that is, any sentence of the 

language of M is provable or refutable from M. A model of T is 

then constructed from M.92  

• Compactness Theorem for First-Order Logic93—if every 

finite subset of a of a set of first-order sentences has a model, 

then the set has a model94. While this is an immediate 

consequence of the Model Existence Theorem, the compactness 

theorem also admits a proof from Łoś’s Theorem + BPI which is 

free of syntactic notions (such as consistency) and whose elegance 

recommends it for presentation.  

 Thus suppose that each finite subset  of a given set   of 

first-order sentences has a model A; for simplicity write I for the 

family of all finite subsets of .  For each   I  let                           

*  = {  I:   }.  For any members  1, …, n of I, we have 

1 1... * ... *n n         and so the collection { * :   I} has 

the finite intersection property. From BPI it follows that it can be 

extended to an ultrafilter U in PI. The ultraproduct /
I

U



A is 

then a  model of . For if   ,  then  {}   and A{} ; 

moreover, A   whenever   . Hence {}* = {  I:   }    

 
92  For details see, e.g. Bell and Machover [1977]. 

93 Gödel [1930], Malcev [1937], others. 
94 The compactness theorem was shown by Henkin in 1954 to be equivalent to BPI, and 
is accordingly weaker than AC. 
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{  I: A  }.  Since {}*  U , { : }I  A  U and therefore, 

by Łoś’s Theorem,  /
I





 UA  . The proof is complete. 

SOME CONSTRUCTIVE EQUIVALENTS AND CONSEQUENCES OF ZL 

We have seen that, in set theory based on classical logic, ZL is 

equivalent to AC. But in set theory based on intuitionistic logic, in 

which the Law of Excluded Middle is not assumed, the situation 

is decidedly otherwise. There, ZL turns out to be remarkably 

weak: not only does it fail to imply AC, but one cannot even prove 

from it, for example, the Boolean Prime Ideal theorem or the Stone 

Representation Theorem for Boolean Algebras. This is because, as 

we show in Chapter VI, ZL has no nonconstructive purely logical 

consequences, while both AC and the Stone Representation 

Theorem imply the Law of Excluded Middle,  the Boolean prime 

ideal theorem implies the nonconstructive form of de Morgan’s 

law: both of these latter facts are established in Chapter V. In fact, 

the vast majority of the assertions constructively provable from 

ZL make explicit mention of the notion of maximality: for 

example, the Hausdorff Maximal Principle, which we have noted 

is in fact constructively equivalent to it. So it is of interest to seek 

set-theoretical propositions which are constructively equivalent 

to, or at least constructively provable from, ZL but whose 

formulations do not make reference to maximality.  

 First, we note again that the proof of the Sikorski Extension 

Theorem for Boolean Algebras from ZL is constructively sound. 

 As another example, let us consider Tychonov’s theorem in 

a familiar restricted form: namely, the product of compact 

Hausdorff spaces is compact. We shall see that, if the topological 

terms involved are provided with suitable constructive 

formulations, this form of Tychonov’s theorem is a constructive 

consequence of ZL.  
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 To begin with, we shall construe “nonempty” in the 

positive sense of being “inhabited”: thus a set A is inhabited if      

x. x  A.  The closure A  of a subset A a topological space X is 

defined to be the set of all x  X such that, for any open 

neighbourhood U of x, U  A is inhabited. A is closed if A A . X 

will be called Hausdorff if, for any x, y  X, whenever   U  V is 

inhabited for every pair of open neighbourhoods U of x and V of 

y, then x = y. Recall that a family F of sets has the finite intersection 

property if the intersection of any finite subfamily of F is 

inhabited. Finally the topological space X is compact if, for any 

family F of closed subsets of X with the finite intersection 

property, F is inhabited.  

 Now let us reexamine the demonstration of Tychonov’s 

theorem from Chapter III. If in it we employ the above definitions 

of “Hausdorff” and “compact” and replace “ ” (i.e. 

“nonempty”) by “inhabited”, we find that what results is 

constructively sound (modulo the use of ZL) except for the single 

application of AC to select, for each i  I,  a member xi  of the 

(inhabited) intersection of the family { [ ]i M : M  M} of closed 

subsets of the compact space Xi. Now if each such intersection 

happens to be a singleton, then the use of AC becomes eliminable, 

and as a result the demonstration from ZL will be constructively 

sound. We show that this is the case when each Xi is Hausdorff. 

For assuming the latter, suppose that x, y  { [ ] :
i
M M  M}. 

Then, for each pair of open neighbourhoods U of x, V of y, and 

any M  M , both  i[M]  U and i[M]  V are inhabited, and so 

therefore are M  i–1 [U] and  M  i–1 [V]. It now follows from 

property (ii) of M  that both i–1 [U] and i–1 [V] are members of M , 

and so, since M has the finite intersection property, i–1 [U]  i–1 
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[V] = i–1 [U  V] must be inhabited. It follows that U  V is 

inhabited. Since this is true for arbitrary open neighbourhoods    

U, V, and Xi  is Hausdorff, we conclude that x = y. So         

{ [ ] :
i
M  M  M} is a singleton, and we are done.  

 To sum up, Tychonov’s theorem for compact Hausdorff spaces is 

constructively derivable from ZL. 

 We conclude this chapter with an account of some 

propositions not explicitly involving maximality which are 

constructively equivalent to ZL.95 To formulate them we shall 

require a number of definitions. 

Let (P, ) be a poset. If a subset X of P has a greatest lower 

bound (respectively least upper bound) it will be written X 

(respectively X). P is complete if X and X exist for every 

subset X.  A subset B of P is a base for P if, for any x, y  P, we 

have 

b  B[b  x  b  y]  x  y. 

Notice that if P is complete, B is a base iff 

x  L. x =  {b  B: b  x}. 

A map f: P → P is (i) self-adjoint if for any x, y  P  we have  

x  f(y)  y  f(x), 

and (ii) inflationary on a subset X  P if x  f(x) for all x  X. 

 Lemma. Let P be a poset and f: P → P a self-adjoint map. Let X 

be a subset of P for which X exists. Then f[X] exists and in fact 

coincides with f(X).  

 Proof. We have, for any y  P 

x  X. y  f(x)  x  X. x  f(y)  X  f(y)  y  f(X).   

It follows in particular that any self-adjoint map on a poset is 

order-inverting. 

 
95 Bell [2003]. 
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We use this to establish what we shall term the  

Fixed Point Property for self-adjoint maps (FP).  Assume 

ZL. Let f: P → P be a self-adjoint map on a complete poset P possessing a 

base B on which f is inflationary. Then f has a fixed point. 

Proof.  Let D = {x  P: x  f(x)}. We claim that, with the 

order inherited from P, D is inductive. For consider any chain C in 

D, and let c = C. We claim that c  D. To prove this, we note that 

f (c) = f(C) = f[C] by the lemma above , so it suffices to show 

that c  f[C], i.e.  x  f(y) for all x, y  C. Now if x, y  C, then 

either x  y or y  x. In the first case x  y  f(y); in the second f(x)  

f(y) so that x  f(x)  f(y).  

Accordingly D is inductive and so by ZL has a maximal 

element m. We claim that f(m) = m. To prove this it suffices to 

show that f(m)  m; since B is a base, for this it suffices in turn to 

prove that  

(*)                              b  B[b  f(m)  b  m]. 

Since m is maximal in D, to prove (*) it clearly suffices to prove                       

               b  B[b  f(m)  m  b  D], 

i.e.                       

b  B[b  f(m)  m  b  f(m  b)], 

i.e. 

(**)                      b  B[b  f(m)  m  b  f(m)  f(b)]. 

So suppose b  B and b  f(m). We already know that m  f(m), and        

m  f(b) follows from b  f(m) and the self-adjointness of f. Thus              

m  f(m)  f(b). Also b  f(m)  f(b) since we are given b  f(m) and f 

is inflationary on B. Hence m  b  f(m)  f(b) as required, and (**) 

follows.  ◼ 

 If R be a binary relation on a set A, an R-clique in A is a 

subset U of A such that  

x  A[x  U  y  U. xRy] 
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The Clique Property (CP) is the assertion that, for any reflexive 

symmetric binary relation R, an R-clique exists. 

 Now we can show that ZL, FP and CP are all constructively 

equivalent:  

ZL  FP  has been established above.  

FP  CP.  Let R be a symmetric reflexive binary relation on 

a set A. Define the function F on the power set PA of A 96 to itself 

by F(X) = {y  A: x  X.xRy}.The symmetry of R is tantamount to 

the self-adjointness of F and the reflexivity of R to the assertion 

that F is inflationary on the base  {{a}: a  A} for PA. Accordingly 

FP yields a fixed point U  PA for F, that is, an R-clique in A.  

 CP  ZL. Let (P, ) be a inductive poset, and define R to be 

the symmetric reflexive relation x  y  y  x on P. CP yields an R-

clique U in P, which is evidently a chain in P, and so, by the 

inductivity of P, has an upper bound u. We claim that u is a 

maximal element of P. For suppose   u  x. Then clearly y  U. 

xRy, whence x  U, and so x  u. Therefore x = u, and u is 

maximal.  ◼ 

 The equivalence between FP and CP may be further 

explicated by the following observation. Let f be a self-adjoint 

map on a complete poset P which is inflationary on a set B of 

generators, and let R be the symmetric reflexive relation x  f(y) on 

B. Then there are mutually inverse correspondences ,  between 

the set F of fixed points of f (which is easily shown to coincide 

with the set of maximal elements of  {x  P: x  f(x)}) and the set C 

of R-cliques. These correspondences are given, respectively, by 

(m) = {x  B: x  m} for m  F and (X) = X for  X  C.  

This relationship can be described in category-theoretic 

terms. Let Rel be the category whose objects are pairs (A, R) with 

 
96 Note that PA is a complete partially ordered set under inclusion. 
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R a reflexive symmetric relation on a set A, and with relation-

preserving maps as arrows. Let T  be the category whose objects 

are triples  (P, B, f) with P a complete poset, B a subset of  P, and f 

a self-adjoint map on P which is inflationary on B; an arrow           

p: (P, B, f) → (P, B, f) in T is a -preserving map P → P sending 

B into B such that p(f(x))  f (p(x)) for all x  L. We define the 

functors F: Rel  → T and G:  T  → Rel  as follows. Given        A =  

(A, R) and h: A → (A, R ) = A in Rel, we define             FA = 

( , {{ } : }, *)A a a A RP  with =   * ( ) { : . }R X y A x X xRy ; and 

Fh: FA → FA by (Fh)(X) = {h(x): x  X}. Given P = (P, B, f)  

and p: P →(P, B, f) in T we define GL = (B, f ~), where  f ~ is 

defined by x  f ~ y iff x  f(y) and Gp is the restriction of p to B. 

 Then F is left adjoint to G, and the unit of the adjunction is 

iso. So F is full and faithful, and thus Rel is, up to isomorphism, a 

full coreflective subcategory of T. The objects P = (P, B, f) of T for 

which the counit arrow FGP → P is epic are precisely those in 

which B is a base for P: call such objects based. The adjunction        

F  G then restricts to one between Rel and T’s full subcategory 

T* of based objects. So Rel is also, up to isomorphism, a full 

coreflective subcategory of T*. 

 

DOING WITHOUT AC: “POINTLESS” TOPOLOGY 

Many representation theorems take the form of assertions to the 

effect that such-and-such an abstract structure is always 

isomorphic to a set-theoretic or topological realization of that 

structure. Probably the earliest example of this type of theorem is 

Cayley’s theorem to the effect that every group is isomorphic to a 

group of permutations of a set. In this case the “representing” set 

coincides with the underlying set of the group, so that the 
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representation demands nothing more than what was provided 

by set theory in the first place. As another example, consider the 

Lindenbaum-Tarski theorem that any complete atomic Boolean 

algebra is isomorphic to the power set Boolean algebra of a set. 

Here the representing set is the set of atoms of the given Boolean 

algebra, thus again rendering unnecessary the provision of “new” 

points beyond what was given. In particular, no use of AC is 

needed to prove these assertions. 

 The situation is quite otherwise, however, for those 

representation theorems whose proofs depend upon AC in an 

essential way. The earliest example of a representation theorem of 

this type is undoubtedly the Stone Representation Theorem for 

Boolean algebras to the effect that any Boolean algebra to the 

algebra of clopen subsets of a certain topological space—the Stone 

space of B.  Here, the elements, or points, of the Stone  space are the 

ultrafilters in B. Now while some of these (the so-called principal 

ultrafilters) may be identified with the elements of B, the proof of 

the theorem requires the presence of non-principal ultrafilters—

new ideal “points” of B whose existence is entirely dependent on 

the applicability of the Boolean prime ideal theorem, and hence on 

AC. Another example is the Stone-Gelfand-Naimark 

representation of any C*-algebra A as the ring of continuous real-

valued functions on a compact Hausdorff space. Here the points 

of the representing space are the maximal ideals in A, whose 

existence, once again, depends on AC. Still another example is the 

Grothendieck representation of an arbitrary commutative ring R 

with identity as a ring of global sections of a sheaf of local rings 

over a compact T0-space. Here the space is the Zariski spectrum of 

R: its points are the prime ideals in R, whose existence yet again 

depends on AC. While not strictly speaking a representation 

theorem, the Stone-Čech compactification theorem is of a similar 
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nature, since the points of the Stone-Čech compactification of a 

given (completely regular Hausdorff) space X are the maximal 

ideals in the ring of (bounded) continuous real-valued functions 

on X. While some of these correspond to points of X, the majority 

do not, and their existence is entirely dependent on AC. 

 In each of these cases, then, a certain topological space is 

constructed, the existence of (the vast majority of) whose points 

depends on AC97. If one wants to avoid the use of AC—for 

example if one wants to work in a general topos-theoretic setting 

in which the Law of Excluded Middle is not affirmed—and yet at 

the same time retain as much of the content of these types of 

results as possible, it is natural to seek a formulation of 

topological ideas in a form that avoids all mention of “points”. 

This has come to be known as “pointless topology”.  

 The origins of pointless topology can be traced to the 

observation, originating with Ehresmann [1957] and Bénabou 

[1958] that the essential characteristics of a topological space are 

carried, not by its set of points, but by the complete Heyting 

algebra of its open sets. Thus complete Heyting algebras came to 

be regarded as “generalized topological spaces” in their own 

right. As “frames” these were studied by C. H. Dowker and D. 

Papert Strauss throughout the 1960s and 70s (see, e.g., their [1966]. 

1966 and  [1972]). Isbell [1972] observed that not the category of 

frames itself, but rather its opposite—whose objects he termed 

locales—was in fact the appropriate generalization of the category 

of topological spaces. Locales accordingly became known as 

“pointless” spaces and the study of the properties of the category 

of locales “pointless topology”. The growth of topos theory, and 

more particularly the study of sheaf toposes, greatly stimulated 

 
97 Related examples include the identification of choice functions with extreme points 
and with points of Boolean fuzzy sets. 
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the development of pointless topology. It was Joyal who first 

observed that the notion of locale provides the correct concept of 

topological space within a topos (a view later exploited to great 

effect in Joyal and Tierney [1984]) and, more generally, in any 

context where AC is not available. This latter observation was 

strikingly confirmed by Johnstone [1981] who showed that 

Tychonoff’s theorem that the product of compact spaces is 

compact, known to be equivalent to AC, can, suitably formulated 

in terms of locales, be proved without it. Johnstone became one of 

the champions of pointless topology, expounding the subject most 

persuasively in his book [1982], and elsewhere (e.g. in [1983a])98.  

  Pointless topology rests on the concept of a frame, which is 

defined to be a complete lattice L satisfying the infinite 

distributive law  

i i
i I i I

x y x y
 

 =  . 

It is easily shown that any frame is a Heyting algebra in which the 

 operation is given by  a  b = {x: x  a  b}. As examples of 

frames, we have:  

 •   the open set lattice O(X) of a topological space X.  

    •  the power set Boolean algebra PA of a set A.  

 
98 A “logical” approach to pointless topology—formal spaces—was introduced by 

Fourman and Grayson [1982]. Here the (constructive) theory of locales was developed in 
a logical framework using the concept of intuitionistic propositional theory. Each such 
theory was shown to engender (the dual of) a locale—its formal space—whose 
properties reflect those of the theory: in particular, semantic completeness of the theory 
(that is, possession of sufficient models for a completeness theorem to hold for it) was 
shown to correspond to the condition that the formal space be a genuine space (that is, 
possess enough points). Under the name formal topology, this approach has been 
considerably refined and developed by G. Sambin and his students and associates 
within the more demanding constructive framework of Martin-Löf type theory (see, e.g. 

Sambin [1988], Valentini [1996]).  
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•  the frame Idl(D) of ideals of a distributive lattice D.  Here 

Idl(D) is the set of all ideals of D, partially ordered by 

inclusion. In Idl(D), the meet of two ideals is given by their 

intersection, and the join of a family of ideals by the ideal 

generated by their union.  

 A frame homomorphism between frames L and L is a map     

f: L → L preserving finite meets and arbitrary joins. If f:  X → Y is 

a continuous map of topological spaces, then the inverse map           

f –1:  O(Y) → O(X) is a frame homomorphism. The category Frm of 

frames is the category whose objects are frames and whose arrows 

are frame homomorphisms. The category Loc of locales is the 

opposite of the category of frames. The arrows of Loc are called 

continuous maps. We write O  for the functor99 Top → Loc which 

sends a space to its lattice of open sets and a continuous map        

f: X → Y to the function f –1:  O(Y) → O(X).  

 We now introduce the concept of a point of a locale. Since a 

point of a space X in the usual sense corresponds to a continuous 

map 1 → X, where 1 is the one point space, it is natural to define a 

point of a locale L to be a continuous map O(1) = 2 → L, i.e., a 

frame homomorphism p: L → 2. Now it is easily seen that p is 

completely determined by p–1(0) or p–1(1), which are, respectively, 

a prime ideal and a prime filter in L. Now since p preseves 

arbitrary joins, p–1(0) must be a principal ideal, since                

p((p–1(0))) = 0, so that p–1(0) = {x: x  (p–1(0))}. Equivalently,     

p–1(1) must be a completely prime filter, i.e. it satisfies 

X  p–1(1)  x  X(x  p–1(1). 

Call an element a of L prime if, for any x, y  L, x  y  a  x. Thus 

an element is prime if and only if it generates a prime principal 

 
99 Here Top is the category of topological spaces as defined in Appendix II. 
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ideal. Accordingly points of L correspond bijectively to prime 

elements of L, as well as to completely prime filters in L. Write 

(L) for the set of points of L.   

 Now define the map : L → P((L))100 by  taking (a) to be 

the set of points p: L → 2 such that p(a) = 1 (equivalently, the set of 

prime elements x  L such that a  x). It is easy to show that  is a 

frame homomorphism, so that its image is a topology on (L). 

With this topology, (L) becomes a topological space called the 

space of points of L. The map  will be regarded both as an arrow   

L → O((L))  in Frm and as a continuous map O((L)) → L in Loc . 

It can be shown that the assignment L  (L) defines a functor      

Loc →Top  which is right adjoint to O . 

 In general, the map L → O((L)) , while obviously 

surjective, is not an isomorphism since it can fail to be injective. 

(Consider, for example, a complete Boolean algebra B regarded as 

a locale; the points of B may be identified with its atoms, so that 

the map  sends a  B to the set of atoms x such that x  a. Thus  

is injective if and only if B is atomic.) In fact  is an isomorphism 

of frames if and only if L satisfies the condition 

aLbL[a  b  p(L)[p(a) = 1 and p(b) = 0]]. 

or equivalently: for every a, b such that a  b there is a prime 

element c such that b  c but  a  c, or a completely prime filter 

containing a but not b. A locale satisfying this condition is called 

spatial or said to have enough points. It is readily shown that a locale 

is spatial if and only if each element can be expressed as a meet of 

prime elements. Obviously O(X) is spatial for every topological 

space X. 

 
100 Recall that PX is the powerset of X. 



THE AXIOM OF CHOICE 
 

 

 

 

77 

 There are a number of conditions that can be placed on a 

locale to ensure that it is spatial (or possesses at least one point) 

but in every case the proof of this fact requires the use of AC 

(usually in the form of the existence of prime or maximal ideals) 

in furnishing the requisite points. For example, consider the 

condition of coherence. Let us call an element a of a complete lattice 

L finite if for every subset A  L with A  a, there exists a finite  

F  X with  A  a. Then a locale L is said to be coherent if            

(i) every element is expressible as a join of finite elements and (ii) 

the finite elements of L form a sublattice of L. It can be shown that 

coherent locales are precisely those isomorphic to frames of the 

form Idl(D)101, and it follows from this (together with ZL) that any 

coherent locale is spatial. 

 Here is a sketch of the proof. One first shows that the prime 

elements of Idl(D) are precisely the prime ideals of D. Then, to 

show that Idl(D) is spatial, it suffices to show that, if I, J are are 

ideals of D with I  J, there exists a prime ideal K of D with   J  K, 

I  K. Let a be any element of I – J. An application of ZL yields an 

ideal K maximal with respect to the property of containing J and 

being disjoint from the filter {x: a  x}. It can then be shown that K 

is prime and so meets the requirements.  

 As another example, consider the condition on a locale 

corresponding to that of compactness of a topological space. Thus 

we say that a locale L is compact if its top element 1 is finite. Using 

ZL it is not hard to show that any nontrivial compact locale L has 

at least one point. For by ZL L has a maximal ideal I, which is also 

prime. Since 1  I, it follows from compactness that I  1, so that 

 
101 Johnstone [1982], 64. 



THE AXIOM OF CHOICE 
 

 

 

 

78 

the principal ideal {x: x  I } is proper.  But this ideal evidently 

contains I and so is identical with I by maximality. Thus I is itself 

principal. Since I is also prime, it determines a point of I. 

 Not every compact locale is spatial. This can be seen by 

starting with a nonspatial locale L and adding a new top element 

to it: the resulting locale L is easily seen to be compact and to 

have the same prime elements as L, so that L is also nonspatial. 

But if one adds to compactness the condition on a locale 

corresponding to regularity of a topological space (that is, if there 

is a base of closed neighbourhoods at each point of the space), it 

turns out (assuming ZL) that locales satisfying the combined 

condition are spatial. How is regularity defined for a locale? 

Given a locale L, define the relation  on L by a  b iff a*  b = 1. 

Clearly a  b  a  b. We call L regular if, for any a  L,                    

a = {b: b  a}. When L is O(X), this condition says that every open 

set U can be covered by open subsets whose closures are 

contained in U; and this is readily seen to be equivalent to the 

usual definition of regularity for the space X. 

 Now let us sketch the proof that (assuming ZL), every 

compact regular locale L is spatial. Suppose that a  b in L. Then 

by the regularity of L, there is   c  a, i.e. c*  a = 1, with c  b. From 

the latter it follows that b  c*  1. Now consider the set                  

L = {x  L: b  c*  x}. With the order inherited from L, L is then a 

nontrivial locale with bottom element b  c* and top element 1. 

Since L is compact, so is L’. Hence by the above result (whose 

proof uses ZL), L has a prime principal filter I. It is now easily 

verified that J = {x  L: x  b  c*  I} is a prime principal filter in L  

containing b but not a. Hence L is spatial.  
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 A point of interest here is that Tychonov’s theorem that the 

product of compact spaces is compact (which we have observed is 

actually equivalent to AC) has been formulated and proved in a 

“pointless” version for compact locales without the use of AC.102 

(Here the product of locales in Loc is actually the coproduct of 

frames in Frm .)  

 Another natural candidate for “localeization” is the 

property of local compactness, i.e. the property that there is a base 

of compact neighbourhoods at each point).  Given two elements a, 

b of a locale L, we define a    b to mean that, for any A  L, if         

b  A, then a  F for some finite F  A. L is aid to be locally 

compact if, for any b  L, b = {a: a    b}. It is not hard to show, 

that if X is locally compact, then O(X) is a locally compact locale, 

and that the converse holds when X is regular. Also, just as each 

compact regular space is locally compact, the same assertion holds 

for locales.  

 Using ZL, it can be shown that every locally compact locale 

is spatial. Here is a very rough sketch of the proof. Call a filter F in 

a locale L open if for any a  F there is b  a such that b  F. Now 

let  L be a locally compact locale. A straightforward  argument 

shows that L has the interpolation property, namely, that if a  b in 

L, then there is c L with a  c  b. Then one can employ the 

interpolation property inductively to show that, for any  a  b in L, 

there is an open filter F containing a but not b. Next, ZL is used to 

enlarge F to an open filter M maximal amongst those not 

containing b. It can then be shown that M is completely prime, so 

 
102 Johnstone [1981]. While Johnstone’s proof does not use AC, it does require an 
application of transfinite induction and so cannot be regarded as being fully 
constructive. For compact regular locales, however, the use of transfinite induction can 
be avoided and the proof is fully constructive. 
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we have found a completely prime filter containing a but not b. 

Thus L is spatial.  

  Finally, we mention another topological result which has been 

provided with a “pointless” formulation whose proof avoids the use of 

AC, namely, the Stone-Čech compactification theorem103. Here it becomes 

necessary to introduce for locales the condition corresponding to 

complete regularity of a topological space. To do this, one first defines a 

scale on a locale L to be a sequence of elements (aq: q    [0, 1]) such 

that ap  aq whenever p < q. Then write a  b if there exists a scale (cq: q  

  [0, 1]) such that  a  c0 and  c1    b. The locale L is said to be 

completely regular if for every b  L we have b  = {a:  a  b}. Now it can 

be shown that a  b is equivalent to the condition that there exists a 

continuous map        f : L → O()—that is, a frame homomorphism O() 

→ L — for which f((0, ))  a = 0L and f((–, 1))  b. If we think of a and 

b as open sets in a topological space X , and f as a continuous real-

valued function on X,  this may be understood as expressing the 

condition “f takes values  0 inside a and  1 outside b”. Accordingly 

complete regularity of L corresponds to the condition “for every element 

x of a, there is a continuous real-valued function f on X such that f(x)  0 

and f   1 outside a”. This is precisely the usual condition of complete 

regularity for a topological space.  

 Banaschewski’s and Mulvey’s construction pivots on the locale 

L of completely regular ideals of L, where an ideal I of L is completely 

regular if for any a  I there is b  I such that  a  b. They show that L is 

a compact completely regular locale, and that it has exactly the 

properties one would demand of a Stone-Čech compactification in the 

localic setting. 

 
103 Johnstone [1982 ] , Banaschewski and Mulvey [1980 ]. 
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IV 

Consistency and Independence of the Axiom of 

Choice 

 
In this chapter we give a necessarily compressed account of how 

AC is shown to be consistent with, and independent of, Zermelo-

Fraenkel set theory. 

 

ZERMELO-FRAENKEL SET THEORY 

The language of set theory is a first-order language L with equality, 

which also includes a binary relation symbol  (membership). The 

individual variables x, y, z, are understood to range over sets, but 

we shall also permit the formation of class terms {x: (x)} for each 

formula (x). The term {x: (x)} is understood to denote the class 

of all sets x such that (x). We assume that classes satisfy the 

Comprehension Principle: 

y[y  {x: (x)}  (y)]. 

 We shall employ the standard set-theoretic abbreviations, 

such as x  y for “x is included in y”,  for the empty set, <x, y> 

for the ordered pair of x, y, x for the union of x, Px for the 

power set of x, u  v for the Cartesian product of u, v, ” dom(u) for 

the domain of u, Fun(f) for “f is a function, etc. We also write V for 

the class of all sets, i.e. {x: x = x}. 

 Zermelo-Fraenkel set theory (ZF) is the theory in L based on 

the following axioms104: 

• Extensionality  xy[z(z  x  z  y)  x = y]. 

• Separation         uvx[x  v  x  u  (x)]. 
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• Pairing              xyuz[z  u  z = x  z = y]. 

• Replacement        u[xuy (x, y)  vxuyv (x, y)]. 

• Union                 uvx[x  v  yu(x  y)]. 

• Power set             uvx[x  v  yx(y  u)]. 

• Infinity                u[  u  xuyu(x  y)]. 

• Regularity            u[u    xuyu(y  x)]. 

 A class U or set u is transitive if v  U (resp. v  u) 

whenever v  U (resp.  v  u). The transitive closure TC(x) of a set x 

is the least transitive set containing x, i.e. {x}  x  

...x x   .  An ordinal is a transitive set which is well-

ordered by the membership relation ; we write Ord(x) for “x is 

an ordinal”.We use letters , , γ,... for ordinals; we write  <  for 

  . The least infinite ordinal is denoted by . The class ORD of 

ordinals is then itself well-ordered by <, which makes it possible 

to define sets by recursion on the ordinals. In particular we define 

the sets V  for   ORD by 

V  = {x:  < [x  V]}. 

The axiom of regularity implies that each set x is a member of 

some V; the least such  is called the rank of x and written 

rank(x).  

 Let R be a relation, i.e. a class of ordered pairs. R is said to 

be well-founded if for each set u the class {x: xRu} is a set and each 

nonempty set u has an element x such that yRx for no y  u. If R is 

a well-founded relation, the principle of induction on R—which is 

provable in ZF—is the assertion 

 

x[y(yRx  (y))  (x)]   x(x), 
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for an arbitrary formula (x). The principle of recursion on R—

which is also provable in ZF— is the assertion that if F is any class 

of ordered pairs defining a single-valued mapping of V into V 

(such a class is called a function on V and we write as usual           

F: V → V) then there is a (unique) function G :V  → V such that  

u[G(u) = F(<u, G|Ru>)], 

where G|v is the restriction of G to v, i.e. G  (u  V).  

 The Axiom of Regularity implies that  is well-founded, 

and so we have as special cases the principle of -induction 

x[y(y  x  (y))  (x)]   x(x), 

and -recursion: for any F: V → V there is G: V →  V such that 

u[G(u) = F(<u, G|u>)]. 

 Again, the relation rank(x) < rank(y) is well-founded and so 

we have the principle of induction on rank: 

x[y(rank(y) < rank(x)  (y))  (x)]   x(x). 

 If U is a class, and  is a sentence of L, the relativization (U)  

of  to U is the sentence obtained from  by restricting all the 

quantifiers in  to U, that is, replacing each existential quantifier 

x by xU and each universal quantifier x by x(x  U  ...). 

The sentence (U)  may be regarded as asserting that  is true, or 

holds, in the structure U = <U, >, or that the latter is a (class) 

model of . The ZF axioms may then be construed as asserting that 

the universal structure  V = <V, > is a model of ZF. 

 

THE RELATIVE CONSISTENCY OF AC 

In L we may take the Axiom of Choice in the form AC1, i.e. 

uf[Fun(f)  dom(f) = u  xu[u    f(x)  x]]. 

We write ZFC for ZF + AC. 

 In L AC can also be formulated in a global version, namely,  

GAC    there is a function F: V → V such that, for all u  ,   F(u)  u. 
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F is called a global choice function. Clearly GAC implies AC. 

 The idea behind Gödel’s proof of consistency of AC relative 

to ZF is to “carve out” a class model  U = <U, >  of ZF + GAC 

from the universal structure  V , which we have already observed 

is a model of ZF. This procedure will take place entirely within ZF 

in the sense that, for each axiom  of ZF + GAC the sentence (U) , 

i.e. the assertion that U is a model of , is provable in ZF. It 

follows from this that AC is consistent relative to ZF in the sense 

that, if ZF is consistent, so is ZF + GAC. 

 As we remarked in Chapter I, Gödel’s original proof of the 

consistency of AC used the concept of constructible set to obtain U. 

Here we shall sketch the simpler proof based on the concept of 

ordinal definable set.  

 Informally, a set a is ordinal definable if it is definable from 

some finite set of ordinals, i.e. if there is a property P(y1, ..., yn, x) 

and ordinals 1, ..., n such that, for any x,  P(1, ..., n, x)  x = a. 

The formal counterpart of this concept within L is “definable 

within some structure V = <V, >”. Thus write D(u) for the term 

in L representing the set of all subsets of u which are first-order 

definable in the structure (u, ) 105. Now we can define  

OD(x)  [x  D(V)]. 

 The class OD = {x: OD(x)} is the class of ordinal definable sets. It can 

then be proved106 in ZF that, for any formula (y, x, z1, ..., zn), 

  (*)          x[1 ... ny[(y, x, 1, ..., n)  x = y]  OD(x) 

 
105 Such a term can be constructed within L; see e.g. Bell and Machover [1977] or Kunen 
[1980]. 
106 See, e.g. Bell and Machover [1977] or Kunen [1980]. 
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This shows that the informal definition of ordinal definability 

implies the formal version. It follows in particular that every 

ordinal is ordinal definable, i.e.  ORD  OD. 

 It follows from (*) that OD is closed under definability in the 

sense that, if (x1, ..., xn) is any term of L, then  

(**)                     a0, ... , an OD  ( a0, ... , an)  OD. 

 Next, it can be shown that OD has a definable well-ordering. 

By this we mean that one can construct a formula (x, y) for 

which the formal statement “ defines a (strict) well-ordering of 

OD” is a theorem of ZF. This is done107 by defining terns s1 and s2 

of L by  

  s1(x) = least ordinal  such that x  D(V) if x  OD; 0 

otherwise. 

                         s1(x) = least natural number n such that n is the code 

number of a formula defining x in 
1( )s xV ; 0 otherwise. 

The formula (x, y) is then defined by 

  (x, y)OD(x)  OD(y) [ s1(x) < s1(y)[s1(x) =s1(y)  s2(x) < s2(y)]].    

We shall write x  y for (x, y) and call  the definable well-ordering 

of OD. 

 Unfortunately, OD cannot be proved to be transitive and so 

cannot be shown to be a model of ZF. To remedy this we replace 

OD with the class HOD of hereditarily ordinal definable sets, i.e. 

those x  OD such that all members of x, members of members of 

x , etc., are in OD.  Formally, we define 

HOD(x)  TC (x)  OD        HOD = {x: HOD(x)}. 

 
107 For details see, e.g., Bell and Machover [1977], Kunen [1980].   
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It is easy to show that (i) ORD  HOD  OD;  (ii) HOD is 

transitive; (iii) for any set a, if a  OD and  a  HOD, then               

a  HOD. 

 One can now prove in ZF the  

 Theorem. HOD = <HOD, > is a model of ZF +GAC.  

 Proof. Extensionality holds in HOD since HOD is 

transitive and Regularity holds since it holds in any class.  

 For Separation, note that if u  HOD, then, for any formula 

(x), {xu: (HOD)(x)}  HOD.  

 The Axioms of Pairing, Union, Replacement and Power set 

in  HOD all assert that HOD contains “large enough sets”. Each 

is proved in a similar way, using (**), and (i) - (iii) above. For 

example, in the case of Power Set, let u  HOD and define P*u = 

Pu  HOD. Obviously P*u  HOD, and (**) implies that Also   

P*u  OD. Hence P*u  HOD and so Power Set holds in  HOD. 

 The Axiom of Infinity holds in  HOD since   HOD. 

 Finally, to show that GAC holds in  HOD, observe that 

the definable well-ordering  of OD restricts to a well-ordering  

of HOD. Then we can define a global choice function                      

F : HOD → HOD by setting, for each nonempty u  HOD,         

F(u) =  - least element of u.                

 By the remarks above, it follows that, GAC, and hence also 

AC, is relatively consistent with ZF. 

 

THE INDEPENDENCE OF AC 

The method of proving the independence of AC outlined here is 

known as the method of Boolean-valued models. This was 
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developed in the 1960s by Robert Solovay and Dana Scott, 

building on Cohen’s original technique of forcing108.  

 To describe the method of Boolean-valued models of set 

theory, we need to introduce the idea of a Boolean-valued 

structure. Let B be a complete Boolean algebra. A B-valued 

structure to be a triple  S = ,    ,    >S =  , where S s a 

class and   ,    =   are maps S  S → B satisfying the 

conditions 

1

.

Bu v

u v v u

u v v w u w

u v u w v w

v w u v u w

= =

= = =

=  =  =

=    

=    

 

for u, v, w  S.  

 Let L(S) be the language obtained from L by adding a name 

for each element of S. For convenience we identify each element of 

S with its name in L(S) and use the same symbol for both. The 

maps  = ,    can be extended to a map defined on the 

class of all L(S)-sentences recursively via: 





   =   

   =   

   =   

 

  = 

  = 

      

     

   

 = *

( ) ( )          

( ) ( )  

u S

u S

x x u

x x u

 

 For each sentence ,    B is called the truth value of  in S;  

is true in S, written S  , if  = 1B and false in  S if  = 0B. S  

 
108 For a systematic account of Boolean-valued models, see Bell [2005].  
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is a (Boolean-valued) model of a set T of L(S)-sentences if each 

member of T is true in S . It is not hard to show that, if S is a 

model of T , and T  , then S  . 

 Now the idea is to build, for each complete Boolean algebra 

B, a B-valued structure V(B) called the (full) universe of B-valued sets 

or the B-extension of the universe of sets, which can be proved, in 

ZFC, to be itself a Boolean-valued model of ZFC. It follows that 

any sentence  which is false in some V(B) must be independent of 

ZFC. By selecting B with finesse, the independence of numerous 

set-theoretic principles, such as the Axiom of Constructibility and 

the Continuum Hypothesis can in particular be established using 

this method.  

 We observe that full universes of Boolean-valued sets 

cannot be used for the purpose of demonstrating the 

independence of AC from ZF, since it is a theorem of ZFC that AC 

is always true in any V(B). To obtain a Boolean-valued model of ZF 

in which AC is false, V(B) must be replaced with a submodel 

associated with the action of a certain type of group. Such 

submodels are the Boolean-valued analogues of Fraenkel’s 

symmetric models mentioned in Chapter I. We defer discussion of 

these until later. 

 Now suppose given a complete Boolean algebra B which 

we assume is a set, i.e. B  V. The class V(B) of B-valued sets is 

defined as follows. First, we define by recursion the sets V(B)  for 

each ordinal : 

 
( ) ( ){ : Fun( ) range( ) [domain( ) }B BV x x x B x V =        . 

Then we define  

                                
( ) ( ){ : [ }B BV x x V=   . 
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It is easily seen that a B-valued set is precisely a B-valued function 

whose  domain  is  a set  of B-valued  sets.  We  write  L(B)  for  the 

language   L(V(B)). 

 The basic principle for establishing facts about B-valued 

sets is the  

 Induction Principle for V(B) . For any formula (x), if  

xV(B)[ydom(x) (y)  (x)], 

then                                    xV(B) (x). 

This is easily proved by induction on rank.  

 We now proceed to turn V(B) into a B-valued structure. This 

is done by  defining  ( )Bu v=  and ( )Bu v  by the equations: 



 =  =( ) ( )

( )

[ ( ) ]B B

y dom v
u v v y u y  

 

= =     ( ) ( ) ( )

( ) ( )

[ ( ) ] [ ( ) ]B B B

x dom u y dom v
u v u x x v v y y u . 

These can be justified by recursion on a certain well-founded 

relation109. 

 It can now be shown by -induction that                                                         

V(B) = <V(B) , ( ) ( )  ,  = B B > is a B-valued structure.  This 

structure is called the universe of B-valued sets. We assume that 
( )B has been extended to the class of all L(B) – sentences as above: 

we shall usually omit the superscript (B). 

 Of help in calculating truth values in V(B) are the rules:  



   =    = ( ) ( ) ( ) ( )

dom( )dom( )

( ) ( )          ( ) ( )  .B B B B

x ux u

x u x u x x x  

 There is a natural map ^: V → V(B)  defined by -recursion 

as follows: 

=   ^ { ^,1 : }Bx y y x . 

It is then easily shown that, for x  V, u  V(B),  

 
109 Bell [2005], p. 23 
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              

 = =( ) ( )^ ^ .       B B

y x

u x u y  

 Now in ZFC it can be shown that V(B) is a B-valued model of 

ZFC.  We verify the Axiom of Separation and AC in V(B) .  

 We recall that the Axiom of Separation is the scheme  

uvx[x  v  x  u  (x)]. 

To see that each instance is true in V(B), let u  V(B), define v  V(B) 

by dom(v) = dom(u) and, for x  dom(v), ( ) ( ) ( )v x u x x=   .   

Then

[ ( ) [ ( )] [ ( ) .x x v x u x x v x u x x u x x v      =           

Now 



     =       =
dom( )

[ ( )] [[ ( ) ( ) ] [ ( ) ]] 1 .B
x v

x v x u x u x x x u x

Similarly  

[ ( ) 1Bx u x x v     =  

and the assertion follows. 

 As for AC, we sketch a verification in V(B) of the equivalent 

Ordinal Covering Principle (Chapter III). We recall that this is  

uf[Fun(f)  dom(f) =   u  range(f). 

To establish its truth in V(B), take any u  V (B); AC implies that 

there is an ordinal  and a function g of  onto domain(u). Define 

f  V (B) by  

=        ( ){ ^, ( ) : } {1 }B

Bf g 110 

It is easy to show that  =Ord( ^) 1B , so it suffices to show that  

V(B)  Fun(f)  dom(f) = ^   u  range(f). 

We verify that  V(B)  dom(f) = ^ . For we have, for x  V (B), 

 
110 Here <u,v>(B) is the B-ordered pair in V(B), that is, the B-set playing the role of the 
ordered pair in V(B). If we define {u}(B) = {<u, 1B>} and {u, v}(B) = {<u, 1B>, <v, 1B>}, then 
<u,v>(B) may be defined as {{u}(B) , {u, v}(B) }(B). 
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



 



   =  

 =   =

 =   =

 =

 

( )

( )

( )

[ , ,

                         = ^ ( )

                         = ^ ( )

                         = ^

                         = 

B

B

B

z V

z V

z V

y x y f x z f

x g z

x g z

x

x ^ .

 

The remaining conjunctions are similarly verified. 

 

 The complete Boolean algebras normally employed in 

formulating independence proofs are the regular open algebras 

associated with topological spaces. If X is a topological space, a 

subset U is said to be regular open if
o

U U= , that is, if U coincides 

with the interior of its closure. The family R(X) of all regular 

open subsets of X forms a complete Boolean algebra under the 

partial order of inclusion, in which 
o

i i
i I i I

U U
 

= , 

o

i i
i I i I

U U
 

= , 

and U* = X – U . R(X) is called the regular open algebra of X.  

 Now let X and Y be nonempty sets, where Y has at least 2 

elements. Write C(X, Y) for the set of all mappings with domain a 

finite subset of X and range a subset of Y. Partially order C(X, Y) 

by inverse inclusion and write (P, ) for the resulting poset. For   

p  P let  

N(p) = {fYX: p  f}.  

Subsets of YX of the form N(p) form a base for the product 

topology on YX , when Y is assigned the product topology. Each 

N(p) is then a clopen (closed-and-open) subset of YX in this 

topology. In particular, each N(p) is a regular open subset of YX, 

and it is easy to verify that the map p  N(p) is an order- 
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isomorphism of P onto a dense subset of B = R(YX). (Here a 

subset A of a Boolean algebra B is dense if 0  A and for any x  B 

such that x  0B there is a  A for which a  x.) We agree to 

identify p and N(p), so that P may be regarded as a dense subset of 

B. We also agree to use  for the partial ordering on B.  

 We now turn to the construction of the submodels of V(B)   

in which AC can be falsified. For this we require the concept of a 

group action on a class. Thus let G be a group, and X a class. An 

action of G on X is a map <g, x>  g x: G  X → X satisfying          

1 x = x, (gh)  x = g  (h  x). (We shall usually write gx for g  x.) 

Under these conditions we say that G acts on X. For each g  G, 

the map g: X → X defined by g(x) = g  x is a permutation of X. 

 If B is a Boolean algebra, by an action of G on B we mean an 

action of G on B by automorphisms, that is, one in which each g is 

an automorphism of B.  

 We extend the notion of group action to Boolean-valued 

structures by defining an action of a group G on a B-valued 

structure  S = <S,    ,   =    to be a pair of actions of G on 

B and on S  satisfying 

               gu gv g u v gu gv g u v= =  =  =   . 

It is easily shown by induction on complexity of formulas that, for 

any formula  (x1, ..., xn) of L, any  u1, ..., un  S, and any g  G, 

                             1 1( ,..., ) ( ,..., )n ng u u gu gu  =  . 

  Now let G be a group acting on the complete Boolean 

algebra B. Define the map  <g, x>  gx: G  V(B) → V(B) by 

recursion on the well-founded relation  y  dom(x) via: 

gu ={<gx, g  u(x)>: x  dom(u)}. 
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It can then be shown that this defines an action of G on V(B)  such 

that (i) for any  u  V(B) , g  G, dom(gu) = {gx: x  dom(u)}  and 

for any x  dom(u), (gu)(gx) = g  u(x);  and (ii) for any x  V, 

=^ ^gx x .  

 Here is a sketch of how the independence of AC  is proved.  

Let  be the group of all permutations of  and for each  n   let 

n = {g  : gn = n}. We choose a certain complete Boolean 

algebra B and construct a certain subclass V* of V(B)  such that  

(i) V*  is the underlying class of a B-valued model V* of 

ZF; 

(ii) ^x   V* for all x  V; 

(iii)  acts on V*; 

(iv) for each x  V*, there is a finite subset J of  (called a 

support of x) such that gx = x for every n

n J

g


  = J; 

(v) there is an infinite “set of distinct reals” s = {un: n  } in 

V* such that gun = ugn for all g   and n  . 

  

 From this it will follow that, in V*, s is infinite but s has no 

denumerable subset, so a fortiori AC fails in V*. For suppose f is 

any map (in  V*) of ^  111 into s. Then, by (iv), f has a finite 

support J. If f were injective, then there would be n  J such that                    

un  range(f). Choose n  {n}  J and let g   be the permutation 

of  which interchanges n and n but leaves the remaining 

integers undisturbed. If un = fm^, then un = ugn = gun = g(fm^) = 

(gf)(gm^) = fm^ = un, contradicting un  un. Hence, in V*, s does 

not have a denumerable subset, so AC fails there. 
 

111  ^  plays the role of  both in V (B)  and in V () . 
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 For each x  V(B) define stab(x), the stabilizer of x, to be the 

set {g  : gx = x}. Then it follows from condition (iv) that, for 

each x  V*, stab (x) is a member of  the filter of subgroups of  

generated by the n, i.e. the family  of all subgroups of  which 

contain at least one J. This leads to the idea of considering an 

arbitrary filter of subgroups of an arbitrary group G. Also, since we 

want  to act on V*, we must have x  V*  gx  V*          

stab(gx)  . But it is easy to verify that stab(gx) = g stab(x) g–1, so 

we shall want  to satisfy H      gHg–1   . Under these 

conditions  is said to be normal. Finally, we shall write V(), V () 

in place of V*, V* to indicate the dependence of the construction 

on .  

 Thus let G be a group acting on the complete Boolean 

algebra B and let  be a filter of subgroups of G. That is,  is a 

nonempty set of subgroups of G such that (a) H, K                 

H  K  , (b) H   and H  K, K a subgroup of G  K  .  is 

normal if g  G and H    gHg–1  .  

 We know that G acts on V(B); so for each x V (B) we can 

define the stabilizer stab(x) by stab(x) =  {g  : gx = x}. Clearly 

stab(x) is a subgroup of G.  By analogy with the definition of the 

V(B), we define the sets V() recursively as follows: 

 








=      

   

( )

( )

{ : Fun( ) range( ) stab( )

                                           [domain( ) }.

V x x x B x

x V
 

Then we define    

 
( ) ( ){ : [ }V x x V 

=   . 

Clearly V()  V(B), and 
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x  V()  Fun(x)  range(x)  B  domain(x)  V()  stab(x)  . 

For u, v  V(), we define  ( )u v =  and ( )u v  recursively as 

we defined  ( )Bu v=  and ( )Bu v , that is: 
 



 =  =( ) ( )

dom( )

[ ( ) ]
y v

u v v y u y  

  

 

= =     ( ) ( ) ( )

dom( ) dom( )

[ ( ) ] [ ( ) ]
x u y v

u v u x x v v y y u . 

It is then readily shown by induction that                            
( )u v =  = ( )Bu v=  and ( )u v  = ( )Bu v , so that               

V() = < V(), = ( )  , ( )   > is a B-valued structure. We 

denote by L() the language for V(), that is, the result of expunging 

from L(B) all constant symbols not denoting elements of V(). For 

any sentence  of L(), we write ( ) for the truth value of  in 

V() . 

 The following two facts are readily established by 

induction:  (i) for any x  V, we have  ( )^x V ; (ii) G acts on V(). It 

follows from (ii) that, for any for any formula (x1, ..., xn) of L, any  

u1, ..., un  V(), and any g  G, 

                           
( ) ( )

1 1( ,..., ) ( ,..., )n ng u u gu gu   =  . 

 One can now prove in ZF the 

 Theorem. V()  is a model of ZF. 

 This is proved in a way similar to that for the analogous 

result for V(B). As before, we verify Separation. Thus let             

(x, v1, ..., vn) be an L-formula and let  u, a1, ..., an  V(). Define    v 

 V(B) by dom(v) = dom(u) and  

                                    ( )

1( ) ( ) ( , ,..., .nv x u x x a a =    

It now suffices to show that v  V(), for then it is readily verified, 

as for V(B), that  
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V()   x[x  v  x  u  (x, a1, ..., an). 

Since dom(v) = dom(u)  V(), to show that v  V() it is enough to 

show that stab(v)  . And since stab(u),  stab(a1), ..., stab(an) are 

all in  and  is a filter, it will be enough to show that  

(*)                 A = stab(u  stab(a1)  ...  stab(an)  stab(v). 

If g  A, then dom(gv) ={gx: x  dom(v)} ={gx: x  dom(u)} = 

dom(gu) = dom(u) = dom(v). Also, if x  dom(v), then x =gy with  

y  dom(u), so that  

 

( )

1

( )

1

( )

1

( )( ) ( )( )

          = ( )

          = ( ) ( , ,..., )

          = ( )( ) ( , ,..., )  

          = ( ) ( , ,..., )  

          = ( ).

n

n

n

gv x gv gy

g v y

g u y gy ga ga

gu gy x a a

u x x a a

v x







=



  

 

 

 

 

Hence gv = v and g  stab(v). This proves (*) and Separation in     

V().  

 We shall specify B, G, and  so that V()  AC. This will 

establish the independence of AC from ZF. 

 Let P be the poset C(  , 2), partially ordered by inverse 

inclusion, let X be the product space 2, and let B be the regular 

open algebra R(X) of X. Then, as observed above, P may be 

regarded as a dense subset of B when each p  P is identified with 

the element N(p) = {f  2  : p  f}  of B.  

 Again let  be the group of permutations of .  can be 

made to act on B in the following way. Each g   induces a 

homeomorphism g* of X onto itself via  

(g*f)<m, n> = f<m, gn>. 
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We define the action <g, b>  gb of  on B by  

gb = g*–1[b] = {f  X: g*f  b}. 

 For each n   let n be the subgroup {g  : gn = n} and 

let  be the filter of subgroups of  generated by the n, that is, 

the set of subgroups of  containing at least one subgroup 

n

n J

 = J for finite J  . It is readily verified that  is normal.  

 We shall need a  

 Lemma.  If p  P, J is a finite subset of  and n  J, then 

there is g  J  such that p  gp  0B and gn  n. 

 Proof. Take n  J  {n} so that <m, n>  dom(p) for any m 

(possible, since J and dom(p) are finite) and let g   be the 

permutation of  which interchanges n and n but leaves the 

remaining integers undisturbed. Then certainly g  J and gn  n. 

To verify that p  gp  0B, recall that p has been  identified   with  

N(p) and observe  that                 




 =  

=      =  

( ) { 2 : * }

           { 2 : , dom( ) , , }.

g N p f p g f

f i j p f i gj p i j
 

Let i1, ..., ik  be a list of the i such that <i, n>  dom(p). Then  

 

( ) ( )

         { 2 :  and , '  ,  for 1,..., }

         ,

j j

p gp N p g N p

f p f f i n p i n j k

 =  

=     =   =

 

since <ij, n>  dom (p) for j = 1, ..., k.   

 Finally we prove the 

 Theorem.  V() is a model of AC.  
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 Proof. To prove this it will be convenient to employ the 

forcing relation112  between P and the class of sentences of L() . 

This is defined by  

p    iff  p  ( ) . 

Clearly ( ) = 0B  iff p   for no p  P, and ( ) = 1B  iff p   for 

all p  P. Clearly, also,  is persistent in the sense that, if p   and 

q  p, then q  . Two further, easily established facts about  we 

shall need are that (i) p    if and only if q   for all q  p, so 

that p   iff there is q  p for which q   and (ii) for a  V,        

p  x a^(x)  iff  there exist q  p and x  a such that  q  (x^). 

These facts will be used below without comment. 

 For each n   define  dom( ^)

nu B by  

 
=    =( ^) { 2 : ,   1}.nu m h h m n  

It is then easily verified that V()    ^nu  and that V()  

'n nu u  for n   n . We next establish: 

 (1) gun = ugn. For clearly we have dom(gun) = dom(ugn). 

Also, for m  ,  

 

− 





=



  =

  =

  =

1

( ) ^ ( ) ^

           = ( ^)

           = * [{ 2 : , 1}]

           = { 2 : * , 1}

           = { 2 : , 1}

           = ( ^),

n n

n

gn

gu m gu gm

g u m

g h h m n

h g h m n

h h m gn

u m

 

whence (1). 

 
112 For a full account of forcing see Bell [2005] or Kunen [1980]. 
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 It follows immediately from (1) that n  stab(un) , so 

stab(un)   and  un  V () .  

 Now put s = {un: n  }  1B; then gs = s for any g  , so     

s  V () . Since   V()  
'n nu u  for n  n , it follows that  

V()  s is infinite. 

 We claim that  

V()  s has no denumerable subset, 

which will prove the theorem. To establish the claim, it suffices to 

show that, for each f  V () ,  

   =    =Fun( )  dom( ) ^  range( ) 0 .Bf f is injective f f s  

And to prove this it suffices to show that for no p0  P is it the case 

that  

     p0    =   Fun( )  dom( ) ^  range( ) .f f is injective f f s  

Suppose on the contrary that (*) held for some p0.  We shall find    

q  p0 such that  q  Fun(f), in violation of the persistence of , 

so yielding the required contradiction.  

 We first observe that  

 (2)        p  x  s  iff  qprqn[r  x = un].  

For we have  

               p  x  s  iff  p  n
n

x u


=  

                                 iff  
n

n

p x u


   = 0 

                               

                                 iff  qp  [q  n
n

x u


 ] 

                                 iff  qp n [q  nx u ] 

                                 iff   qp n [q  nx u ] 



THE AXIOM OF CHOICE 
 

 

 

 

100 

                                 iff   qp nrq [r   nx u= ]. 

 Now since f  V () it has a finite support J, i.e. there is a 

finite subset J   such that J  stab(f). Let J = {n1, ..., nj}. Since   

p0  f is injective  Fun(f), it follows that  

p0        
1

^[ ( ) ... ( ) ,
jn nx f x u f x u  

so that there is p  p0 and m   such that  

(3)                                  p     
1

( ^) ... ( ^) .
jn nf m u f m u  

 Since p0  ( ^)f m s , so that p  ( ^)f m s , by (2) there are    

r  p and n   such that 

(4)                                            r  =( ^) .nf m u  

But from (3) we deduce 

r     
1

( ^) ... ( ^) ,
jn nf m u f m u  

and this, together with (4) implies n  J. By the above Lemma 

there is g  J  such that r  gr  0 and gn  n. It follows from (4) 

that  

                                             gr  =( )( ^) .ngf gm gu  

But this, together with (1) and the fact that g  J   stab(f) gives 

gr  =( ^) .gnf m u  

Since r  gr  0B, there is q  P such that q  r and q  gr.  Then      

q  p0 and  

q  =  =( ^) ( ^) .n gnf m u f m u  

But from gn  n it follows that 1gn n Bu u = , so that                      

q 
gn nu u . Therefore q  Fun(f), and the proof is complete.  
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V 

The Axiom of Choice and Intuitionistic Logic  

 
AC AND LOGIC 

An initial connection between AC and logic can be discerned by 

returning to its formulation AC3 in terms of relations, namely: 

any binary relation contains a function with the same domain. 

This version of AC is naturally expressible within a many-sorted 

second-order language L  with individual variables x, y, z, ... , 

constant symbols a, b, c, ... function variables f, g, h, ... and 

function symbols f, g, h, .... We assume that each individual 

variable x and each constant symbol a is assigned an (individual) 

sort A, indicated by writing x:A or a:A and that each function 

symbol f and each function symbol f is assigned a pair of sorts A, 

B, indicated by writing f : A → B or f: A →B. In either case, if x:A 

or a:A, then fx, fa, fx and fa are all terms of sort B. 

  In L , binary relations are represented by formulas (x, y) 

with two free individual variables x:A, y:B. The counterpart in L  

of the assertion AC3 is then  

ACL            x:A y:B (x, y)  f:A →Bx:A (x, fx). 

This scheme of sentences is the standard logical form of AC.  

 Zermelo’s original form of the Axiom of Choice, AC1, can 

be expressed as a scheme of sentences within a third-order 

language L* extending L.  Accordingly we suppose L * to contain 

in addition predicate variables  X, Y, Z, ... predicate constants U, 

V, W, ..., second-order function variables F, G, H, ...and second-

order function constants F, G, H, ... . Predicate variables and 

constants are assigned power sorts of the form PA, where A is an 

individual sort, indicated by X:PA or U:PA.  In either case, for x:A 

or a:A, X(x), X(a), U(x) and X(a) are all well-formed statements.  
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Each function variable or constant is assigned a pair of sorts PA, 

B, indicated by F: PA → B or F: PA → B. In either case, for X:PA 

or U:PA, FX, FU, FX, FU are all terms of sort B. 

   The scheme of sentences 

AC1L X:PA [(X)  x:A X(x)]   

                                                       F:PA→A X:PA [(X) X(FX)] 

where (X) is any formula containing at most the free variable X 

is the direct counterpart of AC1 in L *. 

 Up to now we have tacitly assumed our background logic 

to be the usual classical logic. But the true depth of the connection 

between AC and logic emerges only when intuitionistic or 

constructive logic is brought into the picture. It is a remarkable fact 

that, assuming only the framework of intuitionistic logic together 

with certain mild further presuppositions, AC can be shown to 

yield the cardinal rule of classical logic, the Law of Excluded 

Middle (LEM)—the assertion that p  p for any proposition p. 

We shall first show that LEM can be derived, using the rules of 

intuitionistic logic, within L  from ACL conjoined with the 

following additional principles: 

 

• Binary Sort Principle There is a sort 2 and constants 0:2, 

1:2 subject to the axioms    0  1 and x:2[x = 0  x = 1] 

• Binary Quotient Principle. Call a formula (x:A, y:A) an 

equivalence relation on A if it satisfies the usual conditions of 

reflexivity, symmetry and transitivity.  The Binary Quotient 

Principle is the assertion that for any equivalence relation  

on 2 there is a sort 2/ and two constants 0, 1  of sort 2/ 

subject to the axioms (A) u:2/ [u = 0  u = 1 ]  and  (B)  

0 = 1   (0, 1). Thus 2/ represents the quotient of 2 by 

the equivalence relation . 
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 Now assume ACL and the two principles above. Given a 

sentence p, define the equivalence relation  on 2 by                  

(x,y)  (x = y  p). Note that then from Axiom (B) it follows that  

(*)                                       0 = 1   p. 

Let (u:2/, x:2) be the formula (u = 0  x = 0)  (u = 1  x = 1). 

From axiom (A) of the Binary Quotient Principle we infer      

u:2/ x:2 (u, x), so by ACL we can introduce a function symbol 

f: 2/ → 2 for which u:2/ (u, fu). It follows that (0, f(0))  

(1, f(1)), which is equivalent to the conjunction of the two 

formulas 

(a) f(0) = 0  [0 = 1  f(0) = 1] 

(b)  [0 = 1  f(1) = 0]  f(1) = 1 

From (*) it follows that (a) implies p  f(0) = 0 and (b)  implies      

p  f(1) = 1. Taking the conjunction of these and applying the 

distributive law gives  

(**)                                       p  [f(0) = 0  f(1) = 1]. 

Now from [f(0) = 0  f(1) = 1] (and 0  1) we deduce f(0)  f(1), 

so (**) gives 

(***)                                        p  f(0)  f(1). 

But p  0 = 1  f(0) = f(1), so that f(0)  f(1)  p. So it 

follows from (***) that  p  p, i.e. LEM. 

 Next, we show that LEM can be derived113, using the rules 

of intuitionistic logic, within L * from AC1L conjoined with the 

Binary Sort Principle and the following additional principles: 

 

• Predicative Comprehension Principle     

X:PA x:A[X(x)  (x)] , where  has at most the free 

variable x and contains no bound function or predicate 

variables 

 
113 The argument we giveis derived from Goodman and Myhill [1978]. 
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• Principle of Extensionality of Functions     

 F:PA→A X:A Y:A [X   Y  FX = FY], where X  Y is 

 an abbreviation for x:A[X(x)  Y(x)], that is, X and Y 

 are extensionally equivalent. 

  

Now let p be a sentence. By Predicative Comprehension and 

Binary Sort, we may introduce predicate constants U:P2, V:P2  

together with the assertions 

(1)            x:2[U(x)  (p  x = 0)]     x:2[V(x)  (p  x = 1)]   

Let (X:P2) be the formula X  U    X  V. Then clearly we may 

assert X:P2 x:2 [(X)  X(x)]  so AC1L may be invoked to 

assert F:P2→2 X[(X)  X(FX)). Now we can introduce a 

function constant K together with the assertion  

(2)                                       X[(X)  X(KX)].  

Since evidently we may assert (U) and (V), it follows from (2) 

that we may assert U(KU) and V(KV), whence also, using (1), 

                                         [p   KU = 0 ]   [p  KV = 1]. 

Using the distributive law, it follows that we may assert 

               p  [KU = 0   KV = 1]. 

From the presupposition that 0  1 it follows that  

(3)                                              p  KU  KV   

is assertable. But it follows from (1) that we may assert                    

p  U    V, and so also, using Extensionality of Functions,            

p  KU = KV. This yields the assertability of  KU  KV  p, 

which, together with (3) in turn yields the assertability of  

p  p, 

that is, LEM. 

 The fact that AC implies LEM seems at first sight to be at 

variance with the fact that AC taken as a valid principle in certain 
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systems of constructive mathematics governed by intuitionistic 

logic, e.g. Bishop’s Constructive Analysis114 and Martin-Löf’s 

Constructive Type Theory115, but in which at the same time LEM 

is not affirmed.  

Some light may be shed on the difficulty by observing that, 

in deriving LEM from ACL essential use was made of the Binary 

Quotient Principle and, in deriving LEM from ACL1 similar use 

was made of both the Principles of Predicative Comprehension 

and Extensionality of Functions. It follows that, in systems of 

constructive mathematics affirming AC but not LEM, 

Constructive Type Theory for instance116, the Binary Quotient 

Principle and either the Predicative Comprehension Principle or the 

Principle of Extensionality of Functions must fail.   

Several observations concerning these facts should be 

made. It is a basic tenet of Constructive Type Theory that, to be 

able to assert that an object a has a specified property , one must 

be in possession of a proof that such is the case. So, on a priori 

grounds, the Predicative Comprehension Principle is not justified 

in Constructive Type Theory because, in attempting to replace a 

property  by an extensionally equivalent predicate or set U, it 

cannot be guaranteed that whenever has U(a) one also has (a), 

since evidence for the first assertion does not necessarily produce 

a proof of the second. The Principle of Extensionality of Functions 

is not affirmable in Constructive Type Theory for essentially the 

same reason, namely that (using set-theoretic language) the value 

of a function defined on a (sub)set X depends not only on the 

variable member x of X but also on the proof that x is in fact in X. 

Thus suppose given sets A, B and a subset X = {x: (x)} of A. Write 

 
114 See Bishop and Bridges [1985]. 
115 AC is actually provable in Constructive Type Theory: See Chapter VII below.  
116 See Chapter VII below. 



THE AXIOM OF CHOICE 
 

 

 

 

106 

d   for “d is a proof of ”. Then since AC holds in Constructive 

Type Theory, from xA[(x)  yB(x, y)] we can infer the 

existence of a function f: {(x, p): p  (x)}  B for which           

xp[p  (x)  (x, f(x,p))]. Given all this, let us attempt to 

derive LEM from AC1L. Here A is P2, the power set of 2 

(supposing that to be present), (x) is x. x  X (X a variable of 

sort P2), B is 2 and (X, y) is y  X. Now, given a sentence p, 

define the subsets U and V as were U and V above. 

Constructively, the only proof of x. x  U available is to exhibit a 

member of U, and, since  is not known to be true, the sole 

exhibitable member of U is 0. Similarly, the only exhibitable 

member of V is 1. Writing a = f(U, 0) and b = f(V, 1), we derive the 

counterpart of (1) above as from Predicative Comprehension as 

before. But now while p  U = V, we cannot infer that                   

U = V  a = b, so blocking the derivation of p  a = b.  

 Another way of looking at this is to observe that functions 

on predicates are given intensionally, and satisfy just the 

corresponding Principle of Intensionality, which may be stated as 

X Y F[X = Y  FX = FY].  While this is essentially 

tautological, and so immune to failure, its extensional counterpart 

—the Principle of Extensionality—can easily be made to fail.  

Consider, for example, the predicates P: rational featherless biped 

and Q: human being and the function K on predicates which 

assigns to each predicate the number of words in its description. It 

is evident that P  Q but KP = 3 and KQ = 2.   

 As for the Binary Quotient Principle, one notes that in 

Constructive Type Theory the conditions for affirming an identity 

statement a = b are such as not to allow, as is permissible in set 

theory, automatic conversion of assertions of equivalence into 

assertions of identity of “equivalence classes”. This is the case 
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even for equivalence relations on two-element sets, so that the 

Binary Quotient Principle is inadmissible within Constructive 

Type Theory. 

 In intuitionistic set theory (that is, set theory based on 

intuitionistic rather than classical logic: see below) both the 

Principles of Predicative Comprehension and Extensionality of 

Functions hold117 and so there AC implies LEM118.  This means that 

adding AC to intuitionistic set theory “tips it over” into classical set 

theory. This is the true “logical significance”of AC, at least as 

regards set theory. 

 Now what about ZL? In Chapter VI, we shall show that ZL 

has no nonconstructive purely logical consequences, and so in 

particular, unlike AC, cannot imply LEM.  It follows that the 

derivation of AC from ZL in classical set theory cannot go 

through in intuitionistic set theory. Let us look into the matter119. 

 Typically, applications of ZL take the following form. 

Suppose, for example, one wishes to show that a function 

possessing a certain property P exists with domain a certain set A. 

To do this one proves first that the collection F  of functions with 

property P and and domain a subset of A is closed under unions 

of chains and then infers from ZL that F  has a maximal element 

m. Finally a "one-step extension"  argument is formulated so as to 

yield the conclusion that the domain of m is A itself. This "one-

step"  argument can be distilled into the extension principle for F, 

namely 

EP(F)            f  F x  Ag  F [ f  g  x  domain(g) ] . 

 
117 Here the predicate variables should be construed as variables ranging over sets. 
118 But in weak set theories lacking the axiom of extensionality the derivation of 
Excluded Middle from AC does not go through: some form of extensionality, or the 
existence of quotient sets for equivalence relations, needs to be assumed. See below. 
119 Bell [1995]. 
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Applying this to the maximal m immediately yields the desired 

conclusion A = domain(m).  

 Now consider the derivation of AC3 from ZL as indicated 

in Chapter II. A moment’s thought reveals that, in terms of the 

extension principle as just stated, the relevant collection of 

functions F is the set R# of subfunctions of a given relation R with 

domain A and codomain B, and the extended function g figuring 

in EP(F) is obtained from the given function f and the given 

element x  A by means of a classical definition by cases: 

           g = f  if x  domain(f),   g = f   <x, y   for some y  B such 

 that ,x y R   if  x domain(f).   

Moreover, if we write EP for the statement 

 R[R is a binary relation  EP(R#), 

then the implication ZL + EP  AC is, plainly, constructively 

valid. It follows that EP must itself be nonconstructive. And 

indeed we can show that EP implies LEM. 

 To prove this in intuitionistic set theory, let 2 = {0, 1} and, 

given any proposition p, define U = {x  2: x = 0  p},                      

V =  {x  2: x = 1  p} and R = ({U}  U)  ({V}  V). Then the 

function   f0  = {<U, 0>} is in R# and so EP yields a a function g in 

R# extending f0 such that domain(g) = {U, V}. Thus g(U) = 0 and     

g(V)  V, so that g(V) = 1  p.  But clearly p  V = U              

g(V) = g(U) = 0. Thus g(V) ≠ 0  ¬p, whence g(V) = 1  ¬p. From 

this and g(V) = 1  p we conclude that ¬p  p, i.e. LEM.  

 

 CHOICE PRINCIPLES IN INTUITIONISTIC SET THEORY 

As we have seen, in intuitionistic set theory LEM is derivable 

from AC. We are now going to show that each of a number of 

classically correct, but intuitionistically invalid logical principles, 
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including LEM for sentences, is, in intuitionistic set theory, 

equivalent to a suitably weakened version of AC.  Thus each of 

these logical principles may be viewed as a choice principle.                                                                                                                          

The system IST of intuitionistic set theory we shall work in 

is an intuitionistic theory formulated in the first-order language of 

set theory L introduced at the beginning of Chapter IV and based 

on the following axioms also stated there: Extensionality, 

Separation, Pairing, Union, and Power Set.  

Let us begin by fixing some notation. For each set A we write 

PA for the power set of A, and QX for the set of inhabited subsets 

of A, that is, of subsets X of A for which x (x  A). The set of 

functions from A to B is denoted by BA; the class of functions with 

domain A is denoted by Fun(A). The empty set is denoted by 0, {0} 

by 1, and {0, 1} by 2.  

We tabulate the following logical schemes120: 

LEM                    

SLEM                      ( any sentence) 

Lin    (  )  (  )    (,  any sentences) 

Stone                   ( any sentence) 

Ex  x[x(x)  (x)]    ((x) any formula with at most x 

  free) 

Un   x[(x)  x(x)]    ((x) any formula with at most x 

  free) 

Dis      x[  (x)]    x(x)      ( any sentence, (x) 

 any formula with at most x free) 

 
120 In addition to these logical schemes there is also the scheme—called by Lawvere and 
Rosebrugh [2003] the higher dual distributive law— 

 HDDL    x[(x)  (x)]  x(x)  x(x). 
It is not difficult to show that, over intuitionistic predicate logic, HDDL is equivalent to 
Dis.  



THE AXIOM OF CHOICE 
 

 

 

 

110 

Over intuitionistic logic, Lin, Stone and Ex are consequences of 

SLEM; and Un implies Dis. All of these schemes follow, of course, 

from LEM, the full Law of Excluded Middle. 

We formulate the following choice principles—here X is an 

arbitrary set and (x, y) an arbitrary formula of the language of 

IST with at most the free variables x, y: 

ACX  xX y (x,y)  fFun(X) xX (x,fx) 

X
*AC   fFun(X) [xX y (x,y)  xX (x,fx)] 

DACX  fFun(X) xX (x,fx)  xX  y (x,y) 

X

*DAC  fFun(X) [xX (x,fx)  xX  y (x,y)] 

 

The first two of these are forms of the Axiom of Choice for X; 

while classically equivalent, in IST AC*X  implies ACX, but not 

conversely. The principles DACX and 
X

*DAC  are dual forms of the 

Axiom of Choice for X: classically they are both equivalent to ACX  

and X
*AC , but in IST 

X

*DAC  implies DACX, and not conversely.  

 We also formulate what we shall call the weak extensional 

selection principle, in which (x) and (x) are any formulas with at 

most the variable x free: 

WESP        x2(x)  x2(x)  x2y2[(x)  (y)   

                                                                [x2(x)]  x = y]]. 

This principle asserts that, for any pair of instantiated properties 

of members of 2, instances may be assigned to the properties in a 

manner that depends just on their extensions. WESP is a 

straightforward consequence of ACQ2. For taking (u, y) to be        

y  u in ACQ2 yields the existence of a function f with domain Q2 

such that fu  u for every u  Q2. Given formulas (x), (x), and 

assuming the antecedent of WESP, the sets U = {x2: (x)} and    

V = {x2: (x)} are members of Q2, so that a = fU  U , and                 
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b = fV  V, whence (a) and (b). Also, if x2[(x)  (x)], then 

U = V, whence a = b; it follows then that the consequent of WESP 

holds.  

We are going to show that each of the logical principles 

tabulated above is  equivalent (over IST) to a choice principle. 

Starting at the top of the list, we have first: 

• WESP and SLEM are equivalent over IST. 

Proof.  Assume WESP. Let  be any sentence and define  

(x)    x = 0               (x)    x = 1     . 

With these instances of  and  the antecedent of WESP is clearly 

satisfied, so that there exist members a, b of 2 for which (1) (a)  

(b) and (2) x [[x2[(x)  (x)]  a = b. It follows from (1) 

that   (a = 0  b = 1), whence (3)   a  b. And since clearly        

    x2[(x)  (x)] we deduce from (2) that   a = b, 

whence a  b  . Putting this last together with (3) yields          

  , and SLEM follows.  

 For the converse, we argue informally. Suppose that SLEM 

holds. Assuming the antecedent of WESP, choose a  2 for which 

(a). Now (using SLEM) define an element b  2 as follows. If 

x2[(x)  (x)] holds, let b = a; if not, choose b so that (b). It is 

now easy to see that a and b satisfy (a)  (b)                  

[x2[(x)  (x)]   a = b]. WESP follows. ◼ 

Next, we observe that, while AC1 is (trivially) provable in IST, 

by contrast 

• 1
*AC and Ex are equivalent over IST. 

Proof.  Assuming 1
*AC , take (x,y)  (y) in its antecedent. This 

yields an f  Fun(1) for which y(y)  (f0), giving y[y(y)  

(y)], i.e., Ex. 

Conversely, define (y)  (0,y). Then, assuming Ex, there is b 

for which y(y)  (b), whence x1y(x,y)  x1(x,b). 
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Defining f  Fun(1) by f = {0,b} gives x1y(x,y)  

x1(x,fx), and 1
*AC follows.  ◼ 

 Further, while DAC1 is easily seen to be provable in IST, 

we have 

• 1
*DAC and Un are equivalent over IST. 

Proof.  Given , Define (x,y)  (y). Then, for f  Fun(1),  

x1(x,fx)  (f0) and x1y(x,y)  y(y). 1
*DAC then gives  

fFun(1)[(f0)  y(y)], 

from which Un follows easily. 

 Conversely, given , define (y)  (0,y). Then from Un we 

infer that there exists b for which (b)  y(y), i.e.                  

(0,b)  y(0,y). Defining f  Fun(1) by f = {0,b} then gives 

(0,f0)  x1y(x,y), whence x1(x,fx)  x1y(x,y), and 

Un follows.  ◼ 

 Next, while AC2 is easily proved in IST, by contrast we 

have 

• DAC2 and Dis are equivalent over IST. 

Proof.  The antecedent of DAC2 is equivalent to the assertion 

 

fFun(2)[(0, f0)  (1, f1)], 

 

which, in view of the natural correlation between members of  

Fun (2) and ordered pairs,  is equivalent to the assertion 

yy[(0, y)  (1, y)]. 

The consequent of DAC2 is equivalent to the assertion  

yY(0,y)  yY(1,y) 

So DAC2 itself is equivalent to 

yy[(0,y)  (1,y)]    y(0,y)  y(1,y). 
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But this is obviously equivalent to the scheme 

yy[(y)  (y)]    y(y)  y(y),         

where y does not occur free in , nor y in . And this last is easily 

seen to be equivalent to Dis.         ◼ 

Now consider 2
*DAC . This is quickly seen to be equivalent 

to the assertion 

zz[(0,z)  (1,z)   y(0,y)   y(1,y), 

i.e. to the assertion, for arbitrary (x), (x), that  

zz[(z)  (z)    y(y)   y(y)]. 

This is in turn equivalent to the assertion, for any sentence , 

(*)                                 y[  (y)       y(y)] .                                      

Now (*) obviously entails Un.  Conversely, given Un, there is b for 

which  (b) y(y). Hence   (b)    y(y), whence (*). So 

we have shown that 

• Over IST, 2
*DAC  is equivalent to Un, and hence also to 

1
*DAC . 

 In order to provide choice schemes equivalent to Lin and 

Stone we introduce  

X

*ac       f2X [xX y2 (x,y)  xX (x,fx)] 

X

*wac     f2X [xX y2 (x,y)  xX (x,fx)]  provided  IST 

x[(x,0)  (x,1)] 

Clearly 
X

*ac  is equivalent to  

f2X [xX[(x,0)  (x,1)]  xX (x,fx)] 

and similarly for 
X

*wac . 

Then 
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• Over IST, 1
*ac and 

1

*wac are equivalent, respectively, to Lin and 

Stone. 

Proof. Let  and  be sentences, and define (x,y)  x = 0       

[(y = 0  )  (y  =1  )]. Then   (0,0) and   (0,1), and so 

x1[(x,0)  (x,1)]  (0,0)  (0,1)    . Therefore   

f21 [x1[(x,0)  (x,1)]  

                                        x1 (x,fx)] 

                            f21[    (0,f0)] 

                            [    (0,0)]  [    (0,1)] 

                              [    ]  [    ] 

                              [        ]. 

This yields 1
*ac  Lin. For the converse, define   (0,0) and        

  (0,1) and reverse the argument.   

 To establish the second stated equivalence, notice that, 

when (x,y) is defined as above, but with  replaced by , it 

satisfies the provisions imposed in 
1

*wac . As above, that principle 

gives (  )  (  ), whence   . So Stone follows 

from 
1

*wac .  Conversely, suppose that  meets the condition 

imposed in 
1

*wac . Then from (0,0)  (0,1) we deduce 

(0,0)  (0,1); now, assuming Stone, we have             

(0,0)  (0,0), whence (0,0)  (0,1). Since (0,0)                

[(0,0)  (0,1)] and (0,1)  [(0,1)  (0,0)] we deduce                    

[(0,0)  (0,1)]  [(0,1)  (0,0)]. From the argument above it 

now follows that f21 [x1[(x,0)  (x,1)]  x1 (x,fx)]. 

Accordingly 
1

*wac is a consequence of Stone. 

 

 

 

 



THE AXIOM OF CHOICE 
 

 

 

 

115 

AC AND HILBERT’S  -CALCULUS 

Hilbert’s investigations into the foundations of mathematics in the 

1920s had led him to regard AC as an indispensable principle 

which he believed would prove useful in his defense of classical 

mathematics against the attacks of the intuitionists.121 In his 

foundational framework AC took the form of a postulate he called 

the logical -axiom.  

 To formulate his postulate, Hilbert introduced, for each 

formula (x)122, a term x which, intuitively, is intended to name 

an indeterminate object satisfying (x). Then Hilbert’s -axiom 

reads: 

()                                           (x)   (x). 

In any of the usual logical systems this is equivalent to  

(*)                                          x(x)   (x)123. 

Accordingly all that is known about x is that, if anything 

satisfies , it does124.  

 It can now be seen how AC emerges from all this. Since  

may contain free variables other than x, the identity of x 

depends, in general, on the values assigned to these variables. So 

x may be regarded as the result of having chosen, for each 

assignment of values to these other variables, a value of x so that 

(x) is satisfied. That is, x may be construed as a choice function, 

and the -axiom accordingly seen as a version of AC. 

 
121 It is therefore somewhat ironic that AC - at least in its “logical” form - is affirmable 
intuitionistically: see the following section and chapter.  
122 The formula  may have more than one free variable. 
123 It should be noted that in introducing -terms Hilbert’s principal purpose was to 
provide a concrete way of defining the existential quantifier (which he regarded as a 

“transfinite” notion).  Thus, in his system, x(x) was simply another way of writing 

(x). This is precisely the strategy adopted by Bourbaki in their Elements de 

Mathematique (except, as has already been observed, they use “” in place of “”). 
124 David Devidi has had the happy inspiration of calling x  “the thing most likely to be 

.”    
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 In general, an -calculus T is obtained by starting with a 

first-order theory T, augmenting its language L with epsilon 

terms, and adjoining to T as an axiom scheme the formulas (*). It 

is known that when T is any classical first-order theory, T  is 

conservative over T, that is, each assertion of L  demonstrable in T 

is also demonstrable in T: the move from T to T does not enlarge 

the body of demonstrable assertions in T125 . But for intuitionistic 

predicate logic the situation is decidedly otherwise.  

 In fact it can be shown that, if T is taken to be intuitionistic 

predicate calculus IPC, then a number of assertions 

undemonstrable within I, for instance Ex and Lin above, become 

provable within IPC . On the other hand, SLEM is not derivable 

in IPC126. This is related to the fact (remarked on above) that in 

deriving LEM from AC one requires the Principle of 

Extensionality for Functions. The analogous principle within the 

-calculus is the Principle of Extensionality for -terms: 

Ext                            x[(x)  (x)]  x = x. 

 An argument similar to the derivation of LEM from AC 

given above yields SLEM from Ext within (a very weak extension 

of) I . In brief, the argument runs as follows. We augment IPC by 

Ext and the sentence 0  1, and argue informally within the 

resulting theory127. Thus let  be any sentence and let (x), (x) be 

the formulas (x = 0)  ,  (x = 1)   respectively. Then clearly x 

and x, whence (x) and (x). This means that (x = 0)    

and  (x = 1)  , whence (x = 0   x = 1)     from which it 

follows that (*)  x  x  .  But clearly   x[(x)  (x)], so 

 
125 This is the second -theorem of Hilbert-Bernays. See, e.g. Kneebone [1963] or Leisenring 
[1969 ]. 
126 Bell [1993]. 
127 In some of the arguments below we shall employ this augmented theory without 
comment. 
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we deduce from (Ext) that   x = x. Therefore x  x  

 and it now follows from (*) that   . This gives SLEM. 

 The use of Ext  can be avoided in deriving SLEM in IPC if 

one takes (*) in the (classically equivalent) form      

(**)                                   (x)  x(x). 

This may be read: “either x satisfies  or nothing does”. From 

this we can intuitionistically derive SLEM as follows: 

 Given a sentence , define (x) to be the formula 

(x = 0  )  (x = 1  ). 

Then from (**) we get  

[(x = 0  )  ([(x = 1  )]  x[(x = 0  )  (x = 1  )],  

which implies 

[  )  [x(x = 0  )  x(x = 1  )],  

whence 

[  )  [   ], 

winding up with    . 

The use of Ext can be also avoided in deriving SLEM in IPC 

if one employs relative -terms, that is, allows  to act on pairs of 

formulas, each with a single free variable. Here, for each pair of 

formulas (x), (x) we introduce the “relativized” -term x/ 

and the “relativized” -axioms  

() x (x)  (x/)                 () x [(x)  (x)]  (x/) 

That is, x/  may be thought of as an individual that satisfies  

if anything does, and which in addition satisfies  if anything 

satisfies both  and . Notice that the usual −term x is then   

x/(x = x). In the classical -calculus x/ may be defined by 

taking  

       x/   =  y[[y = x(  )  x (  )   y = x   x (  ) 
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But the relativized -axioms are not derivable in IPC since they 

can be shown to imply SLEM. To see this, given a sentence 

 define  

(x)    x = 1         (x)   x = 0      

Write a for x/ hen we certainly have x(x), so (1) gives (a), 

i.e. 

(3)                                      a = 0   

lso x (  )   so (2) gives   (a), i.e. 

  a =  

whence 

a  1   

so that 

a = 0  . 

And the conjunction of this with (3) gives   , as claimed. 

 The relationship between the -operator and set theory may 

be briefly described as follows. If one takes a classical system of 

set theory such as ZF, augments the language with -terms and 

simply adds the scheme (*) to the axioms of ZF, then one obtains 

a theory ZF which is conservative over ZF. On the other hand, if 

-terms are permitted to appear in the Axiom Schemes of Separation 

and Replacement, then a theory ZF* is obtained in which AC is 

derivable. For under these conditions we have, for any formula 

(x,y), 

(*)     xX y (x,y)  xX (x, y(x,y))  .                                       

Let t  Fun(X) be the map x  y(x,y): the Axiom of Replacement 

applied to the term y(x,y) guarantees that t is a function on X. 

Then, from (*) 

xX y (x,y)  xX (x, tx) ,  

so that            

fFun (X) [xX y (x,y)  xX (x, fx)], 
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i.e. *
X

AC . 

 In the case of intuitionistic Zermelo-Fraenkel set theory 

IZF128, the situation differs somewhat from its classical analogue. 

To begin with, augmenting the language with -terms and simply 

adding the scheme (*) to the axioms of IZF without allowing -

terms to appear in the Axiom Schemes of Separation or 

Replacement, yields a theory IZF which is not conservative over 

IZF, since, as we have seen, in any similarly augmented 

intuitionistic theory, one can prove such formerly underivable 

logical “choice” principles as Ex. On the other hand, just as in the 

classical case, the move fails to produce AC. The analogy with the 

classical case is strengthened when one considers what happens 

when -terms are allowed to appear in the Axiom Schemes of 

Separation and Replacement, generating the corresponding theory 

IZF*. In IZF*, using precisely the same argument as above, AC 

becomes derivable, and so therefore LEM. But IZF augmented by 

LEM is just classical ZF.  So, as with AC, the “logical” effect of 

adding the -axiom (in the appropriate way) to IZF is to transform 

it into its classical analogue. 

 Finally, we point out that the -operator was not in fact the 

first device introduced by Hilbert to justify the use of classical 

reasoning in mathematics. For in 1923 he introduced what 

amounts to a dual form of the -operator, the -operator, which 

was governed by a principle he called the Transfinite Axiom129  

Trans                                   (x)  (x). 

In any of the usual logical systems this is equivalent to  

(*)                                         (x)  x(x). 

 
128 This is the intuitionistic theory whose axioms are those of ZF, but in which the 
Axiom of Regularity (which, as it happens, implies LEM) has been replaced by the 

principle of -induction. 
129 See section 4.8 of Moore [1982].  
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Accordingly all that is known about x  is that, if it satisfies , 

anything does130.  

 It is an easy matter to derive Un above from the -scheme 

when  is merely allowed to act on formulas with at most one free 

variable. When ’s action is extended to formulas with two free 

variables, the -scheme applied in IST yields the full dual axiom 

of choice X 
X

*DAC . For under these conditions we have, for any 

formula (x,y), 

(*)                      xX[(x,y(x,y))  y(x,y)]                                

Let t  Fun(X) be the map x  y(x,y). Assuming that 

fYXxX(x, fx), let a  X satisfy (a,ta). We deduce from (*) 

that yY(a,y), whence xXyY(x, y). The dual axiom of 

choice follows. 

 Accordingly the -operator bears the same relationship to 

the Dual Axiom of Choice as does the -operator to the Axiom of 

Choice itself. 

 

AC AND THE LAW OF EXCLUDED MIDDLE IN WEAK INTUITIONISTIC SET 

THEORIES 

As mentioned in the Introduction, a new twist has arisen in the 

story of AC as the result of certain new developments in systems 

of constructive mathematics, in particular Constructive Type 

Theory.131 This twist can be most easily described by considering 

the principle we have labelled AC3, viz.,  

  for any relation R between sets A, B,  

xAyB R(x,y)  f: A → B xA R(x, fx). 

 
130 To enlarge on Devidi’s suggestion, x  is “the thing least likely to be ”.    
131 We defer until Chapter VII formal discussion of Constructive Type Theory and the 
role of AC therein. 



THE AXIOM OF CHOICE 
 

 

 

 

121 

Now under the strictly constructive interpretation of quantifiers 

implicit in intuitionistic mathematics, and later given explicit form 

in Constructive Type Theory, the assertability of an alternation of 

quantifiers xyR(x,y) means precisely that one is given a function 

f for which R(x,fx) holds for all x. In the words of Bishop [1967], a 

choice function exists in constructive mathematics because a choice is 

implied by the very meaning of existence. Thus, for example, the 

antecedent xAyB R(x, y) of AC3, given a constructive 

construal, just means that we have a procedure which, applied to 

each x  A, yields a y  B  for which R(x, y). But this is precisely 

what is expressed by the consequent f: A → B xA R(x, fx)of 

AC3. 

 It follows that AC3 is actually derivable in such constructive 

settings. On the other hand this is decidedly not the case for LEM. 

This incongruity has been the subject of a number of recent 

investigations132. What has emerged is that for the derivation of 

LEM from AC to go through it is sufficient that sets (in particular 

power sets), or functions, have a degree of extensionality which is, 

so to speak, built into the usual set theories but is incompatible 

with Constructive Type Theory. Another condition, independent 

of extensionality, ensuring that the derivation goes through is that 

any equivalence relation determines a quotient set . LEM can also 

be shown to follow from a suitably extensionalized version of AC. 

The arguments establishing these intriguing results were 

origuinally formulated within Constructive Type Theory. In this 

section we shall derive analogous results within a comparatively 

straightforward set-theoretic framework133. The core principles of 

 
132 See for example Maietti [1999], Maietti and Valentini [1999], Martin-Löf [2006], and 
Valentini [2002].     
133 Bell [2008]. 



THE AXIOM OF CHOICE 
 

 

 

 

122 

this framework form a theory – weak set theory WST – which is 

based on intuitionistic logic, lacks the axiom of extensionality134, 

and supports only minimal set-theoretic constructions135. WST is, 

like Constructive Type Theory, too weak to allow the derivation 

of LEM from AC. But we shall see that, as with Constructive Type 

Theory, beefing up WST with extensionality principles or 

quotient sets enables the derivation to be carried out. 

 Let L<,> be the first-order language L of (intuitionistic) set 

theory augmented with a binary operation symbol  ,    permitting 

the formation of ordered pairs. At certain points various 

additional predicates and operation symbols will be introduced 

into L<,>. The restricted quantifiers xa and xa are defined as 

usual, that is, as  (  ...)x x a   and (  ...)x x a  →  respectively. A 

formula is restricted if it contains only restricted quantifiers. 

 Weak set theory WST is the theory in L<,> with the following 

basic axioms (in which the free variables are understood to be 

universally quantified, and similarly below): 

Unordered Pair              [ ]u x x u x a x b    =  =  

Ordered Pair                  , ,a b c d a c b d  =    =  =  

Binary Union                 [ ]u x x u x a x b        

Cartesian Product          [  ( , )]u x x u y a z b x y z        =    

Restricted Separation   [ ( )]u x x u x a x        

where in this last axiom  is any restricted formula with at most 

the variable x free. 

 Rudimentary set theory RST is obtained from WST by 

confining Restricted Separation to atomic and negated atomic 

formulas. 

 
134 Set theories (with classical logic) lacking the Axiom of Extensionality seem first to 
have been extensively studied in Gandy [1956, 1959], Scott [1966]. 
135 WST may be considered a fragment both of (intuitionistic) 0-Zermelo set theory and 
Aczel’s constructive set theory (Aczel and Rathjen 2001).  
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 We introduce into L<,> new predicates and operation 

symbols as indicated below and adjoin to WST by the following 

“definitional” axioms: 

 
                   =

        =  = =    

       

      

  =

[ ]      [ ]   ( ) [ ]

         { , }      { } { , }     ,

( , ) [ ]

{ : ( )} ( )      

0     1 {0}

a b x x a x b a b x x a x b Ext a x a y a x y x y

x a b x a x b x a b x a x b a a a x r y x y r

detach b a b a x a x b x b

y x a x y a y

x =

       =    +      =    =  

→               =

   → →   

→  →  →   

    2 {0,1}

( , )   [ ,0 ,1 ]

:     (   ) [(     ) ]

( ) ( : )      :   ( )

: : : [( )( )

x a b u a v b x u v x a b u a v b x u x v

f a b f a b x a y b x f y x y z x f y x f z y z

Fun f a b f a b f a b x a x f f x

f a b g b c g f a c x a g f x =

 →      =

 + →        =       =

 + →       =       =

            

1 1 1

2 2 2

( ( ))]

:    : [ ( )]

: [ ( ,0 ) ] [ ( ,1 ) ]

: 2 [ ( ,0 ) 0] [ ( ,1 ) 1]

( , ) (   ) (     )

                     

g f x

f a b f a b y b x a y f x

a b a b x a x x y b y y

a b x a x y b y

Eq s a s a a x a x s x x a y a x s y y s x

       

       

        

          

                                             [(     )   ]

( , ) [(     )   ]

( ) [(     )   ]

( , ) ( ) [   (    

x a y a z a x s y y s z x s z

Comp r s x x y x s x x r y x r y

Comp r x x y x x x r y x r y

Extn f s Fun f x x x s x y y x f y   =

               =

  ) ( ) ( )]

( ) ( ) [   (      ) ( ) ( )]

x f y f x f x

Ex f Fun f x x x x y y x f y x f y f x f x

  

 Most of these definitions are standard. The functions 

1
 and

2
 are projections of ordered pairs onto their 1st and 2nd 

coordinates respectively: clearly, for u, v  a + b we have  

(proj)                     1 1 2 2[ ( ) ( ) ( ) ( )].u v u v u v=   =    =   

The relation  is that of extensional equality. Ext(a) expresses the 

extensionality of the members of the set a. Eq(s,a) asserts that s is an 

equivalence relation on a. If r is a relation between a and b, and s 

an relation on a, Comp(r,s) expresses the compatibility of r with s, 

and Comp(r) the compatibility of r with extensional equality. If       

f: a → b, and s is an equivalence relation on a, Etxn(f,s) expresses 
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the idea that f treats the relation s as if it were the identity relation: 

we shall then say that f is s-extensional. Ex(f) asserts that f is 

extensional in the sense of treating extensional equality as if it were 

identity. Finally Detach(b, a) says that b is a detachable subset of a, 

in other words, that b has a genuine complement in a.  

 We formulate the following axioms additional to those of 

WST: 

Extensionality            =a b a b  

Detachability            ( , )b a detach b a   

This is essentially Excluded Middle for formulas of the form x  b. 

Extpow(1)                  [ ( 1) ( )u x x u x Ext u        

This asserts that 1 has an extensional power set. In WST + 

Extpow(1), we introduce the new term  and adjoin the 

“definitional” axiom  

()                               ( 1) ( )x x x Ext       . 

 Our next axiom is  

Extdoub(2)                 2 2 ({ , })a b Ext a b     

This asserts that all doubletons composed of subsets of 2 are 

extensional.  

 Next, three versions of the Axiom of Choice: 

Axiom of Choice AC136                                           

(   ) : (   ( ))r a b x a y b x r y f a b x a x r f x         →    

Universal Extensional Axiom of Choice UEAC   

         

 →   

( , ) ( , ) (   )  

                         : [ ( , ) (   ( ))]

Eq s a r a b Comp r s x a y b x r y

f a b Extn f s x a x r f x
 

 
136 This is essentially what in Chapter 1 we called AC3. For simplicity we drop the “3” 
here. 
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Extensional Axiom of Choice EAC   

        

 →   

( ) (   )

                          : [ ( ) (   ( ))]

r a b Comp r x a y b x r y

f a b Ex f x a x r f x
 

AC asserts, as usual, that a choice function always exists under 

the appropriate conditions on a given relation r. UEAC further 

asserts that, in the presence of an equivalence relation s with 

which r is compatible, the choice function can be taken to be s-

extensional. AC can be seen to be the special case of UEAC in 

which s is taken to be the identity relation: for this reason AC is 

sometimes known as the Intensional Axiom of Choice. Finally EAC 

is the special case of UEAC in which the equivalence relation is 

that of extensional equality.   

 Our next axiom is 

Quotients   

        = ( , ) [ : [ ( ) ( )   ]]Eq s a u f f a u x a y a f x f y x s y  

This axiom asserts that each equivalence relation determines a 

quotient set. In WST + Quotients, we introduce operation 

symbols ,  [ ]•  and adjoin the “definitional” axiom  

(Q)                           

         =

     = 

( , ) [ ([ ] / ) ( [ ] )

                                            [[ ] [ ]   ]]

s s

s s

aEq s a x a x a s u x a u x
s

x a y a x y x s y

Here a
s

 is the quotient of a by s and, for x  a, [x]s is the image of x 

in  a/s. 

 Reminding the reader that our background logic is 

intuitionistic, we finally introduce the following logical schemes: 

Restricted Excluded Middle for Sentences REMS 

                  for any restricted sentence  

Restricted Excluded Middle REM 

                     [ ( ) ( )]x a x x       for any restricted formula  with  

                                                            at most the variable x free 
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 Now let WSTC = WST + AC,  WSTEC = WST + EAC,  

RSTC = RST + AC , and WSTQ = WST + Quotients. We are 

going to prove the following: 

 Theorem 1137. REMS is derivable in (a) WSTC + Extpow(1),  

(b) WSTC + Extdoub(2), and (c) WSTEC. 

 Theorem 2. (i) Detachability is derivable in RSTC + 

Quotients. (ii) REM is derivable in WSTC + Quotients 

 Theorem 3. AC  UEAC is derivable in WSTQ. 

 Thus, while in the absence of extensional power sets and 

extensional doubletons, the Intensional Axiom of Choice does not 

yield Excluded Middle, it does so in the presence of either of the 

former. Moreover, the Extensional Axiom of Choice always entails 

the Excluded Middle. And finally, when quotients are present the 

Intensional Axiom of Choice is no weaker than its Universal 

Extensional version. 

 Proof of Theorem 1. 

 (a) We argue in WSTC + Extpow(1). Recalling () above, 

we define138                                                                    

                          { , : 0 }a u v u v=          

Then clearly   

                 , 2[( 0 0 ) ( 1 0 )].u v a x x u x v      =    =    

So AC gives f: a →2 such that , for ,u v a    

 (1)                                       ( , ) 0 0f u v u  = →   

 

(2)                                       ( , ) 1 0f u v v  =   . 

Also, for ,u v a   , we have 

 
137 Theorems 1 and 2 may be seen as precise versions of the derivations of AC from the 
various principles introduced at the beginning of this chapter. 
138 Here the expression on the right hand side is an abbreviation for 

1 1
{ : 0 ( ) ( )}z z z        . Similar abbreviations will be used in the sequel. 
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(3)                                     ( , ) 0 ( , ) 1.f u v f u v  =    =  

 Now for arbitrary u   we have ,{0}u a   and {0},u a   . 

Substituting {0} for u in (3) and using (1) gives 

                                            0 ( ,{0} ) 1.u f u    =  

Similarly, substituting u for v and {0} for u in (3) and using (2) 

gives 

                                             ( {0}, ) 0 0f u u  =   . 

Conjoining these last two assertions and applying the distributive 

law yields 

(4)                           0 [ ( {0}, ) 0 ( ,{0} ) 1].u f u f u    =    =  

Writing (u) for the second disjunct in (4), the latter then becomes 

(5)                                           0  u  (u). 

From u   we deduce 

                                           0 {0}u u   , 

and so, since (again recalling () above) Ext(),  

                                            0  u  u = {0}. 

Hence  

                                   

    =  

 

 =

[0 ( )] [ {0} ( )]

                   ({0})

                   0 1.

u u u u

 

Since clearly 0  1, we conclude that 

                                                ( ) 0u u     

and (5) then yields 

(6)                                           0 0 .u u     

 This holds for arbitrary u  . So, given a restricted sentence , 

define s = {x  {0}: }. Then s   and  0  s  .   It now follows 

from (6) that    , as required. 

 (b)   We argue in WSTC +Extdoub(2). Given a restricted 

sentence , define 

                    =  =   =  =   .{ 2: 0 },  { 2: 1 }a x x b x x  
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Then a  2 and b  2 and Extdoub(2) gives Ext{a, b}. Since 0  a  

and 1  b, we have 

                                   ,{ , } 2.x a b y y x  

and so AC applied to the relation  

    r =    { , { , } 2: }x y a b y x ) 

yields a function f: {a, b} → 2 for which    .{ , }. ( )x a b f x x  It 

follows that    ,( ) ( )f a a f b b so that  

                                      =    =   .[ ( ) 0 ] [ ( ) 1 ]f a f b  

Applying the distributive law, we then get                           

                                            =  = .[ ( ) 0 ( ) 1]f a f b  

whence 

(1)                                            .( ) ( )f a f b  

Now clearly   a b , and from this and Ext({a,b}) we deduce 

  =a b , whence  

(2)                                          = . ( ) ( )f a f b  

It follows that   ,( ) ( )f a f b and we conclude from (1) 

that    ,as required. 

 (c)  Here the argument in WSTEC is the same as that given 

in (b) except that in deriving (2) above we invoke EAC in place of 

Extdoub(2). To justify this step it suffices to show that Comp(r), 

where r is the relation defined in the proof of (b). This, however, is 

clear.    

Proof of Theorem 2. 139  

 
139 The proof of Theorem 2 is an adaptation to a set-theoretical context of the argument 

in Diaconescu [1975] that, in a topos satisfying AC, all subobjects are complemented. By 
weakening Quotients to the assertion Quotients(1 + 1) that quotient sets are determined 
just by equivalence relations on the set 1 + 1, the proof of Theorem 2 shows that REM is 
derivable in the theory WSTC + Quotients(1 + 1). 
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 (i) Let us call an indicator for a subset b of a any function     

g: a  2 → 2 satisfying  

[ ( ,0 ) ( ,1 )]x a x b g x g x      =   . 

It is easy to show that a subset is detachable if and only if it has an 

indicator. For if b  a is detachable, then g: a  2 → 2 defined by  

                           
( ,0 ) ( ,1 ) 0     if 

( ,0 ) 0 ( ,1 ) 1     if 

g x g x x b

g x g x x b

  =   = 

  =    = 
 

is an indicator for b. Conversely, for any function g: a  2 → 2, we 

have ( ,0 ) ( ,1 ) ( ,0 ) ( ,1 )g x g x g x g x  =         , so if g is an indicator for 

b, we infer [ ],x a x b x b     and u is detachable.  

 Now we show in RSTC + Quotients that every subset of a 

set has an indicator, and is accordingly detachable. For b  a, let s 

be the binary relation on  a + a given by: 

=            

          

{ ,0 , ,0 : } { ,1 , ,1 : }

                                 { ,0 , ,1 : } { ,1 , ,0 : }.

s x x x a x x x a

x x x b x x x b  

It is easily checked that Eq(s, a + a). Also, it is clear that, for            

z, z’ a + a, 

(1)                                     1 1z  z ( ) ( )s z z   =        

and, for x  a, 

(2)                                     ,0   ,1 . x b x s x       

 Invoking axiom (Q) above, we introduce the quotient 

( )a a
s

+ of a + a by s and the image [u]s of an element u of a + a in 

( )a a
s

+ for which we then have 

(3)                           
( )

( [ ] )s
a a

z u a a z u
s

+
    + =  

and  

(4)                    +   + =[[ ] [ ]   ].s su a a v a a u v u s v                                                                                                    

Applying AC to (3) yields a function 
( )

:
a a

f a a
s

+
→ +

 
for 

which 
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(5)                             ( )
[ ( )] )s

a a
z z f z

s
+

  = . 

Clearly f is one-one, that is, we have 

(6)                                f(z) = f(z’)  z = z’. 

 Next, observe that, for i = 0, 1, and x  a,  

(7)                                 =1 ))( ([ , ] .sf x i x  

For from (5) we have [ , ] [ ([ , ] )]s s sx i f x i  =   , whence by (4) 

,   ([ , ] )sx i s f x i    . Hence by (1)  1 1, ) ( ([ , ] ))( sx i f x i   =    . (7) now 

follows from this and the fact that 1 , )( x i x   = . 

 We have also 

(8)                              ([ ,0 ] ([ ,1 ] ))s sx b f x f x     = . 

For we have 

                   ,0   ,1  x b x s x           using (2) 

                                             [ ,0 ] [ ,1 ]s sx x    =   using (4) 

                                             ([ ,0 ] ([ ,1 ] ))s sf x f x    =   using (6). 

 Now define g: a  2 → 2 by  

2, ) ( ([ , ] ))( sx i f x ig   =    . 

We claim that g is an indicator for b. This can be seen from the 

following equivalences:      

                                     ([ ,0 ] ([ ,1 ] ))s sx b f x f x     =    (by (8))                                          

               
      

      

=

=

1 1

2 2

 ([ ,0 ] ( ([ ,1 ] ))

 ([ ,0 ] ( ([ ,1 ] ))

( ))

( ))

s s

s s

f x f x

f x f x
  

(by (proj)) 

                                             2 2 ([ ,0 ] ( ([ ,1 ] ))( ))s sf x f x      =    

      (using (7))    

                                                ,0 ) ,1 )( (x xg g  =   . 

 So we have shown that RSTC + Quotients every subset of 

a set has an indicator, and is accordingly detachable. This proves 

(i). 
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 (ii) By (i), Detachability is derivable in WSTC + Quotients. 

This fact easily yields REM in WSTC + Quotients. Indeed, given 

restricted (x), then for any a, the set b = {x  a: (x)} is a 

detachable subset of a, from which  

[ ( ) ( )]x a x x     immediately follows.    

 Proof of Theorem 3. It suffices to derive UEAC from AC in 

WST + Quotients.  Assuming  Eq(s, a), we use AC as in the proof 

of Theorem 2 to obtain a function :ap a
s

→ such that [ ( )]su p u=  

for all .au
s

  From this we deduce [ ] [ ([ ] )]s s sx p x= , whence 

 (1)                                           ([ ] )sx s p x        

for all x  a. 

 Assuming the antecedent of UEAC , viz., 

( , ) ( , ) (   )Eq s a r a b Comp r s x a y b x r y         , 

define the relation ar b
s

    by  

u  r’ y    p(u)  r   y  . 

 Now use AC to obtain a function :ag b
s

→  for which 

(   ( ))au u r g u
s

  , i.e.  

(2)                                   ( ( )  ( ))au p u r g u
s

  .  

Define f: a → b by  

f(x) = g([x]s). 

Then by (2) 

                                         ( ([ ] )  ([ ] ))s sx a p x r g x  . 

From this, (1) and Comp(r, s) it follows that  (   ([ ] ))sx a x r g x  , i.e. 

(3)                                           (   ( ))x a x r f x  . 

Moreover, for all x, x’  a, we have 

                 x s x’  [x]s = [x’]s  f(x) = g([x]s) = g([x’]s) = f(x’), 
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whence Extn(f, s). This, together with (3), establishes the 

consequent of UEAC.   

 We also observe that Quotients can be derived within WST 

augmented by the full extensional power set axiom 

Extpow             [ ( ) [ ]]u Ext u x x u x a       

So adding extensional power sets to WSTC yields REM140. 

 Now recall AC5:  unique representatives can be picked from the 

equivalence classes of any given equivalence relation. We formulate 

this as 

AC5 
  →    

     =

( , ) [ : ( ( ))

                    [ ( ) ( )]].

Eq s a f f a a x a xsf x

x a y a xsy f x f y
 

 Obviously, in WST, Rep implies Quotients. Moreover, the proof 

of Theorem 2 is easily adapted to show that, in WST, AC5 yields 

REM. In WST, AC + Quotients entails Rep, and, in WST + Pow, 

conversely.  

 Finally, what about Zermelo’s original formulations of the 

Axiom of Choice AC1 and CAC? The first of these takes the form       

AC1  [ ( )] :  ( ( ) )].x a x b y y x f a b x a f x x        →     

This is readily derivable from AC in WST. If one adds to WST the 

nonextensional Power Set Axiom, viz. 

 Pow                   [ ]u x x u x a     , 

then AC becomes derivable from AC1. Note that while Extpow 

entails REM, Pow is logically “harmless”, that is, it has no 

nonconstructive logical consequences such as LEM. 

 The extensional version of AC1, viz. 

EAC1         
      

 →    

[ ( )]

                        : [ ( ) ( ( ) )].

x a x b y y x

f a b Ex f x a f x x
 

 
140 cf. Maietti and Valentini [1999]. 
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is derivable in WST from EAC.  In WST + Pow, EAC and EAC1 

are equivalent. 

 Only an extremely weak form of EAC1, the Extensional 

Axiom of Choice for 2-Doubletons, is needed to derive REMS in 

WST, namely 

EACD     
2 2[ ( ) ( )

                        ( :{ , } 2)[ ( ) ( ) ( ) ]]

a b x x a x x b

f a b Ex f f a a f b b

         

 →    
 

The argument is similar to that given for Theorem 1(b). Thus 

given a restricted sentence , define 

{ 2 : 0 },   { 2 : 1 }.a x x b x x=  =   =  =    

Then 0  a  1  b, so EACD gives an extensional function             

f: { , } 2a b → such that ( ) ( ) ,f a a f b b     from which we infer 

[ ( ) 0 ] [ ( ) 1 ].f a f b=    =    Applying the distributive law, we 

then get    =  =[ ( ) 0 ( ) 1],f a f b whence 

(*)                                          ( ) ( ).f a f b    

Now clearly a b   , and from this and the extensionality of f 

Ext({a,b}) we deduce   =( ) ( )f a f b , whence ( ) ( ).f a f b  =  It 

follows that ( ) ( ) ,f a f b   and we conclude from (*) that 

   , as required. 

 The second, “combinatorial” form of the Axiom of Choice 

introduced by Zermelo here takes two forms, the second of which 

is the extensional version. 

CAC      
              = 

      

[ ( ) [ ( ) ]]

                                         ! ( )

x a y y x x a y a z z x z y x y

u x a y y x y u  

 

ECAC    
               

      

[ ( ) [ ( ) ]]

                                   ! ( )

x a y y x x a y a z z x z y x y

u x a y y x y u             

Clearly ECAC implies CAC; the former is readily derivable from 

EAC and the latter from AC. Since REMS is not a consequence of 
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AC, it cannot, a fortiori, be a consequence of CAC. But, like EAC, 

ECAC can be shown to yield REMS. We sketch the argument, 

which is similar to the proof of Thm. 1(b). 

 Given a restricted sentence , define  

{ 2 : 0 },   { 2 : 1 }b x x c x x=  =   =  =    

and a = {b, c}. A straightforward argument shows that a satisfies 

the antecedent of ECAC. So, if this last is assumed, its consequent 

yields a u with exactly one element in common with b and with c. 

Writing d and e for these elements, one easily shows that 

(*)                                               .  d e  

Now since it is also easily shown that   d = e, it follows that 

  d e , and this,  together with (*) yields   .  

* 

 Within full intuitionistic set theory AC implies LEM and so 

retains the complete range of its classical consequences. As we 

shall see in Chapter VI, however, ZL is logically “neutral” in 

having no nonconstructive consequences within intuitionistic set 

theory and is also mathematically very weak there. Moving to 

system WST, that is, eliminating the Axiom of Extensionality, 

amounts, as it were, to levelling the playing field and rendering 

AC and ZL equally “impotent”.  

 

SOME WEAK FORMS OF AC AND THEIR LOGICAL CONSEQUENCES 

 

Let us term a weak form of AC any of its inequivalent 

consequences in classical ZF, and a very weak form of AC a weak 

form which is provable in ZF.   We have seen that, in intuitionistic 

set theory, some very weak forms of AC —for instance the 

assertion that each 2-doubleton has a choice function—imply 
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LEM. We shall show141 that there are a number of weak, but not at 

the same time very weak, forms of AC which also imply LEM as 

well as other nonconstructive logical rules. These will come from 

the theory of posets, and from the theory of distributive lattices 

and Boolean algebras. 

 Before we begin our investigations, we need to introduce 

some more ideas from intuitionistic set theory. In intuitionistic set 

theory the power set PX of any set X is a Heyting algebra under 

the usual set-theoretic operations:  (union),  (intersection) and 

C (complement). In particular, writing 1 for the one-element set 

{0}, P1 is a Heyting algebra (see below for a definition) which we 

shall denote by .  Each proposition  of intuitionistic set theory 

is naturally correlated with the element  ~ = {x  1: } of , and 

each element  of  with the proposition 1  . The 

correspondence  ~  has the property that ~ ~ =   iff  and  

are equivalent. We shall follow the usual practice and identify ~  

with ; in that case the top element 1 of  is identified with the 

identically true proposition true and the bottom element  of  

with the identically false proposition false. These identifications 

explain why it is customary to call  the algebra of propositions.  

In Chapter III we derived from ZL (nonconstructively) the 

order extension principle to the effect that every partial ordering on 

a set can be extended to a total ordering. We will show that, in 

intuitionistic set theory, this principle implies the law Lin 

introduced in Chapter V, namely        for any 

propositions , . 

To prove this, we first observe that if U, V   1, then  

(*)                                       (U = 1  V = 1)  U  V.  

 
141 Bell [1999]. 
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Now suppose that  is a partial order on  extending . Then     

U  1 for all U  1. Now  

U  V  U = 1  1  V  V = 1, 

whence, using (*), 

U  V  (U = 1  V = 1) U  V. 

We conclude that  and  coincide. Accordingly, if  could be 

extended to a total order on ,  would have to be a total order 

on  itself. But this is clearly tantamount to the tassertability of 

Lin. 

 Next, we require some concepts from the theory of 

distributive lattices and Boolean algebras. By a distributive lattice 

we shall understand such a lattice (L, L ,L, L, 0B, 1B) (again, we 

shall usually omit the subscript "L") with top and bottom elements 

0L, 1L. Homomorphisms between distributive lattices in this sense 

will always be presumed to preserve 0 and 1. A distributive lattice 

L is a Heyting algebra if for each pair a, b of elements of L there is 

an element of L, which we denote by a  b, such that, for all x  L,      

x  a  b iff x  a   b. We write a  b for (a  b)  (b  a) and a* 

for  a  0. Clearly a  b = 1 iff a = b.  and  are called the 

implication and equivalence operations, respectively, on H.  

 We also employ the standard notation and terminology for 

Boolean algebras. If  (B, B ,B,  *B, B, 0B, 1B) is a Boolean algebra 

(we shall usually omit the subscript "B"), we write  a  b for a*  b 

and a  b for  (a  b)  (b  a). Notice that then, for all x  B,         

x  a  b iff x  a   b, so that B is also a Heyting algebra.  We 

write 2 for the initial (two element) Boolean algebra {0,1} and 1 for 

the trivial (one element) Boolean algebra: this is, up to 

isomorphism, the unique Boolean algebra B in which 0B = 1B. We 



THE AXIOM OF CHOICE 
 

 

 

 

137 

denote by Bool the category of Boolean algebras and Boolean 

homomorphisms. Bool is a full subcategory of the category of 

distributive lattices and homomorphisms.   

 It is easily shown that a Heyting algebra is a Boolean 

algebra iff it satisfies either of the equivalent identities x  x* = 1, 

x**  x = 1. The following are then equivalent: (i)  is a Boolean 

algebra; (ii) the Law of Excluded Middle: for any proposition ,        

  or ; (iii) the Law of Double Negation: for any proposition ,          

  . 

 A Heyting algebra is a Stone algebra if it satisfies the identity 

x*  x** = 1, or either of the equivalent identities (x   y)* = x*   y*, 

(x  y)** = x**   y**. The following conditions are then equivalent: 

(i)  is a Stone algebra; (ii) for any proposition ,  or ;     

(iii) De Morgan's law: for any propositions , , ( & )          

 or ; (iv) for any propositions , , ( or )   or . 

 If Y is a subset of a set X, write CY for the complement 

{xX: x  Y} of Y.Y is called stable if CCY = Y, that is, if, for any      

x  X ¬¬(x  Y)   x  Y; it is complemented if Y  CY = X, that is, 

if, for any x  X, either x  Y or ¬ x  Y: clearly any 

complemented set is stable (but not conversely). For any set X, the 

families CX and SX of complemented and stable subsets, 

respectively, of X form Boolean algebras: the operations on the 

former are the usual set-theoretical ones; the same is true for the 

latter with the exception of , which is defined to be the double 

complement of the union. We write   for S1; and clearly C1 is 

(isomorphic to) the initial Boolean algebra 2. 

  A filter (resp., ideal) in a distributive lattice L is a subset F 

(resp., I) such that  1  F, x, y  F   x  y  F, x  F & x  y       

y  F (resp. 0  I, x, y  I   x  y  I,   x  I &  y  x  y  I.) A 
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filter F (ideal I) is proper if 0  F (1  I); clearly a distributive lattice 

is trivial iff it contains no proper filters (or no proper ideals). A 

filter F (ideal I) in L is prime if it is proper and satisfies the 

condition x  y  F   x  F or  y  F (x  y  I  x  I or y  I): if 

L is a Boolean algebra, this is equivalent to the condition that, for 

any x,  x  F or x*  F  (x  I or x*  I). Note that it follows 

immediately from this that both prime filters and prime ideals in 

Boolean algebras are complemented. It follows in turn that for each 

Boolean algebra B, there is a natural correspondence between 

prime filters (or ideals) and homomorphisms B → 2: each prime 

filter P in B is correlated with the homomorphism h: B → 2 

defined by h(x) = 1 iff x  P, and each homomorphism h: B → 2 

with the prime filter h–1[1]. A filter (ideal) is an ultrafilter (maximal 

ideal) if it is proper and maximal with respect to that property. It is 

readily shown that a proper filter F is an ultrafilter iff it satisfies 

the condition x[yF(x  y  0  x  F], and that a proper ideal I 

is maximal iff it satisfies the condition x[yI(x  y  1  x  I], 

In a Heyting algebra these conditions are easily shown to be 

equivalent to x[x  F  x*  F] and x[x  I  x*  I] . We note 

that ultrafilters (and maximal ideals) in distributive lattices are stable. 

For it is readily shown that the double complement of a proper 

filter is a proper filter; thus, if U is an ultrafilter, CCU is a proper 

filter containing, and so identical with, U.  

 Recall that the classical Stone Representation Theorem for 

Boolean algebras asserts that every Boolean algebra is isomorphic 

to a subalgebra of PS for some set S. In a constructive context, we 

observe that since every member of a Boolean algebra of subsets 

of a set is obviously complemented, in the statement of this 

theorem "PS" may be replaced by "CS".    
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 We call a distributive lattice (in particular, a Boolean 

algebra) semisimple if the intersection of the family of all its prime 

filters is {1}. A Boolean algebra C is said to be a cogenerator in Bool 

if it has the following property: for any pair of parallel morphisms  

f, g: A → B in Bool, if h  f = h  g for all h: B → C, then  f = g. 

 We shall need the following result of Peremans [1957]:   

(Per).  It is constructively provable that any distributive lattice can be 

embedded in a Boolean algebra. 

 Theorem 1. The following assertions are constructively 

equivalent. 

 (i)   The Stone Representation Theorem for Boolean algebras; 

 (ii) the Stone Representation Theorem for distributive lattices: 

any distributive lattice is isomorphic to a lattice of subsets of a set; 

 (iii) any distributive lattice is semisimple; 

 (iv)  any Boolean algebra is semisimple; 

 (v)   the initial Boolean algebra 2 is a cogenerator in Bool. 

 Proof. (i)  (ii). One direction is obvious. By Per, any 

distributive lattice is constructively embeddable in a Boolean 

algebra, so (i)  (ii) follows immediately. 

 (ii)  (iii). Assume (ii); then any distributive lattice L may 

be considered a sublattice of PS for some set S. For any x  S, Fx = 

{X  L: x  X} is a prime filter; if    X   {Fx: x  S}, then x  X for 

all x  S, whence X = S. Therefore {Fx: x  S} = {S}, and L is 

semisimple. 

 Conversely, assume (iii). Given a distributive lattice L, let S 

be the set of all prime filters in L, and define h: L → PS by h(x) =    

{F  S: x  F}. It is easy to see that h is a homomorphism; the 

semisimplicity of L implies that h is injective. Hence (ii). 

 (i)  (iv). The proof of this is similar to that of (ii)  (iii). 
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 (iv)  (v). Assume (iv) and suppose that f, g: A → B are 

such that if h  f = h  g for all h: B → 2. Then for all h: B → 2 and     

x  A we have h(f(x)) = h(g(x)) so that 1 = h(f(x))  h(g(x))               

= h(f(x))  h(g(x)). Under the natural correspondence between 

homomorphisms B → 2 and prime filters in B, this means that   

f(x)  g(x) is contained in every prime filter in B. Since B is 

semisimple, it follows that f(x)  g(x) = 1, so that f(x) = g(x) for 

every x  A, i.e. f = g. Hence (v). 

 Conversely, assume (v). Consider the 4-element Boolean 

algebra                                               1 

                                     4 =             a        a* 

                                                             0 

 

For any Boolean algebra B, each homomorphism 4 → B is 

uniquely determined by the image of a, which can be an arbitrary 

element b of B. Denote this homomorphism by b~. Suppose now 

that every prime filter in B contains b. Then, under the natural 

correspondence between prime filters in B and homomorphisms  

B → 2, this means that h(b) = h(1), whence h  b~ = h  1~ for all       

h: B → 2. By (v), b~ = 1~, so that b = 1, and B is semisimple. ◼ 

 Theorem 2. Any of (i) - (v) of Thm. 1 constructively implies 

that  is a Boolean algebra.  

 Proof. Let us assume, for instance, (iv). For each Boolean 

algebra B, let Prim(B) be the set of prime filters in B. Then 

Prim(B) = {1} and we have   

(*) Prim(B) =    B is trivial. 

For if B is trivial, it has no proper filters, so that Prim(B) = . 

Conversely, if Prim (B) = , then {1} = Prim(B) =  = B, so that 

B is trivial. 

 Now let  be any proposition, and define 



THE AXIOM OF CHOICE 
 

 

 

 

141 

B = {   :  =  or  = true}. 

This is easily shown to be a Boolean algebra in which 0 = ,           

1 = true, meets are conjunctions,  joins are disjunctions, and the 

complement of  is (  ). Clearly 

(**)                                 B is trivial  . 

Putting (*) and (**) together, we see that 

   Prim(B) =   X. X   Prim(B ). 

Thus  is equivalent to a negated statement, so that   . 

Since  was arbitrary, it follows that  is a Boolean algebra. ◼ 

 Thm. 1 can also be stated and proved, in a similar way, for 

nontrivial Boolean algebras and distributive lattices. However, the 

proof that any one of the correspondingly weakened versions of 

conditions (i) - (v) implies that  is a Boolean algebra differs from 

the proof of Thm. 2, as witness:  

 Theorem 3.  The assertion any nontrivial Boolean algebra is 

semisimple constructively implies that  is a Boolean algebra.  

 Proof. Let B be a semisimple Boolean algebra. Then {1}, as 

the intersection of prime filters, is the intersection of 

complemented sets and is therefore (as is easily seen), stable. So 

the premise of the present Theorem implies that {1} is a stable 

subset of every nontrivial Boolean algebra. Now, by Per ,  is 

constructively embeddable in a — necessarily nontrivial — 

Boolean algebra B, so we may consider  as a subset of B. Then  

{1} = {true} is a stable subset of B and hence also of . But the 

stability of {true} in  is obviously equivalent to the assertion that 

it be a Boolean algebra.  ◼ 

 Classically, the Stone Representation Theorem is equivalent 

to the assertion that 2 be injective142 in Bool. This equivalence is 

 
142 Recall that a Boolean algebra C is injective (in Bool) if any homomorphism to C from a 

subalgebra of any Boolean algebra B can be extended to the whole of B.  
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not constructively valid, since while the former can hold only 

when  is a Boolean algebra, the latter can be true even when  is 

merely a Stone algebra. To see that the injectivity of 2 implies that 

 is a Stone algebra, observe that from this assumption it follows 

that the Boolean algebra ¬¬ must have a homomorphism to 2, 

and hence must also contain a prime filter. Since {true} is the only 

proper filter in ¬¬, it must be both prime and an ultrafilter. Then 

CC{true} = {true} is prime, that is, for ,  in ,  

     or , 

where  is the join calculated in . Since (as is easily verified)  

   = ( or ), we infer  

( or )   or ,  

Now for arbitrary ,  in , ,  are in , so it follows 

that 

( or )  ( or )   or ,  

and therefore  is a Stone algebra.   

 In conclusion, we show that the injectivity of 2 is 

constructively equivalent to a number of familiar results in the 

theory of Boolean algebras.  

 Theorem 4. The following are constructively equivalent (and 

each implies that  is a Stone algebra).  

 (i) For any Boolean algebra B and any x   0 in B there is           

h: B → 2 such that h(x) = 1. 

 (ii) For any Boolean algebra B and any x   0 in B there is a 

prime filter in B containing x.  

 (iii) Any nontrivial Boolean algebra contains a prime filter. 

 (iv) Each proper filter in a Boolean algebra is contained in a 

prime filter.` 

 (v)   2  is injective in Bool. 
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 (vi) For any Boolean algebra B, there is a set S and a 

homomorphism h: B → PS such that, for any x  B, x  0 → h(x) is 

inhabited.143 

  Proof. (i)  (ii)  (iii) are all obvious. 

 (iii)  (iv). Assume (iii) and let F be a proper filter in a 

Boolean algebra B. Then the quotient B/F is nontrivial and so 

contains a prime filter P. The inverse image -1[P] of P under the 

canonical homomorphism : B → B/F is easily seen to be a prime 

filter in B containing F.  

 (iv)  (v). Assume (iv), let A a subalgebra of a Boolean 

algebra B, and let h be a homomorphism of A to 2. Then h-1[1] is a 

(prime) filter in A in turn generating a proper filter in B which, by 

(iv), is contained in a prime filter P in B. The homomorphism        

B → 2 naturally corresponding to P is an extension of h. 

 (v)  (iii). Assume (v) and let B be a nontrivial Boolean 

algebra. Then 2 may be considered a subalgebra of b and the 

identity homomorphism 2 → 2 has an extension to B, giving rise 

to a naturally correlated prime filter in B. 

 (iv)  (vi). Assume (iv), and let S be the set of prime filters 

in a given Boolean algebra B. Define h: B → PS by                         

h(x) = {F   S: x  F}. This h is a homomorphism; if  x  0 in B, then 

x generates a proper filter which is contained in a prime filter P. 

Then  P  h(x) and h(x)  . Hence (vi). 

 (vi)  (ii). Assume (vi) and the data of (ii). If a  0 in B, 

then h(a) is inhabited, so there is an element s  h(a). Then             

{x  B: s  h(x)} is a prime filter in B containing a. (ii) follows. ◼  

 
143 We recall that, in constructive mathematics, a set X is said to be inhabited if x. x  X. 
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VI 

The Axiom of Choice in Category Theory, 

Topos Theory and Local Set Theory 

  

AC IN CATEGORICAL CLOTHING 

Some significant recent work on the foundational role of AC has 

arisen in connection with category theory. AC admits a natural 

category-theoretic formulation in its version AC4. Thus a category 

C  is said to satisfy AC if each epic arrow has a right inverse or a 

section, that is, given any epic arrow f: A  B, there is an arrow    

g: B → A for which fg = 1B. It is readily seen that a category 

satisfies AC  precisely when each of its objects is projective.  

 Another category-theoretic formulation of AC is associated 

with version AC4*. Although in classical set theory AC4 andAC4* 

are equivalent, within a category the latter is, in general, stronger 

than the former. Accordingly, given a category C with a terminal 

object 0, we shall say that C  satisfies the Strong Axiom of Choice 

(which we shall abbreviate to SAC) if it satisfies the categorical 

version of AC4*, namely,  

 for any object X  0 and any arrow f: X → Y, there is an arrow 

 g: Y → X such that fgf = f. 

 Now it is most unusual for a category to satisfy AC, that is, 

for all of its objects to be projective. In most categories projective 

objects are quite special. Here is a table in which the projective 

objects within some familiar categories are identified144: 

 

 

 
144 It should be noted that the use of AC is required in all but the first two lines of this 
table.  
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                         Category                                Projective objects 

                     TOPOLOGICAL SPACES                  DISCRETE SPACES 

POSETS               TRIVIALLY ORDERED SETS145 

                      ABELIAN GROUPS                TORSION-FREE GROUPS 

                               GROUPS              RETRACTS OF FREE GROUPS 

                      BOOLEAN ALGEBRAS RETRACTS OF FREE BOOLEAN  

ALGEBRAS 

       COMPACT HAUSDORFF SPACES EXTREMALLY DISCONNECTED 

SPACES146 

   

 In fact, the only “natural” category which could possibly 

satisfy AC is the category Set  of sets147.  The reason for this is not 

difficult to find. For a set, in the mathematical sense, is presumed 

to consist of a plurality of unrelated elements which have been 

purged of all intrinsic qualities aside from the quality which 

distinguishes each element from the rest. A set in this sense—let us 

call it a pure set148— is accordingly an image of pure discreteness, 

an  embodiment of raw difference; in short, it is an assemblage of 

unchanging, featureless, but nevertheless distinct “dots” or 

“motes”149.  The sole intrinsic attribute of a set conceived in this 

way is the number of its elements. Given this, it follows that there 

are no constraints on the correspondences, the mappings between 

pure sets: these mappings can be completely arbitrary, they are 

not required to be continuous, or order-preserving, or indeed to 

preserve any structure at all.  It is this feature of pure sets which 

 
145 A partially ordered set is trivially ordered if its ordering coincides with the identity 
relation. 
146 A topological space is extremally disconnected if the closure of any of open subset is 
open. 
147 Aside from minor variations such as categories of Boolean-valued sets: see below. 
148 For further discussion of pure sets, see Bell [2006a], where they are called “abstract” 
sets. 
149 Perhaps also as “marks” or “strokes” in Hilbert’s sense. 
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makes AC a natural principle in Set. Thus,  in the figure below, 

the choice  of  a  section  s  of  the  epic  map  p  can be made on 

purely combinatorial grounds,  since  no  constraint whatsoever has  

 

been placed on s (aside, of course,  from  the  fact  that  it  must  be a 

right inverse of p). So we see that AC4 holds in Set; a similar 

figure shows that AC4* (or SAC) also holds there. 

 Now as soon as one moves from Set to a category whose 

objects carry some nontrivial structure which has to be preserved 

by its maps, one cannot simply produce a section to an epic map 

in the “combinatorial”  manner  just  used for pure sets: any such  

section must also preserve the structure carried by the objects of 

the category, and this may simply not be possible. Consider, for 

instance, the map p: P → Q in the category Poset of partially 

ordered sets and order-preserving maps as illustrated 

below: 

                                            p 

                                          P                 Q 
                                        
 

 

 

                            
                           p                   s 

X    
     
     
     
     
     
 
 
 
 
 
 
 

      Y 
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It should be clear that p cannot have a section which is order-

preserving. 

 As another example, consider the continuous map              

p: S1 → S1 given by 2( )i ip e e = . (Here S1 is the unit circle, 

regarded as a subset of the complex plane.) The map p —the 

“double covering” map of S1 (depicted below) —is an epic arrow 

in the categoryTop  of topological spaces. But  it  has no section in 

 

 
 

Top, for any such section would have to be a homemorphism of 

S1 onto a half-circle, which is impossible since S1 , but no half-

circle, remains connected when a single point is removed . We see, 

then, that AC will typically fail when structure is imposed on 

pure sets. Another move that will cause AC to fail is to subject 

pure sets to variation. The objects of Set have been conceived as 

pluralities which, in addition to being discrete, are also static or 

constant in the sense that their elements undergo no change.  

 There are a number of natural category-theoretic 

approaches to bringing variation into the picture. For example, we 
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can introduce a simple form of discrete variation by considering as 

objects bivariant sets, that is, maps ⎯⎯⎯→
0 1

:F X X  between pure 

sets. Here we think of X0 as the “state” of the bivariant set F at 

stage 0, or “then”, and X1 as its “state” at stage 1, or “now”. The 

bivariant set may be thought of having undergone, via the 

“transition” F, a change from what it was then (X0) to what it is 

now (X1). Any element x of X0, that is, of F “then” becomes the 

element Fx of X0 “now”. Pursuing this metaphor, two elements 

“then” may become one “now” (if F is not monic), or a new 

element may arise “now”, but because F is a map, no element 

“then” can split into two or more “now” or vanish altogether.  

 The appropriate maps between bivariant sets are pairs of 

maps between their respective states which are compatible with 

transitions. Thus a map from ⎯⎯→0 1:F X X  to ⎯⎯→0 1:G Y Y is a 

pair of maps ⎯⎯→0 0 0:h X Y , ⎯⎯→2 1 1:h X Y for which G  h1 =      

h2   F.  Bivariant sets and maps between them defined in this way 

form the category Biv of bivariant sets. 

 Now AC fails in Biv. Indeed, it is easily checked that the 

epic arrow from the identity map on {0, 1} to the map {0, 1} → {0} 

depicted below has no section in Biv :    
                                               id 

                                         {0, 1}                    {0, 1} 
 
                                          id 

 
                                          {0, 1}                     {0} 
  

 Thus AC is incompatible with even the most rudimentary 

sort of discrete variation of pure sets.  Now pure sets can also be 

subjected to continuous variation. This can be achieved in the first 

instance by considering, in place of pure sets, bundles over 
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topological spaces. Here a bundle over a topological space X is a 

continuous map p from some topological space Y to X. If we think 

of the space Y as the union of all the “fibres” Ax = p–1(x) for x  X, 

and Ax as the “value” at  x of the pure set A, then the bundle p 

itself may be conceived as the pure set A varying continuously over 

X.  A map f: p → p  between two bundles p: Y → X and p: Y → X 

over X is a continuous map  f: Y → Y respecting the variation 

over X, that is, satisfying p  f = p. Bundles over X and maps 

between them form a category Bun(X), the category of bundles over 

X.  

 While categories of bundles represent the idea of 

continuously varying sets in a weak sense, as categories they do 

not resemble Set sufficiently150 to be taken as suitable 

generalizations of Set embodying such variation. To obtain these, 

we confine attention to special sorts of bundles known as displayed 

spaces151. A bundle p : Y → X over X is called a displayed space over 

X when p is a local homeomorphism in the following sense: to each a 

 Y there is an open neighbourhood U of a such that pU  is open 

in X and the restriction of p to U is a homeomorphism U → pU. 

The domain space of a displayed space over X then “locally 

resembles” X in the same sense as a differentiable manifold locally 

resembles Euclidean space.  Categories of displayed spaces provide the 

appropriate generalizations of the category of pure sets to allow for 

continuous variation, and the term continuously varying set is taken 

to be synonymous with the term displayed space. We write Esp(X) 

 
150 To be precise, in general they fail to satisfy the topos axioms. These latter are given in 

Appendix II. 
151 French “espace étalé”. 
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for the category of displayed spaces over X with bundle maps 

between them. 

 If we take X to be a space consisting of a single point, a 

displayed space over X is just a discrete space, so that the category 

of sheaves over X is essentially the category of pure sets. In other 

words, a pure set varying continuously over a one-point space is 

just a (constant) pure set. In this way arresting continuous 

variation leads back to constant discreteness152. 

 In general, AC fails in categories of displayed spaces, 

showing that it is also incompatible with continuous variation. 

This is most easily seen by considering the “double covering” 

map p: S1 → S1  described above. The map p is easily seen to be a 

local homeomorphism, and the fact that it has no continuous 

section implies that the natural epic map in Esp(S1) from                

p: S1 → S1 to the identity map S1 → S1 (the terminal object of 

Esp(S1))  has no section, so that AC fails in Esp(S1). 

 Having demonstrated that AC is incompatible with 

structure, and with variation, both discrete and continuous, we 

conclude that it can hold only within a realm of static and 

structureless objects—that is, the realm of pure sets. Indeed, as we 

shall demonstrate in the final section of this chapter, in a certain 

sense AC characterizes the realm of pure sets.  

 

 

 

 

LOCAL SET THEORIES 

 
152 Observe that had we chosen categories of bundles to represent continuous variation,  
the corresponding arresting of variation would lead, not to the category of abstract 
sets—constant discreteness—but to the category of topological spaces—constant 
continuity. This is another reason for not choosing bundle categories as the correct 
generalization of the category of pure sets to incorporate continuous variation.  
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There are certain evident basic axioms satisfied by the category Set 

of pure sets:  

1. There is a ‘terminal’ object 1 such that, for any object X, 

there is a unique arrow   X → 1  

2. Any pair of objects A, B has a Cartesian product A  B. 

3. For any pair of objects A, B one can form the ‘exponential’ 

object BA of all maps   A → B. 

4. There is a “truth value” object  such that for each object X 

a natural correspondence exists between subobjects 

(subsets) of X and arrows X → . (In Set, one may take  to 

be the set  2 = {, 1}.) 

5. 1 is not isomorphic to . 

6. The Axiom of Infinity: there exists an object X for which X 

is isomorphic to X + 1. A pure set X is said to be infinite if 

there exists an isomorphism between X and the set X +1 

obtained by adding one additional “dot” to X. 

7. “Extensionality” principle: for any objects A, B and any 

pair of arrows ,f gA B A B⎯⎯→ ⎯⎯→ , if fh = gh for every 

arrow  1 h A⎯⎯→ , then f = g. This says that each object 

satisfies the axiom of extensionality in the sense that its 

identity as a domain is entirely determined by its 

“elements”.  

 A category satisfying axioms 1. – 5. (suitably formulated in 

categorical language) is called a (nondegenerate) topos153. 

Accordingly Set  is an extensional topos satisfying both the Axiom 

of Infinity and SAC. Biv and Esp(X) are toposes, but as we have 

seen they do not satisfy AC. There are numerous others. As we 

 
153 For the technical definition of a topos, see Appendix II below. 
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shall see, there is a sense in which the fact that Set satisfies  SAC 

characterizes it as a topos.  

 The role played by AC in topos theory is brought out most 

clearly by presenting the latter in terms of the intuitionistic type 

theories with which toposes are associated. These are known as 

local set theories.154 We shall sketch enough of the development of 

local set theories to enable AC to become visible in that setting. 
A local set theory is a type-theoretic system built on the same 

primitive symbols =, , {:} as classical set theory, in which the set-

theoretic operations of forming products and powers of types can 

be performed, and which in addition contains a “truth value” type 

acting as the range of values of “propositional functions” on 

types. A local set theory is determined by specifying a collection 

of axioms formulated within a local language defined as follows. 
 

A local language L  has the following basic symbols: 

• 1 (unit type)    (truth value type or type of propositions)  

• S, T, U,... (ground types: possibly none of these) 

• f, g, h,... (function symbols: possibly none of these) 

• xA, yA, zA, ... (variables of each type A, where a type is as 

defined below) 

•  (unique entity of type 1) 

 

The types of L  are defined recursively as follows: 

• 1,  are types 

• any ground type is a type 

• A1  ...  An is a type whenever A1, ...,  An are, where, if        

n = 1, A1  ..   An is A1, while if n = 0, A1  ..   An is 1 

(product types) 

 
154 For a fuller account of toposes and local set theories, see Bell [1988]. 
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• PA is a type whenever A is (power types) 

Each function symbol f is assigned a signature of the form A → B, 

where A, B are types; this is indicated by writing  f: A → B. 

Terms of L and their associated types are defined recursively 

as follows. We write : A  to indicate that the term  has type A. 

    

         Term: type                                                                   Proviso 

          : 1  

                          xA: A                                       

                          f(): B              f: A → B      : A 

<1, ..., n>: A1  ...  An, where  

<1, ..., n> is 1 if n = 1, and  if n = 0.           

             1: A1, ..., n: An 

          ()i: Ai    where  ()i is  if n = 1                                  : A1  ...  An,   

                 1  i  n  

                      {xA: }: PA                     :  

                        = :                                      ,   of same type 

                         :                 : A, : PA for some    

                    type A 

 

Terms of type  are called formulas, propositions, or truth values. 

Notational conventions we shall adopt include: 
                  

, ,       variables of type  

, ,  formulas 

   x, y,,z ...                                        xA, yA, zA... 

 (x/) or ()                            result of substituting  at each free 

occurrence of x in : an occurrence 

of x is free if it does not  appear 

within   {x: }               

                                                  =  

                                     

                                    

sequent notation;  a  finite   

            set of formulas 

                            :                      :                              
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A term is closed if it contains no free variables;   a closed 

term of type  is called a sentence. 

The basic axioms in L  are as follows: 

 Unity              : x1 =  

 Equality         x = y, (z/x) : (z/y)   (x, y free for z in ) 

 Products         : (<x1, ..., xn>)i = xi  

                                     :  x = <(x)1, ..., (x)n> 

 Comprehension  : x  {x: }   

 The rules of inference in L  are the following: 

  Thinning           :  

                                                         

                                                   , :  

 

             Restricted Cut             :    , :  

 

                                                             :                 (any free variable 

   of   free in  or )                                                                    

                                                                                                                       

            Substitution                        :  

                                              

                                                  (x/) : (x/)           ( free for x in  

   and )      

       

            Extensionality              : x    x    

                                        

                                            :  =          (x not free in , , )                

 

 Equivalence                ,  :    ,  :                                                            

                                                                

                                                      :    
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 These axioms and rules of inference yield a system of 

natural deduction in L. If S is any collection of sequents in L, we 

say that the sequent  :  is deducible from S, and write  S  

provided there is a derivation of  :   using the basic axioms, the 

sequents in S, and the rules of inference. We shall also write          

 S   for    and  S    for  S . We say that  is S-derivable 

if S . 

 A local set theory in L  is a collection S of sequents closed 

under deducibility from S. Any collection of sequents S generates 

the local set theory S* comprising all the sequents deducible from 

S. The local set theory in L  generated by  is called pure local set 

theory in L.  

 The logical operations in L  are defined as follows: 

 
               Logical Operation                                              Definition 

 (true)  =  

   <, > = <, > 

   (  )   

x  {x : } = {x : } 

⊥  (false) .  

                                   → ⊥  

   [(      )  ] 

x  [x(  )  ] 

 

We write x  y for (x = y), and x  y for (x  y). We also define 

the unique existential quantifier ! in the familiar way, namely, 

!x    x[  y((x/y)  x = y). 

 It can be shown155 that the logical operations on formulas 

just defined satisfy the axioms and rules of intuitionistic logic.  

 
155 Bell [1988]. 
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 A local set theory S is said to be consistent if it is not the 

case that S ⊥ .   

SET THEORY IN A LOCAL LANGUAGE 

Now we introduce the concept of set in a local language. A set-like 

term is a term of power type; a closed set-like term is called an     

(L -) set. We shall use upper case italic letters X, Y, Z, ... for sets, as 

well as standard abbreviations such as xX. for                      

x(x  X  ). If X is an (L -) set, then X is of type PA for some 

type A; a closed term a of type A such that S a  X  is called an  

S-element of X.    

 Set-theoretic operations and relations on L - sets are defined 

as follows. Note that in the definitions of , , and , X and Y 

must be of the same type:      
                                                                                                                                                                                                                

                   Operation                                                      Definition                                                      

{ x  X: } {x:  x  X  } 

X  Y x X. x  Y 

X  Y {x: x  X  x  Y} 

X  Y {x: x  X  x  Y} 

x  X (x  X) 

UA  or  A {xA: } 

A or   {xA: ⊥ } 

E – X {x: x  E  x  X} 

PX {u: u  X} 

U  (U : PPA) {x: uU. x  u} 

U  (U : PPA) {x: u U. x  u} 

i

i I

X


 {x: iI. x  Xi} 

i

i I

X


 {x: iI. x  Xi} 

1{ ,..., }n   1{ : ... }nx x x=    =   

{ : } 
1{ : ... ( )}nz x x z  =     
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X  Y {<x,y>: x   X  y  Y} 

X + Y {<{x},>: x  X}   

{<,{y}.: y  Y} 

Fun(X,Y) or YX {u: u  X  Y  xX !yY.                    

                                  <x,y>  u} 

 

           

 The following facts concerning the set-theoretic operations 

and relations may now be established as straightforward 

consequences of their definitions: 

(i) X = Y  x(x  X  x  Y) 

(ii)  X  X,    (X  Y  Y  X)  X = Y,    

      (X  Y  Y  Z)   X  Z 

(iii)   Z  X  Y   Z  X  Z  Y 

(iv)  X  Y  Z     X  Z  Y  Z 

(v)  xA  UA 

(vi)  ¬ ( x  A) 

(vii)  X  PY     X  Y  

(viii)  X  U  u U . X  u 

(ix)    U  X  u U . u  X 

(x)   x  {y}     x = y  

(xi)       { : } 

 

Here (i) is the Axiom of Extensionality, (iv) the Axiom of Binary 

Union, (vi) the Axiom of the Empty Set, (vii) the Power Set axiom, (ix) 

the Union Axiom and (x) the Axiom of Singletons. These, together 

with the comprehension axiom, form the core axioms for set 

theory in L. The set theory is local because some of the set 
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theoretic operations, e.g., intersection and union, may be 

performed only on sets of the same type, that is, “locally”. 

Moreover, variables are constrained to range only over given 

types—locally—in contrast with the situation in classical set 

theory where they are permitted to range globally over an all-

embracing universe of discourse. 

 Now define the relation ~S  on the collection of all L -sets 

by 

X ~S Y     S X = Y. 

This is an equivalence relation. An S-set is an equivalence class 

[X]S —which we normally identify with X—of L -sets under the 

relation ~S. An S-map f: X → Y or fX Y⎯⎯→  is a triple (f, X, Y)—

normally identified with f—of S-sets such that S f  Fun(X, Y). X  

and Y are, respectively, the domain dom(f) and the codomain cod(f) 

of f.  

 Now suppose we are given a term  such that 

<x1, ..., xn>  X S    Y. 

We write <x1, ..., xn>   or simply x   for  

{<<x1, ..., xn>, >: <x1, ..., xn>  X}. 

If x1, ..., xn includes all the free variables  of   and  X,  Y are  S-sets, 

then <x1, ..., xn>    is  an  S-map X → Y,  which  we  denote  by  

: X → Y or  X Y⎯⎯→ . If f is a function symbol, we write f  for   

x  f(x). 

 

BASIC PROPERTIES OF TOPOSES  

As defined in Appendix II, a topos is a category which possesses a 

terminal object 1, products, a truth-value object , and power 

objects. It can be shown that every topos is cartesian closed, 
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finitely complete, and has coproducts of arbitrary pairs of its 

objects.  

Given a topos E, and an E-arrow u: A →  , we choose          

u :B → A so that 

                                  B                1 
 

                                u                            
                                                      

                                  A                  

                                                                    u 

is a pullback and (1 )A  = 1A..  Note that then (u ) = u. 

 Now given monics m, n with common codomain A,  write 

m  n if there is a commutative diagram of the form 

                                                     

                                                  m                n 

                                             

                                               

Write m ~ n if m  n  and n  m. Then ~  is  an  equivalence  

relation   and  m ~ n   iff   there  is  an   isomorphism   such   that  

                                                   

                                               m                n 

                                             

                                                

commutes.  Equivalence classes under ~ are called subobjects of A. 

Write [m] for the equivalence class of m.  For u: A → , [u ] is 

called the subobject of A classified by u. We define [m]  [n]         

m  n. The relation —inclusion—is a partial ordering on the 
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collection Sub(A) of subobjects of A. It is easily shown that          

[m] = [n]     (m) = (n), so we get a bijection between Sub(A) and 

E(A, ), the collection of E-arrows  A → .  Define, for              u, 

v  E(A, ), u  v  u   v . This transfers the partial ordering  

on Sub(A) to E(A, ).  

It can be shown by an elementary argument that, in a 

topos, any diagram of the form 

                                                   

 
                                                    m 
                                           f 

                                                 

with m monic can be completed to a pullback 

                                                  

 
                       f –1(m)                            m                        
                                          f 

                                        

The arrow f–1(m) is called the inverse image of m under f.  We may 

in fact take f–1(m) to be ( )m f  . 

 Now define δA = <1A, 1A>: A  A   A, eqA =  (δA),            

TA =  (1A). Then AT  = 1A, so u  TA for all u  E(A, ).  

 Given a pair of monics m, n with common codomain A, we 

obtain their intersection m  n by first forming the pullback 

 

 

 

 

 

 



THE AXIOM OF CHOICE 
 

 

 

 

161 

                               m–1(n) 

                                             

 
                       m–1(n)                               m                        
                          

                                                   A 

                                          n           
and then defining m  n = n  m–1(n) = m  n–1(m). This turns 

(Sub(A), ) into a lower semilattice, that is, a partially ordered set 

with meets. We transfer  to E(A, ) by defining u  v =           

(u   v ). This has the effect of turning E(A, ) into a lower 

semilattice as well. 

 

TOPOSES AS MODELS OF LOCAL SET THEORIES 

Toposes constitute the natural models of local set theories in that 

the latter have been designed to be interpretable in the former. Let 

L be a local language and E a topos. A (topos-theoretic) 

interpretation I of L  in E is an assignment: 

• to each type A, of an E-object AI such that: 

  (A1  ... An)I   =     (A1)I  ... (An)I, 

  (PA)I   =  PAI, 

  1I = 1, the terminal object of E, 

  I = , the truth-value object of E. 

• to each function symbol f: A → B, an E-arrow 

  fI: AI → BI. 

 An interpretation I can then be extended to terms of L  in  

such a way as to yield, for each term  : B, with variables                

x = (x1, ..., xn), an E-arrow  

Ix = x: A1  ...  An → B 
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When B is ,  is a proposition , and we can say that  is true 

under I if x = T156 This is written  I    or    E   , and we say 

that  is I-valid.  This idea is easily extended to the I-validity of a 

sequent  : . If  = {1, ..., n}, then we say that   :  is I-valid, 

written   I    or    E  , if the proposition (1  ...  n)   is   

I-valid.  I  is a model of a local set theory S if every sequent in S is I-

valid. If   I    for every model I of S, we write  S  ; if this is 

the case, we say that  is an S-consequence of  .  Just as for first-

order logic, a completeness theorem can then be proved in the form 

 S        S   .     

 For any local set theory S, the collection of all S-sets and 

maps forms a category C(S), the category of S-sets. This category is 

actually a topos, a fact proved just as for Set, only arguing 

formally in S.   

 Categorical properties of objects and arrows in C(S) are 

naturally correlated with formal “set-theoretic” properties of the 

corresponding entities in S. Here is a brief table: 

                          C(S)                                          S 

f: X → Y  is a monic arrow <x,y>  f, <x,y>  f  S x = x 

f: X → Y  is an epic arrow y  Y S x. <x,y>  f 

The commutative diagram 

              X                   Y  

                         f               

            g                           h 

                         k 

              Z                   W 

  is a pullback. 

 

 

y  Y, z  Z S u(<y,u>  h      

<z, u>  k)  !x(<x, y>  f      

<x, z>  g) 

 
156 See Appendix II for the definition of T and other category-theoretic notions. 
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 A topos of the form C(S) is called a linguistic topos. It can be 

shown that every topos is equivalent to a linguistic one: more 

precisely, given a topos E, one can produce a local language         L 

(E) —called the internal language of E— and a theory Th(E) in   L (E) 

for which an equivalence E   C(Th(E)) can be established. The 

language L(E) has ground type symbols matching the objects of E 

other than its terminal and truth-value objects, that is, for each E-

object A (other than 1, ) we assume given a ground type A in L 

(E). Next, we define for each type symbol A an E-object AE by 

AE = A    for ground types A, 

 (A  B)E =  AE  BE 157 

 (PA)E = P(A)E. 

The function symbols of L(E) are then taken to be triples              (f, 

A, B) = f  with   f: AE → BE in E. The signature of f is A → B.158 

 There is a natural interpretation—denoted by E—of L (E) in 

E. It is determined by the assignments: 

AE = A  for each ground type A                 (f, A, B)E = f. 

The local set theory Th(E) is the theory in L (E) generated by the 

collection of all sequents  Γ :  such that    E   under the natural 

interpretation of L (E)  in E. It can then be shown that 

  Th(E)              E    . 

 
157 Note that, if we write C for A  B, then while C is a ground type, A  B is a product 

type. Nevertheless  CE = (A  B)E. 

158 Note the following: if f: A  B → D, in E, then, writing C for A  B as in the footnote 

above, (f, C, D) and (f, A  B, D) are both function symbols of L  (E) associated with f. 

But the former has signature C → D, while the latter has the different signature              

A   B → D. 
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Finally, the canonical functor F: E → C(Th(E)) defined by  

 FA = UA   for each E-object A 

 Ff =  (x  f(x): UA  → UB   for each E-arrow f: A → B 

is an equivalence of categories. This is known as the Equivalence 

Theorem.  

  A useful consequence of the Equivalence Theorem is that 

any fact concerning a linguistic topos established by arguing “set-

theoretically” within the corresponding local set theory 

automatically extends to arbitrary toposes. 

 A local set theory S in a language L  is said to be well-

termed if: 

• whenever S !x, there is a term  of L  whose free 

variables are those of  with x deleted such that     

S (x/), 

and well-typed if 

• for any S-set X there is a type symbol A of L  such 

that UA    X in C(S). 

A local set theory which is both well-termed and well-typed is 

said to be well-endowed. It can be shown that, for any topos E, Th(E) 

is well-endowed. 

 The property of being well-endowed can also be expressed 

category-theoretically. For a local set theory S, let T(S)—the 

category of S-types and terms —be the subcategory of C(S) whose 

objects are all S-sets of the form UA and whose arrows are all S-

maps of the form x  . Then S is well-endowed exactly when the 

insertion functor T (S) → C(S) is an equivalence of categories. 

 We shall require the process of adjoining a generic element to 

an S-set. Let X be an S-set of type PA. Write L (c) for the language 

obtained from L   by adding a new function symbol c: 1 → A and 
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write c for c(). Now let S(X) be the theory in L(c) generated by S 

together with all sequents of the form : (c) where (x) is any 

formula satisfying  x  X S  (x). Clearly  S(X) c  X.  It can also 

be shown that for any formula (x),  

S(X)  (c)  S xX (x). 

Accordingly, in S(X), c behaves as a generic element of X in the 

sense that, if c has a given property, then every element of X has it 

(and conversely).  

 

THE STRUCTURE OF  AND SUB(A)  

Let S be a local set theory. We define the entailment relation on      

 = U  to be the S-set 

 = {<, >:   }. 

Given an S-set X, we define the inclusion relation on PX to be the S-

set 

 X  = {<u, v>  PX  PX: u  v}. 

It follows from facts concerning , ,  already established that 

S <, > is a Heyting algebra with top element  and bottom element ⊥ . 

Similarly, 

S <PX, X> is a Heyting algebra with top element X and              

 bottom element . 

  

 Let Sent(S) be the collection of sentences (closed formulas) 

of L, where we identify two sentences ,  whenever S   . 

Define the relation  on Sent(S) by  

      S   . 
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Then <Sent(S), > is a Heyting algebra, called the (external) 

algebra of truth values of S. Its top element is  and its bottom 

element ⊥. 

 If X is an S-set, write Pow(X) for the collection of all S-sets 

U such that S U  V and define the relation  on Pow(X) by        

U  V  S U  V. Then (Pow(X), ) is a Heyting algebra, called 

the (external) algebra of subsets of X.  

 Given a topos E, we can apply all this to the theory Th(E); 

invoking the fact that Th(E)    E  then gives 

 E <, > and <PA, A> are Heyting algebras, 

where A is any E-object. These facts are sometimes expressed by 

saying that  and PA are internal Heyting algebras in E.  

 What are the “internal” logical operations on  in E? That 

is, which arrows , , ¬,  represent , , ¬,  ? Working in a 

linguistic topos and then transferring the result to an arbitrary 

topos via the Equivalence Theorem shows that, in E, 

:    →  is the characteristic arrow of the monic                         

  <, >: 1 →    

 :    →  is the characteristic arrow of the image of               

                                            + 
 +  ⎯⎯⎯⎯⎯⎯⎯→  

,1 1 ,T T  

 ¬:  →  is the characteristic arrow of ⊥ : 1 → .  

:    →  is the characteristic arrow of the equalizer of 

the pair of arrows 1, :    → . (Here we recall that the 

equalizer of a pair of arrows with a common domain is the largest 

subobject of the domain on which they both agree.) 
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It can then be shown that these “logical arrows” are the 

natural interpretations of the logical operations in any topos E, in 

the sense that, for any interpretation of a language L  in E, 

  x =  <, >x 

  x =  <, >x 

¬x = ¬ x 

  x =  <, >x  

 We now turn to the “external” formulation of these ideas. 

First, for any topos E and any E-object A, (Sub(A), ) is a Heyting 

algebra. For when E is of the form C(S), and A an S-set X, we have 

a natural isomorphism (Pow(X), )   (Sub(X), ) given by 

U [(x  x):U  X] 

for U  Pow(X). Since we already know that (Pow(X), ) is a 

Heyting algebra, so is (Sub(X), ). Thus the result holds in any 

linguistic topos, and hence in any topos. 

 Since Sub(A)  E(1, PA), it follows that E(1, PA) (with the 

induced ordering) is a Heyting algebra. And since (E(A, ), )   

(Sub(A), ), it follows that the former is a Heyting algebra as well. 

Taking A = 1, we see that the ordered set  E(1, ) of E-elements of 

 is also a Heyting algebra. 

 Recall that a partially ordered set is complete if every subset 

has a supremum (join) and an infimum (meet). We claim that, for 

any local set theory S, and any S-set X, 

S <, ,> and <PX, > are complete. 

For we have  

                 u   S (  u) is the -join of u, 
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                 u   S (u. ) is the -inf of u, 

                 v  X S v  is the -join of v, 

                            v  X S v  is the -meet of v. 

To prove, e.g., the first assertion, observe that, first, 

u  ,   u,   S     u   =   S   u, 

so  

u  ,   u  S     (  u)   =   S   (  u) 

whence 

u    S     u    (  u), 

and thus 

u    S     u is an -upper bound for u. 

Also  

u  , u(  ), (  u)   S      S , 

whence  

u  , u(  ), (  u)S , 

i.e., 

u  ,,  is an -upper bound for u  S  (  u)  , 

which establishes the first assertion. 

 As a consequence, for any topos E,  

 E  <, > and <PA, > are complete. 

That is,  and PA are internally complete in E.   

 

 

EXAMPLES OF TOPOSES 
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One of F. W. Lawvere’s most penetrating insights159 was to 

conceive of a topos as a universe of variable sets. Here are some 

examples. 

 To begin with, consider the category Biv of bivariant sets 

introduced above. This is a topos in which the truth value object  

in has 3 (rather than 2) elements. For if (m, X) is a subobject of Y  

in Biv, then we may take X0  Y0, X1 Y1, f0 and f1 identity maps, 

and p to be the restriction of q to X0. Then for any  y  Y there are 

three possibilities, as depicted below: (0) y  X0, (1) q(y)  X1 and  

y  X0, and (2) q(y)  X1.  

                    

                  YH           2                            2                2 

 

                                  1                            1                1 

                                    
                                  0                            0                0 
         
 
 

So if 2 = {0, 1} and 3 = {0, 1, 2} we take  to be the bivariant set        

3 → 3 with 0  1, 1  1, 2  2.  

 More generally, we may consider sets varying over n, or , 

or any totally ordered set of stages. Objects in Setn are “sets 

through n successive stages”, that is, (n – 1)-tuples of maps 
2 20 1

0 1 2 2 1... nf ff f

n nX X X X X−

− −⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ . 

 

Objects in Set are “sets through discrete time”, that is, infinite 

sequences of maps 

 
159 See, e.g., Lawvere [1972], [1976]. 

Y0                                   

 

 

 

 

 

gg 

 

 

 

 

 

 

X 

     Y1 

X1 
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20 1

0 1 2 ...
ff fX X X⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→ . 

 Still more generally, we may consider the category SetP of 

sets varying over a poset P. As objects this category has functors160  

P → Set, i.e., maps F which assign to each p  P a set F(p) and to 

each p, q  P such that p  q a map Fpq: F(p) → F(q) satisfying: 

                                                    Fpq  

       p  q  r  implies that  F(p)                 F(q) 

                      
                                                Fpr                                Fqr 

 

                                                                                                       F(r)        commutes 

and Fpp  is the identity map on F(p). 

An  arrow : F → G in SetP is a natural transformation between F  

and G, which in this case is an assignment of a map p: F(p) → G(p) 

to each p  P in such a way that, whenever p  q, the diagram 

                                                      Fpq 

                                          F(p)               F(q) 
                       
                                                   p                                             q 

                                                      Gpq 

                                          G(p)              G(q)    

commutes. 

To determine  in SetP we define a (pre)filter over p  P to 

be a subset U of Op  = {q  P : p  q} such that q  U, r    q  r  

U. Then 

(p) = set of all filters over p, 

 
160 Recall that any preordered set, and in particular any poset, may be regarded as a 
category. 
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pq(U) = U  Oq  for p  q,  U   (p). 

 The terminal object 1 in SetP is the functor on P with 

constant value 1 = {0} and t: 1 →  has tp (0) = Op for each p  P.  

 Objects in SetP* —where P* is the poset obtained by 

reversing the order on P—are called presheaves on P. In particular, 

when P  is the partially ordered set O(X) of open sets in a 

topological space X, objects in SetO(X) called presheaves on X. So a 

presheaf on X is an assignment to each U  O(X) of a set F(U) and 

to each pair of open sets U, V such that V  U of a map                

FUV : F(U) → F(V) such that, whenever W  U  V, the diagram 

                                                              FUV  

F(U)              F(V) 
                                                                                                                                                                      
                                             FUW                       FVW 

                     

                                                                                 F(W)       commutes; 

and FUU  is the identity map on F(U). 

 If s  F(U), write s|V  for FUV(s)—the restriction of s to V. A 

presheaf F is a sheaf if whenever U = i

i I

U


and we are given a set  

{si: i  I}  such  that si   F(Ui) for all  i  I and siUiUj = sjUiUj for 

all i, j  I, then there is a unique s  F(U) such that sUi = si  for all    

i  I. For example, C(U) = set of continuous real-valued functions 

on U, and sV = restriction of s to V defines the sheaf of 

continuous real-valued functions on X.  

 It can be shown that the category Shv(X) of sheaves on X 

(that is, the full subcategory of SetP* whose objects are sheaves) is 

a topos which is equivalent as a category to the category Esp(X) of 
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displayed spaces on X introduced above. It follows that the latter 

is also a topos. 

 The idea of a set varying over a poset can be naturally 

extended to that of a set varying over an arbitrary small category. 

Given a small category C, we introduce the category SetC of sets 

varying over C. Its objects are all functors  C → Set, and its arrows 

all natural transformations between such functors. Again, it can be 

shown that SetC is a topos.  

 An important special case arises when C is a one-object 

category, that is, a monoid. To be precise, a monoid is a pair           

M = (M, ) with M a set and  a binary operation on M satisfying 

the associative law   (β  ) = (  β)   and possessing an identity 

element 1 satisfying 1   =   1 = . (Note that a group is just a 

monoid with inverses, that is, for each  there is β for which   β  

= β   = 1.) Any object in SetM may be identified with a set acted 

on by M, or M-set, that is, a pair (X, ) with  a map M × X → X 

satisfying (  β)  x =   (β  x) and 1  x = x. An arrow f: (X, ) → 

(Y, ) is an equivariant map f: X → Y, i.e, such that f(  x) =   f(x). 

The subobject classifier  in SetM is the collection of all left ideals 

of M, i.e. those I  M for which   I,   M      I. The 

action of M on  is division, viz.   I = {  M:     I}161. The 

truth arrow t: 1 →  is the map with value M. 

 Toposes can also arise as categories of “sets with a 

generalized equality relation”, with arrows preserving that 

relation in an appropriate sense. Some of the most important 

 
161 This is because if X is a sub-M-set of Y, each y  Y is naturally classified by the left 

ideal {  M:   y  X}. 
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examples in this regard are the categories of Heyting algebra-valued 

sets. Given a complete Heyting algebra H, an H-valued set is a pair 

(I, δ) consisting of a set I and a map δ: I  I → H (the “generalized 

equality relation” on I) satisfying the following conditions, in 

which we write δii for δ(i, i) (and similarly below): 

δ ii = δi i   (symmetry) 

δii  δi i   δii  (substitutivity) 

The category SetH of H-valued sets has as objects all H-valued 

sets. A SetH -arrow f: (I, δ) → (J, ε) is a map f: I  J → H such that 

δii  fij   fij         fij   εjj  fij    (preservation of identity) 

fij  fij   ε jj   (single-valuedness) 

j J

fij = δii   (defined on I) 

The composite g  f  of two arrows f: (I, δ) → (J, ε) and                     

g: (J, ε) → (K, η) is given by  

( )ik ij jk
j J

g f f g


=  . 

Then SetH is a topos in which the subobject classifier is the H-

valued set (H, ), where  is the equivalence operation on H. 

 It can be shown that, for any topological space X, SetO(X) is 

equivalent to Shv(X) and so also to Esp(X); and, for any complete 

Boolean algebra B, SetB is equivalent to the category FuzB of B-

fuzzy sets. 

 

 

 

 

THE CHOICE RULE AND OTHER PRINCIPLES IN LOCAL SET THEORIES   
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Let S be a local set theory in a language L . We make the 

following definitions. 

• S is classical if S (  ). This is the full Law of 

Excluded Middle for S. 

• S is sententially classical if S    for any sentence . 

This is the Law of Excluded Middle for sentences.  

• S is complete if S  or S  for any sentence . 

• For each S-set A : PB let (A) be the set of closed terms  

such that S   A. A is standard if for any formula  

with at most the variable x : B free the following rule is 

valid: 

                              S (x/)  for all  in (A) 

                              S xA  

                  S is standard if every S-set is so. 

• If A is an S-set of type PB, an A-singleton is a closed term 

U of type PB such that S U  A and                                

S xUyU. x = y. X is said to be near-standard if for 

any formula  with at most the variable x : B free the 

following rule is valid:   

                 S xU(x)  for all A-singletons U 

                   S xA       

       S is near-standard if every S-set is so.                                                     

• S is witnessed if for any type symbol B of L and any 

formula  with at most the variable x : B free the 

following rule is valid: 

 

          S x  
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                     S (x/)   for some closed term  : B. 

•  S is choice if, for any S-sets X, Y and any formula  with 

at most the variables x, y free the following rule (the 

choice rule) is valid: 

                              S x X y  Y (x, y) 

                             S x  X (x, fx)  for some f: X → Y 

• S is internally choice if under the conditions of the 

previous definition 

 x X y Y (x, y) S f Fun(X,Y)  

                                                       x X y Y [ (x, y)  <x, y> f]. 

 •   S is Hilbertian if for any formula with at most the 

 variables x: A and y: B free such that S xy(x,y) there 

 is a term (x): B such that   S  x[y(x, y)   (x, (x))].162 

•     S is Zornian if, for any pair of S-sets E,  , the following 

   rule (the Zorn rule) is valid: 

S  (E, ) is a strongly inductive partially ordered set 

 There is an S-element m of E such that m is maximal in E, that 

  is,  S xE [m  x  m = x]  

• An S-set X is discrete if  

S x X y  X. x = y  x  y. 

• A complement for an S-set X : PA is an S-set Y : PA such 

that S X   Y = A    X  Y = . An S-set that has a 

complement is said to be complemented. 

 
162 The term Hilbertian is used here because the term (x) here is evidently analogous to 

the  Hilbert -term determined by the formula . 
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• S  is full if for each set I  there is a type symbol ^I of the 

language L  of S together with a collection { ^ : }i i I of 

closed terms each of type ^I satisfying the following:  

  (i)  If S =^ ^i j  then  i = j. 

      (ii) For any I - indexed family {i : i  I } of closed 

     terms of common type A, there is a term (x): A,        

     x: ^I  such that S i = ( ^)i    for all i  I and, for any 

     term (x) : A, x : 
^I , if  S ^( )i i =   for all i  I, then  

      S   = .   

 ^I may be thought of as the representative in S of the set I. 

  

 We now prove the  

 Generalization Principle for hatted type symbols. Suppose 

that S is full. Then the following rule is valid for any formula (x) with       

x : ^I  

  S ( ^)i    for all i  I 

S x  

and similarly for more free variables. In particular, ^I  is standard. 

 Proof.  Assume the premises. Then for any i  I we have   

S ( ^)i =  and it follows from the uniqueness condition that         

S ( )x = , whence  S x  .  

We next establish some facts concerning these notions. In 

formulating our arguments we shall assume, with one exception 

(Proposition 7) that our background metatheory is constructive, in 

that no use of the metalogical Law of Excluded Middle will be 

made.  
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Proposition 1. Any of the following conditions is equivalent to 

the classicality of S: 

(i) S  = {, ⊥} 

(ii) S    

(iii) S  is a Boolean algebra 

(iv) any S-set is complemented, 

(v) any S-set is discrete, 

(vi)  is discrete, 

           (vii)  S 2 = {0, 1} is well-ordered under the usual ordering,. 

Proof. (iv) If S is classical, clearly {x: x  X} is a complement 

for X. Conversely, if {} has a complement U, then 

S   U  ( = )     = ⊥. 

Hence  S U = {⊥}, whence S  = {}  U  = {, ⊥}. 

         (vi)  If  is discrete, then S  =   ( = ), so  S   . 

         (vii) If S is classical, then 2 is trivially well-ordered under the 

usual well-ordering. Conversely, if 2 is well-ordered, take any 

formula , and define X = {x  2: x = 1  }. Then X has a least 

element, a, say. Clearly  S a = 0  , so, since  S a = 0  a = 1, we 

get S  a = 1  , and hence  S   .    ◼   

 Proposition 2. For well-termed S, S is choice iff S internally 

choice and  witnessed. 

 Proof. Suppose S is choice. If S x, let u : 1 and  define  

(u, x)   (x). Then  S u1xX(u,x). Now choice yields an S-

map f: 1 → X such that S u1(u,f(u)) i.e., S (,f) or S (f). 

By well-termedness, f may be taken to be a closed term , and we 

then have S (). So S is witnessed. 
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 To derive internal choiceness from choiceness, we argue as 

follows: let  

X* = {x  X: yY(x, y)}. 

Then S xX*yY(x,y). Accordingly choiceness yields a map         

f: X* → Y  such that   

S xX*(x, fx), i.e. S xX*yY[<x, y>  f   (x, y)].  

Now 

xXyY (x, y) S X = X*  S f  Fun(X, Y) 

so 

xXyY (x, y) S xXyY[<x, y>  f   (x, y)]. 

Hence 

x X y Y (x, y) S  

                                 f Fun(X,Y) x X y Y [ (x, y)  <x, y> f], 

as required. The converse is easy. ◼ 

 Proposition 3. If S is well-endowed, then S is choice iff S(X) is 

witnessed for every S-set X. 

 Proof. Suppose S is choice and S(X) y(y). We may 

assume that X is of the form UA, in which case  is of the form 

(x/c, y) with x : A. From S(X) y(x/c, y) we infer   S xy(x/c, y). 

So using the choiceness and well-termedness  of  S  we  obtain  a  

term  (x) such that S x(x, (x)). Hence S(X) (c, (c)), i.e.,       

S(X) ((c)). Therefore SX is witnessed.  

 Conversely, suppose SX is witnessed for every S-set X, and 

that S xXyY (x, y)].   Then S(X) yY (c, y)], so there is a 

closed LX-term  such that  S(X)  Y  (c, ).  But  is (x/c) for 

some L-term (x). Thus S(X) (c)Y  (c,(c)), whence               
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S xX [(x) Y  (x, )]. Defining  f = (x  ): X → Y then 

gives  S x X (x, fx)] as required.  

 Proposition 4 (Diaconescu’s Theorem). If S is choice,  then S 

is classical. 

 Proof. Step 1. If S is choice, then SI  is choice for any S-set I. 

Proof of step 1. Suppose that S is choice, and 

S(I)  x X(c) y Y(c)  (x, y, c). 

Then  

S  x X(i) y Y(i)  (x, y, i). 

Define  

X* = {<x, i>: x  X(i)  i  I},    Y*  =  ( )
i I

Y i


, 

(u, i)     x X(i)i I[u = <x, i>  (x, y, i)  y  Y(i)]. 

Then S  u X* y Y* (u, y).  So choice yields f*: X* → Y*  such 

that                      S  u X* (u, f*u),  i.e.                             

S  i I x X(i) (x, f*(<x ,i>, i)  f*(<x ,i>) Y(i)], 

whence 

S  x X(c) (x, f*(<x c>, c)  f*(<x ,c>) Y(c)], 

Now define f = (x  f*(<x, c>)). Then f: X(c) → Y(c) in SI and 

S(I)  x X(c) (x, fx, c). 

This completes the proof of step 1. 

Step 2.  If S is choice, then S is sententially classical. 

Proof of step 2.   Define  2  = {0, 1}  and   let   X = {u  2: y.y  u}.  

Then  

S  u X y  2 . y  u. 

So by choice there is f: X → 2 such that 

S  u X . fu  u. 
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Now let  be any sentence; define 

U = {x  2: x = 0  }, V = {x  2: x = 1  }, 

Then S U  X  V  X, so, writing a = fU, b = fV, we have 

 S  [a = 0  ]  [b = 1  ], 

whence 

S  [a = 0  b = 1]  , 

so that 

(*)                                           S  a  b  . 

But   S U = V S a = b, so that  a  b S  . It follows from this 

and (*) that  

S   , 

 as claimed. This establishes step 2. 

 Moral of step 2: if set doubletons have choice functions, 

then logic is classical. 

 

Step 3. S is classical iff S() is sententially classical. This follows 

from the fact that, if  is the generic element of  introduced in 

S(), then S (  )    S()   . 

 To complete the proof of Diaconescu’s theorem, we now 

have only to observe that   S is choice  S is choice  S is 

sententially classical  S is classical. ◼ 

 It follows immediately from Diaconescu’s theorem that, 

since not every local set theory is classical, AC is independent of 

pure local set theory. 

 Proposition 5.  If S is well-termed and choice, then S is near-

standard. 

 Proof.  Assume that S is choice. To show that S is near-

standard, we first obtain, for any S-set A of type PB and any 
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formula (x) with x : B, an A-singleton V for which (1)  S 

xV  and (2) S  xA  x. x  V. Let   X = {u: xA } 

with u : 1 and Y = {x A: }. Then S  uXxY, so by choice 

there is a map f: X → Y such that  S  uX(x/fu). If we define 

V = {x: <, x>  f}, it is easily checked that V is an A-singleton 

satisfying conditions (1) and (2). 

 Now to show that S is near-standard, suppose that             

S xU   for any A-singleton U. Then in particular S xV  , 

which with (1) gives S x. x  V. We then deduce, using (2), 

that S xA. Since S, being choice, is also classical (Prop. 4), 

it follows that S xA . Hence S is near-standard. ◼ 

 Proposition 6.   If S is well-termed, choice and complete, then S 

is standard. 

 Proof.  Assume the premises. Then by Prop. 5, S is near-

standard. We use completeness to show that S is standard. 

Suppose then that S (x/) for all   (A). If U is an A-singleton, 

then, assuming S is complete, either  S x. x  U  or                      

S x. x  U . In the former case, the well-termedness of S yields 

a closed term  such that U = {} and from S (x/)  it then 

follows that S xU . If, on the other hand, S x. x  U, then 

clearly S xU . So S xU  for any A-singleton U, and the 

near-standardness of S yields S xA , showing that S is 

standard. ◼ 

 Proposition 7. Suppose that S is well-endowed. Then 

(i)  S is Hilbertian iff S is complete and choice;  

(ii)  if S Hilbertian, then S is standard. 
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 Proof. (i) Suppose that S is Hilbertian. To show that it is 

complete, let  be a sentence and suppose that S . Then         

S x with x: 1. Since S is well-endowed, there is a type A and a 

term (y): 1 with y: A such that the map y  (y) is an 

isomorphism between UA and    {x: }. Since S x, and UA and 

{x: } are isomorphic, it follows that S y. y = y. If S is 

Hilbertian, there is a then closed term : A (such that S  = , but 

this is redundant). That being the case, the closed term  = () 

satisfies S    {x: }, and from this it follows immediately that    

S .  Using the Law of Excluded Middle in the metatheory, we 

conclude that S is complete. 

 We now use the completeness of S in showing that it is 

choice. Thus suppose S  x X y Y  (x, y), with X: PA and    

Y: PB, and let (x, y) be the formula (x, y)  x  X  y  Y.  Since 

S is complete, either (a) S  x. x X or (b) S  x. x X. In case 

(a) we have S  xy(x, y), and so since S is Hilbertian there is 

(x): B such that  S x[y  (x, y)  (x, (x)]. Setting                       

f = {<x, y  X  Y: y = (x)}, we find that f: X → Y and                     

S  x X y (x, fx). In case (b) X = A ; putting f = A  Y, we 

again find that f: X → Y and S  x X y (x, fx). So S is choice. 

 Conversely, suppose that S is complete and choice. Then by 

Prop. 4, S is also classical. To show that S is Hilbertian, suppose 

that S xy(x, y) with x: A, y: B. Then by the completeness of 

S, S xy(x, y). Since S is choice, by Prop. 2 it is witnessed, so 

there is a closed term : B such that S x(x, ). Now set                          
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X = {x: y(x,y)} and Y = {y: x(x,y)}. Then                                       

S  x X yY (x, y). Since S is choice, there is f: X → Y such 

that S  x X yY (x, f ). Now let g = f  {<x, >: x  X}. From 

the classicality of S it follows that f: A → B, and so by the well-

termedness of S there is a term (x): B such that S  (x) = gx. It is 

now easily verified that S  x[y(x, y)  (x, (x))]. Hence S is 

Hilbertian.  

 (ii). This follows immediately from (i) and Prop. 6.  ◼ 

 Proposition 8. Let S be a well-termed, near-standard full local 

set theory. Then  MZL implies that S is Zornian.163  

 Proof. Suppose S (E, ) is a strongly inductive partially 

ordered set. Let E* be the set of S-elements of E.  Since                     

S  is a chain in E ,   E*and so E*is nonempty. Partially order 

E* by stipulating that a * b if  S a  b.  We show first that        

(E*, *) has a maximal element. To do this we show that (E*, *) is 

strongly inductive. To this end, let C ={ci: i  I} be a chain in E*. 

Since S is full, there is a term (x) such that S ( ^) ii c = for all i  I. 

Since  S ci  cj    cj  ci. so that  S ( ^) ( ^) ( ^) ( ^)i i j i       for 

every i, j  I, it follows from the Generalization Principle that                              

S xy[(x)  (y)  (y)  (x)]. Writing T for the S-set               

{z: x. z = (x)}, it follows that S T is a chain in E, and accordingly 

for some c  E*, S c is the supremum of T. We claim that c is the 

supremum of C in E*. First, c is obviously an upper bound for C. 

And it is the least upper bound since, if e  E* satisfies S ci  e for 

 
163 This was first observed, in the context of Heyting-algebra-valued models of set 
theory, by Grayson [1975]. 
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all i  I, then S ( ^)i e  for all i  I, so that S x. (x)  e  by the 

Generalization Principle. Therefore  S c  e and so c * e. Thus E* 

E is strongly inductive and so by MZL has a  maximal element m. 

 We finally show that m is maximal in E, that is,                  

(1)                                 S xE [m  x → m = x].   

Since S is near-standard, to establish this it suffices to show that, 

for any E-singleton U we have 

(2)                                  S  xU [m  x  m = x]. 

Defining V to be the S-set {xU: m  x}, it is easily seen that (1) is 

equivalent to  

(3)                                             S  V  {m}. 

Now consider V = V  {m}. This is (S-derivably) a chain in E 

(recall that V is a singleton), and so has a supremum v. Clearly    

S  m  v, so the maximality of m in E* gives S  m = v. It follows 

that 

(4)                                   S  x  V  x  v  x  m. 

But since S  x  V → m  x, (4) yields 

S  x  V  x = m, 

i.e. (2).  ◼ 

 

 If H is a complete Heyting algebra, then, as we shall see 

below, Th(SetH) satisfies the conditions placed on S in Prop. 8, so 

that, if MZL holds in the underlying set theory, it holds in 

Th(SetH). Since the algebra of truth values of Th(SetH) is 

isomorphic to H, it follows that MZL is compatible with any 

intuitionistic algebra of truth values. This must also be the case for 
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ZL since, as shown in Chapter II, MZL and ZL are equivalent in 

intuitionistic set theory. In particular, ZL can have no 

nonconstructive logical consequences164. This is in sharp contrast with 

AC, which, as we have seen, implies LEM.165 

 Since MZL has no nonconstructive logical consequences, 

AC in its usual form cannot be an intuitionistic consequence of it. 

But there is a weaker version of AC which can be shown to follow 

intuitionistically from MZL. This weaker version may be stated as 

follows. Given S–sets F, X, Y, let us say that F is a partial function 

on X to Y if  

S F  X  Y  x X y,z  Y (<x, y>  F  <x, z>   F)  y = z. 

Then S is weakly choice if the following rule is valid: 

S x X y  Y (x, y) 

S xXyY[<x,y>  M  (x,y)]  X – domain (M)166 =   

 for some partial function M from X to Y 

 

An S-set M satisfying this condition is a partial choice function for 

 which is “almost” a full choice function in that the double 

complement of its domain coincides with X. 

 Now we can prove 

 Proposition 9.  If S is near-standard and Zornian, then S is 

weakly choice.  

 Proof. Assume the hypotheses and  

 
164 For this reason it is very much more difficult to establish the independence of ZL 

from pure local set theory than that of ZL. Indeed, the only way seems to be to invoke 
the fact—which, as we have seen in Chapter IV, is comparatively difficult to prove — 
that its classical equivalent AC is independent of classical set theory. 
165 As mentioned in Chapter II, ZL was originally introduced in order to avoid the 
“transcendental” devices associated with the use of AC. That ZL is compatible with 
constructive reasoning provides unexpected further confirmation of its “non-
transcendental” character. 
166 Here domain(M) is the S-set { : ( , }.x y x y M    
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(1)                                      S x X y  Y (x, y). 

Let R = {<x, y> X  Y: (x, y)} and E = {U: U  R  Fun(U)}. Then                                             

S (E, ) is a partially ordered set and the usual argument involving 

unions of chains can be  applied to (E, ) in S,  to yield S (E, ) is 

strongly inductive. Since S is Zornian, E has a maximal element M. 

Clearly S Fun(M)  xXyY[<x, y>  M  (x,y)]. To 

complete the proof we need to show that     

    (2)                                S  X – domain (M) =  . 

To do this we argue informally in S. Suppose a  X – domain(M). 

Then from (1) it follows that there is b  Y for which (a, b). Then 

M = M  {<a, b>} is a member of E containing M. Since M is 

maximal, M = M, whence <a, b>  M. This contradicts the 

assumption a  X – domain(M). It follows that X – domain(M) 

must be empty, i.e. (2). ◼ 

 Corollary. Assuming AC, any full well-termed classical near-

standard local set theory is choice.  

       Proof.  Let S  be a full well-termed classical near-standard 

local set theory.  Given AC, we then have MZL, so it follows from 

Prop. 8 that S is Zornian. From Prop. 9 we deduce that S is weakly 

choice. But clearly any classical weakly choice local set theory is 

choice, and the conclusion follows.  ◼ 

 

THE FOREGOING PRINCIPLES INTERPRETED IN TOPOSES 

 

When S is the theory Th(E) of a topos E, the conditions on S 

formulated in the previous section are correlated with certain 

properties of E, which we now proceed to determine. 
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 E is said to be extensional  provided that, for any objects A, 

B and any pair of arrows ,f gA B A B⎯⎯→ ⎯⎯→ , if fh = gh for 

every arrow  1 h A⎯⎯→ , then f = g. We recall that this says that 

each object of E satisfies the Axiom of Extensionality in the sense 

that its identity as a domain is entirely determined by its 

“elements”.  

 A weaker version of extensionality is obtained by replacing 

1 with subobjects of 1, that is, objects U for which the unique 

arrow U → 1 is monic. Thus E is said to be subextensional  

provided that for any objects A, B and any pair of arrows 

,f gA B A B⎯⎯→ ⎯⎯→ , if fh = gh for every hU A⎯⎯→  with         

U  1, then f = g. 

 We recall that a category is said to satisfy the Axiom of 

Choice (AC) if ,  for any epic f: A  B, there is a (necessarily monic) 

g: B → A such that fg = 1B, or equivalently, if each of its objects is 

projective. It satisfies the Strong Axiom of Choice (SAC) if for any 

object X  0 and any arrow f: X → Y, there is an arrow g: Y → X 

such that fgf = f. 

 E is Boolean if the arrow 1 1 ++ ⎯⎯⎯→   is an isomorphism, 

and bivalent if  and  are the only arrows1 → , or equivalently, 1 

has only the two subobjects 0 and 1.  

 Let A be an object of E, and let m: B  A be a subobject of 

A. A complement for B is a subobject n: C  A such that the arrow 

m + n: B + C → A is an isomorphism. Then it is easy to show that E 

is Boolean if and only if every object in E has a complement.  

 Notice that, even if we only assume intuitionistic logic in 

our metatheory, Set is extensional. If full classical logic is 

assumed, Set is both Boolean and bivalent.  
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 If S is a well-endowed local set theory, and E is a topos, we 

have the following concordance between properties of S 

(respectively Th(E)) and properties of C(S) (respectively E): 

 

                      S , Th(E)                                           C(S), E 

          CONSISTENT NONDEGENERATE 

          CLASSICAL BOOLEAN 

          COMPLETE BIVALENT 

          STANDARD EXTENSIONAL 

           NEAR-STANDARD SUBEXTENSIONAL 

       WITNESSED    1 IS PROJECTIVE  

      CHOICE  SATISFIES AC 

       HILBERTIAN          SATISFIES SAC 

FULL WELL-COPOWERED 

 

We prove a couple of these equivalences, leaving the rest to the 

reader. 

 If S is well-endowed, then S is standard iff C(S) is extensional. If 

S is well-endowed, then C(S) is equivalent to the category T(S) of 

S-types and terms, so to establish the extensionality of C(S) it is 

enough to establish that of T(S). Accordingly let A, B be type 

symbols and suppose that f, g: A → B are T(S)-arrows such that, 

for any T(S)-arrow 1 h A⎯⎯→ , we have fh = gh. Now f is x   and 

g is  x   for some terms , , and the condition just stated 

becomes: for any closed term  of type A, we have  S  () = (). 

Supposing that S is standard, it follows that S  x((x) = (x)), 

whence  f = g. So T(S), and hence also C(S), is extensional.  
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 Conversely, suppose C(S) is extensional. Let A be a type 

symbol and (x) a formula with a free variable of type A. Let f be 

the S-map (x  ): A → . If S () for all closed terms  of type 

A, it follows that the diagram     

                                                                           f 

                                   1          A            

                                                     TA  

commutes for all such . Since C(S) is extensional (and well-

termed), we deduce that f = TA, in other words that                        

S  x((x) = ), i.e. S  x(x). So S is standard. 

 S is choice iff C(S) satisfies AC. Given an epic g: Y  X in 

C(S), let  be the formula <y, x>  g. Then S xXyY(x,y). If 

S is choice there is f: X → Y such that S xX(x,fx), from which 

it follows easily that gf = 1X. So C(S) satisfies AC. 

 Conversely, suppose C(S) satisfies AC and                           

SxXyY(x,y) for a given formula . Define                             

Z = {<x,y>  X  Y: } and g = (<x,y>  x): Z → X,                          

k = (<x,y>  y): Z → Y. Then g is epic, and so by AC there is         

h: X → Z such that gh = 1X. If we now define f = kh: X → Y, it is 

easy to see that S xX(x,fx). So S is choice. 

 It follows from this that any topos satisfying AC is Boolean, so 

that subobjects always possess complements.  

 

Remark.  The original proof that any topos satisfying AC is 

Boolean is based on the idea of constructing a complement for any 

subobject. Here is a highly informal version of the argument.  
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 Suppose that the topos satisfies AC, and let X be a 

subobject of an object A. Form the coproduct A + A, and think of it 

as the union of two disjoint copies of A. Regard the elements of 

the first copy as being coloured black and those of the second as 

being coloured white. Thus each element of A has been ‘split’ into 

a ‘black’ copy and a ‘white’ copy. Next, identify each copy of an 

element of X in the first (black) copy with its mate in the second 

(white) copy; the elements thus arising we agree to colour grey, 

say. In this way we obtain a set Y consisting of black, white and 

grey elements167, together with an epic map A A+  Y. Now we 

use AC to assign each element y  Y an element  y  A + A in 

such a way that y is sent to y by the map  A A+  Y above. The 

whole process—call it P, say—accordingly transforms each 

element of   A + A into an element (possibly the same) of A + A. 

Now, for n = 0, 1, 2, define 

An = {a  A: P effects a change in colour in exactly n copies of a}. 

Then  clearly A = A0  A1  A2, A1 = X and A2 = . It follows that 

A0 is a complement for X. 

 

Some examples168. 

(i)  Set  is extensional, satisfies AC§, and is both Boolean§ and bivalent§ 

(ii) For any partially ordered set P, SetP is subextensional . It satisfies 

AC if§, and only if, P is trivially ordered, that is, if the partial ordering 

in P coincides with the identity relation. To show that SetP is 

subextensional, given , : F → G in SetP,  p0  P and a  F(po), 

 
167 One should not be misled into thinking that at this stage the ‘grey’ elements of Y can 
be clearly distinguished from the ‘black’ and ‘white’ ones: since the former are 
correlated with the elements of X, such distinguishability would be tantamount to 
assuming that X already possesses a complement!  
168 In presenting these examples we indicate by appending the symbol § when we need 
to assume that Set satisfies AC, or at least that its internal logic is classical and bivalent.  
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define U  SetP by U(p) = {x: x = 0  po  p} with the Upq  the 

obvious maps. Then U is a subobject of 1 in  SetP. Define   : U → F 

by p = U(p)  {a}. If  = , then 
0 0 0 0

(0) (0)p p p p  =   , 

whence 
0 0
( ) ( )p pa a =  . Since p0 and a were arbitrary,  = . So 

SetP is subextensional. 

To show that AC holds in SetP only if P is trivially ordered,  

suppose that po < qo in P and define A, B in SetP by A(p) = {0, 1} 

for all p  P, and each Apq` the identity map; B(p) = {0} if  p0 < p,       

B(p) = {0,1} if p0  p, each Bpq either the identity map on {0,1} or the 

map {0,1} → {0} as appropriate. Then it is easy to show that the 

map     f: A → B in SetP —with each fp either the  identity map on 

{0,1} or the map {0,1} → {0} as appropriate—has no section.  

 

(iii)   For any complete Heyting algebra H, SetH is subextensional. It 

satisfies AC if§, and only if, H is a Boolean algebra169. To show that 

SetH is subextensional, suppose given f, g: (I, ) → (J, ) in SetH . 

For       i0  I, j0  J, let i = 
0 0 0i j iig   and a = i

i I

 . Then ({0}, ) 

with 00 = a is a subobject of 1 in SetH and the i define an arrow                       

: ({0}, ) → (I, ). If f = g, then a calculation shows 

that
0 0 0 0i j i jf g= . Since i0  and j0 were arbitrary, f = g.  

As for the second contention, if SetH satisfies AC, it is 

Boolean, and so H must be a Boolean algebra. Conversely, if H is a 

Boolean algebra, then SetH  is Boolean, so Th(SetH) is classical. It 

is not hard to show that SetH has all set-indexed copowers of 1, so 

that Th(SetH) is full. We also know that SetH is subextensional, so 

 
169 If B is a complete Boolean algebra, FuzB is equivalent to SetB, so AC also holds in 

FuzB. 
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that Th(SetH) is near-standard. It follows from the Corollary to 

Prop. 8. that Th(SetH) is choice, so that SetH satisfies AC. 

(iv)§   For a monoid M, the topos SetM of M-sets is bivalent. For 

the terminal  object in SetM is the one-point set 1 with trivial M-

action and evidently this has only the two subobjects 0, 1.  

(v) For a monoid M, if the topos SetM is Boolean, then M is a group170, 

and conversely§.  For suppose that SetM is Boolean. Regard M as an 

M-set with the natural multiplication on the left by elements of M. 

For a  M, U = {xa: x  M} is a sub-M-set of M, and so has a 

complement V in SetM which must itself be an sub-M-set of M. 

Now 1 V , since otherwise V = M which would make U  empty. 

It follows that 1  U and so a has a left inverse. Since any monoid 

with left inverses is a group, M is a group. Conversely, if M is a 

group (and Set is Boolean), then the set-theoretical complement of 

any sub-M-set Y of an M-set X is itself a sub-M-set and therefore 

the complement in SetM of Y. 

(vi)  If G is a nontrivial group, then 1 is not projective in SetG . 

For G → 1 in SetG is epic, but an arrow 1 → G in SetG corresponds 

to an element e  G such that ge = e for all g  G, which cannot 

exist unless G has just one element. 

(vii) For a monoid M, SetM satisfies AC if§, and only if, M is 

trivial. If SetM satisfies AC, then SetM is Boolean and so by (v) M is 

a group. But by (vi) if M is nontrivial, 1 is not projective in SetM, 

and so SetM does not satisfy AC. It follows that M is trivial.  

CHARACTERIZATION OF Set 

We remind the reader that we are assuming that our background 

metatheory is constructive. For definiteness we will take that 

 
170 It follows that if M is not a group, then SetM is bivalent§ but not Boolean.  
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metatheory to be intuitionistic Zermelo-Fraenkel set theory IZF. 

Now consider the topos Set in IZF. We seek to determine 

necessary and sufficient conditions on a local set theory S for its 

associated topos of sets C(S) to be equivalent, as a category, to Set. 

We shall see that the conjunction of standardness with a new 

property, fullness, meets the requirements. Moreover, if we 

replace IZF by classical ZF and in addition assume that Set 

satisfies AC, then the conjunction of fullness, choiceness, and 

completeness, as well as the conjunction of and fullness and 

Hilbertianness also works.    

  We can now prove the 

 Theorem.  

 Let S be a full well-endowed consistent local set theory S. Then 

 (i) the following are equivalent: 

 (a)  C(S)  Set. 

            (b)  S is standard, 

            (ii) Assuming both classical logic in the metatheory and that Set           
             satisfies AC, conditions (a) and (b) are each equivalent to 

       (c)  S is choice and complete, 

       (d)  S is Hilbertian. 

              Proof. (i) Assuming (a), we note that since Set is 

extensional and has arbitrary set-indexed copowers of 1, so does 

C(S). But then S is standard and full, i.e. (b). 

 For the converse, suppose that S is full. Since S is well-

termed, for any S-map  f: X → Y we can write f() for each closed 

term  such that  S   X.  

 We define functors : C(S) → Set,  ^: Set → C(S), which, 

under the specified conditions, we show defines an equivalence. 
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 First, (X) is the set of closed terms  such that  S   X, 

where we identify ,  if  S  = . Given f: X → Y, we define (f) to 

be the map ( f()): (X) →  (Y).  

 Next, given I  in Set, we define I^ to be the S-set UI^. Given   

f: I → J, there is a term f^ : J^ ith x : I^  such that  S f^(i^) = (fi)^ 

for all i  I. We define f^: I^ → J^ to be the S-map x  f^(x). It is 

easily shown, using the Generalization Principle, that, for 
f gI J K⎯⎯→ ⎯⎯→ ,  S (g  f)^ = g^  f^. Moreover, if  f^ is epic in 

C(S), then f is epic in  Set. For suppose gJ K⎯⎯→ and hJ K⎯⎯→  

satisfy g f h f= . Then  

S ^ ^ (   )^ (   )^ ^  ^g f g f h f h f= = = , 

so if f^ is epic in C(S), it follows that S g^ = h^.. Hence, for each    

i  I,  S = = =( )̂ (̂ ^) (̂ ^) ( )̂gi g i h i hi , so that gi =hi for each i  I, 

that is, g = h. Thus f is epic. 

 For any set I and any S-set X, we have natural maps           

: I → )( ^I  and  : ( )^X X → defined as follows: 

I(i) = i^ for i  I ;     S (^) =   for all   (X).          

Clearly  is monic. The same is true of  since for ,   (X),  

S (^) = (^)   = , 

whence 

S xy[(x) = (y)  x = y] 

by the Generalization Principle. 

 Now suppose that S is also standard. We claim that then  

is epic and hence an isomorphism. For we have, for all   (X),  

S (  ) = , whence  S y(y) = . Since X is standard, we infer 

that 
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 S xXy (y) = x, 

so that  is onto, hence epic.  

 Using the fact that  is an isomorphism we can now show 

that  is epic, and hence also an isomorphism. For consider 

^ : ^ ( ^)^I I →  .  We note that 

(*)                                           ^^ 1I  = . 

For if i  I, then  

S    =   =  =( ^ ( ^)) (( )^) ^.i i i i  

It follows by the Generalization Principle that 

S      =^. ( )x I x x , 

whence (*).  

 Since  is an isomorphism, it follows easily from (*) that ^  

is an isomorphism, hence also epic. Accordingly  is itself epic, 

and hence also an isomorphism.  

 We conclude that (, ^) define an equivalence between C(S) 

and Set, as required.  

 (ii)  We have already shown (Prop. 6) that (c)  (b). Now 

let S satisfy (a), that is, C(S) Set. Assuming classical logic in the 

metatheory, Set, whence also C(S), is bivalent, so S is complete. 

Assuming that Set satisfies AC, C(S) does likewise, and so S is 

choice. Finally, Set  has arbitrary set-indexed copowers of 1, so 

also then does C(S), and thus S is full. In other words we have 

shown (a)  (c). Finally (c)  (d) has been established in Prop. 7.  

 

 Using the concordance between properties of toposes and 

properties of local set theories, the previous theorem immediately 

yields the 

 Corollary. Let E be a well-copowered topos. Then 
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 (i) the following are equivalent: 

 (a)  E  Set. 

            (b)  E is extensional, 

            (ii) Assuming both classical logic in the metatheory and that Set           

             satisfies AC, conditions (a) and (b) are each equivalent to 

       (c)  E is bivalent and satisfies AC 

       (d)  E satisfies SAC. 

            

Thus we see that Set  is characterized up to equivalence by the 

fact that it is well-copowered and satisfies SAC.  

  It is also possible to formulate similar characterizations of 

other toposes, for example categories of presheaves over partially 

ordered sets, sheaves over topological spaces, and H-sets. For 

instance, a topos E is equivalent to SetH for some complete 

Heyting algebra H if and only if E is well-copowered and 

subextensional and near-standard, and E is equivalent to SetB  for 

some complete Boolean algebra B if and only if E  is well-

copowered and satisfies AC. 
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VII 

The Axiom of Choice in Constructive Type 

Theory  
 

CONSTRUCTIVE TYPE THEORY  

 

The roots of type theory lie in set theory, to be precise, in Bertrand 

Russell’s efforts to resolve the paradoxes besetting set theory at 

the end of the 19th century. In the course of analyzing these 

paradoxes Russell had come to find the set, or class, concept itself 

philosophically perplexing, and the theory of types can be seen as 

the outcome of his struggle to resolve these perplexities. In 

Russell’s initial conception of types, which later became known as 

the “simple” theory of types, the universe of logical objects is 

stratified into “layers” or “types”, and each logical object is 

assigned a definite type.  Relationships among objects must 

respect the types assigned to each object: thus, for example, two 

objects can be equal only if they have the same type, and one 

object can be a member of another object only if the type of the 

first object is the immediate predecessor of that of the second.  

Later, Russell came to regard the simple theory of types as 

inadequate for dealing with the more subtle “paradoxes of 

definition” which had appeared and so replaced it with the 

considerably more complicated system of “ramified” type theory 

which he and A. N. Whitehead developed in their Principia 

Mathematica of 1910-13. This monumental work embodies 

Russell’s central logicist goal of reducing mathematics to logic.  

 In the form of the “Multiplicative Axiom” (essentially what 

we have called CAC) AC played a significant role in Principia 

Mathematica. Along with the Axiom of Infinity and the infamous 
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Axiom of Reducibility, AC was a member of the trio of 

“awkward” principles that Russell saw as necessary for the 

development of mathematics, but could not be justified on purely 

logical grounds171. Russell himself described AC as capable of 

being “enunciated, but not proved, in terms of logic.”172 In the 

1920s Ramsey championed simple type theory, within which, he 

claimed, AC could be seen as “the most evident tautology”. 173 In 

the early 1940s Church gave the definitive formulation of simple 

type theory in terms of the -calculus which is still standard 

today.  But with respect to both of the original forms of type 

theory —ramified and simple—the status of AC was 

fundamentally no different from that it held with respect to set 

theory—namely, as a natural, even self-evident principle, but still, 

like the parallel postulate, undemonstrable.  

 Type theory took a remarkable turn in the 1980s with the 

emergence of the so-called propositions-as-types doctrine (or 

interpretation). Underlying this doctrine is the idealist notion, 

traceable to Kant, and central to Brouwerian intuitionism, that the 

meaning of a proposition does not derive from an absolute 

standard of truth external to the mind, but resides rather in the 

evidence for its assertability in the form of a mental construction 

or proof. Thus the central thesis of the propositions-as-types 

doctrine is that each proposition is to be identified with the type, 

set, or assemblage of its proofs174. As a result, such proof types, or 

sets of proofs, have to be accounted the only types, or sets. 

Strikingly, then, the propositions-as-types doctrine decrees that a 

 
171 The Axioms of Infinity, Reducibility and Choice were needed to develop arithmetic, 
real analysis, and set theory, respectively. 
172 Russell [1919] 
173 Ramsey [1926] 
174 This idea was advanced by Curry and Feys [1958] and later by Howard [1980]. As the 
Curry-Howard correspondence it has come to play an important role in theoretical 
computer science.  



THE AXIOM OF CHOICE 
 

 

 

 

199 

type, or set, simply is the type, or set, of proofs of a proposition, 

and, reciprocally, a proposition is just the type, or set, of its proofs. 

These are truly radical identifications. And remarkably, as we 

shall see, these identifications render AC demonstrable. 

 In the original type theories of Russell and Church, each 

type is independent of other types and is thus, so to speak, 

absolute or static; this holds in particular of the type of 

propositions or truth values. Now formulas or propositional 

functions in general manifest variation, since their values vary 

over, or depend on, the domain(s) of their free variables. Because 

of this they cannot be accurately represented as static types. This 

limitation makes it impossible for the earlier type theories to 

realize faithfully the propositions-as-types doctrine. In order to 

achieve this it is necessary to develop a theory of “variable” or 

dependent types, wherein types can depend on, or “vary over” 

other types. In a dependent type theory, type symbols may take 

the form B(x), with x a variable of a given type A:  B(x) is then a 

type dependent on or varying over the type A.  The introduction 

of dependent types is also essential for the proper formulation of 

AC in conformity with the propositions-as-types doctrine.  

 Such a theory—Constructive (Dependent) Type Theory — was 

introduced175 by Martin-Löf176. His theory, which has 

subsequently undergone much development, is also (as its name 

indicates) the first strictly constructive theory of types, in the 

sense of being both predicative (so in particular it lacks a type of 

propositions) and based on intuitionistic logic.  In introducing it 

 
175 Dependent types were actually first studied in the late 1960s by de Bruijn and his 
colleagues at the University of Eindhoven in connection with the AUTOMATH project. 
Constructive type theory has been employed as a basis for various computational 
devices employed for the verification of mathematical theories and of software and 
hardware systems in computer science. 
176 Martin-Löf [1975], [1982], [1984]. 
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Martin-Löf’s purpose was to provide, as he put it177 “a full scale 

system for formalizing intuitionistic mathematics as developed, 

for example, in the book by Bishop178.” Martin-Löf’s system 

provides a complete embodiment of the propositions-as-types 

doctrine179. Here is Martin-Löf himself on the latter180: 

Every mathematical object is of a certain kind or type. Better, a 
mathematical object is always given together with its type, that is 
it is not just an object: it is an object of a certain type. … A type 
is defined by prescribing what we have to do in order to construct 
an object of that type… Put differently, a type is well-defined if 
we understand…what it means to be an object of that type. … 
Note that it is required, neither that we should be able to generate 
somehow all the objects of a given type, nor that we should, so to 
say, know all of them individually. It is only a question of 
understanding what it means to be an arbitrary object of the type 
in question.  
 A proposition is defined by prescribing how we are 
allowed to prove it, and a proposition holds or is true 
intuitionistically if there is a proof of it. … Conversely, each type 
determines a proposition, namely, the proposition that the type in 
question is nonempty. This is the proposition which we prove by 
exhibiting an object of the type in question. On this analysis, 
there appears to be no fundamental difference between 
propositions and types. Rather, the difference is one of point of 
view: in the case of a proposition, we are not so much interested 
in what its proofs are as in whether it has a proof, that is, whether 
it is true or false, whereas, in the case of a type, we are of course 
interested in what its objects are and not only in whether it is 
empty or nonempty. 
 

 
177 Martin-Löf [1975]. 
178 I.e. Bishop [1967]. 
179 Martin-Löf’s original calculus contained a type of all types. This assumption was 
shown to be inconsistent by Girard [1972]. Martin-Löf accordingly dropped this 
assumption in later versions of his theory. 
180 Martin-Löf [1975]. 
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The propositions-as-types doctrine gives rise to a 

correspondence between logical operators and operations on 

(dependent) types. Let us follow Tait’s exposition181 of the idea in 

set-theoretic terms. To begin with, consider two 

propositions/types/sets A and B. What should be required of a 

proof f of the implication A → B ? Simply that, given any proof x 

of A, f should yield a proof of B, that is, f should be a function 

from A to B. In other words, the proposition A → B is just the type 

of functions from A to B: 

A → B = BA 

Similarly, all that should be required of a proof c of the 

conjunction A  B is that it should yield proofs x and y of A and B, 

respectively. From this point of view A  B is accordingly just the 

type A  B — the product A and B—of pairs (x, y), with x of type A 

(we write this as x: A) and y: B.  

A proof of the disjunction A  B is either a proof of A or a 

proof of B together with the information as to which of A or B it is 

a proof. That is, if we introduce the type 2 with the two distinct 

elements 0 and 1, a proof of A  B may be identified as a pair (c, n) 

in which either c is a proof of A and n is 0, or c is a proof of B and 

n is 1. This means that A  B should be construed as the type of 

such pairs, that is, the two-term dependent sum  A + B of A and B. 

The true proposition  may be identified with the one 

element type 1 = {0}: 0 thus counts as the unique proof of . The 

false proposition ⊥ is taken to be a proposition which lacks a 

proof altogether: accordingly ⊥ is identified with the empty set . 

The negation A of a proposition A is defined as A → ⊥, which 

therefore becomes identified with the set A.  

.  

 
181 Tait [1994]. 
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As we have already said, a proposition A is deemed to be 

true if it (i.e, the associated type A) has an element, that is, if there 

is a function 1 → A. Accordingly the Law of Excluded Middle for a 

proposition A becomes the assertion that there is a function            

1 → A + A.  

If a and b are objects of type A, we introduce the identity 

proposition or type a =A b expressing that a and b are identical 

objects of type A. This proposition is true, that is, the associated 

type has an element, if and only if a and b are identical. Here the 

term “identical” is to be taken in the intensional sense of affirming 

a literal identity of the two objects in question, rather than the 

extensional meaning the term receives in set theory, where two 

sets are taken as identical if they have the same members.  

   In order to deal with the quantifiers we require operations 

defined on families of types, that is, types Φ(x) depending on 

objects x of some type A. By analogy with the case A → B, a proof 

f of the proposition x:A Φ(x), that is, an object of type x:A Φ(x),  

should associate with each x: A a proof of Φ(x). So f is just a 

function with domain A such that, for each x: A, fx is of type Φ(x). 

Accordingly, x:A Φ(x) is the type of such functions, that is, the 

dependent product x:A Φ(x) of the Φ(x)’s. We use the -notation 

in writing f as xfx.  

A proof of the proposition x:A Φ(x), that is, an object of 

type x:A Φ(x), should determine an object x: A and a proof y of 

Φ(x), and vice-versa. So a proof of this proposition is just a pair (x, 

y) with x: A and y: Φ(x). Therefore x:A Φ(x) is the type of such 

pairs, that is, the dependent sum x:A Φ(x) of the Φ(x)’s.  
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To translate all this into the language of Constructive Type 

Theory182, one uses the following concordance among operations: 

 
Logical                            Set-theoretic                        Type-theoretic 

                  

                                 + two-term dependent sum 

 set exponentiation type exponentiation 

x cartesian product 
i I

  dependent product x:A 

x      disjoint union 
i I

183 dependent sum  x:A 

 

AC IN CONSTRUCTIVE TYPE THEORY 

We now turn to the expression of AC in Constructive Type 

Theory. Again following Tait, we introduce the functions , ,  

of types x:A(Φ(x) → x:A Φ(x)), x:A (x) → A, and                  

y: (x Φ(x)). Φ((y)) as follows.  If b: A and c: Φ(b), then bc is  

(b, c).  If d: x:A Φ(x), then d is of the form (b, c) and in that case 

(d) = b and (d) = c. These yield the equations  

(bc) = b     (bc) = c    (d)(d) = d. 

We shall use the following version of AC3 to represent the Axiom 

of Choice—the type-theoretic Axiom of Choice: 

ACT                    x:Ay:B Φ(x, y)) → f:BAx:A Φ(x, fx)). 

 We shall now show that ACT is provable in constructive 

type theory, and accordingly correct under the propositions as 

types doctrine. For let u be a proof of the antecedent x:Ay:B 

Φ(x, y)). Then,  for any x: A, (ux) is of type B and (ux) is a proof 

 
182 For a complete specification of the operations and rules of constructive type theory, see 
Chapter 10 of Jacobs [1999] or Gambino and Aczel [2005]. 
183 In set theory the disjoint union 

i
i I

A


of a family of sets {Ai: i  I} is defined to be the 

set { }.
i

i I

A i


  
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of Φ(x, ux). So s(u) = x.(ux) is of type BA and t(u) = x. (ux) is 

a proof  of x:A Φ(x, s(u)x). Accordingly u.s(u)t(u) is a proof of 

x:Ay:B Φ(x, y)) →  x:BA x:A Φ(x, fx)). This proves ACT. 

 Put informally, what this shows is that in Constructive 

Type Theory the consequent of ACT means nothing more than its 

antecedent. Indeed, as we have already pointed out, from a strictly 

constructive point of view, the assertability of an alternation of 

quantifiers xyR(x,y) means precisely that one is given a function 

f for which R(x, fx) holds for all x. 

 What does the above derivation of ACT amount to in set-

theoretic terms? Tracing the argument through using the set-

theoretic column of the above concordance, one finds that, rather 

than demonstrating AC in any of its set-theoretic forms, it 

establishes a bijection, for any doubly indexed family of sets     

{Aij: <i,j>  I  J}, between the sets  and 
I

ij ifi
i I i Ij J f J

A A
  
  . This 

bijection is natural and does not require the use of AC to prove its 

existence set-theoretically. On the other hand, in set theory AC is 

not represented by this, or any other, bijection, but rather by each 

of the two equalities in which  is replaced by , and  is replaced 

by  in one, but not the other. These are the distributive laws 

I

ij ifi

i I j J i If J

A A
  

=           
I

ij ifi
i I i Ij J f J

A A
  

=  . 

These facts can be tabulated as follows: 

 
            Statement              Type-theoretic interpretation      Set-theoretic interpretation 

         ij A(i, j)           
ij

i I j J
A

 
  

ij

i I j J

A
 

or     

ij
i I j J

A
 
  
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            fi A(i, fi)            
I

ifi
i If J

A

  

I

ifi

i If J

A


  

or
I

ifi
i If J

A

  

 

 The presence of the natural bijection between the type-

theoretic interpretations of ij A(i, j) and fi A(i, j) embodies 

the idea that, from the constructive standpoint, the two statements 

are not just logically equivalent but intensionally equivalent in that 

they have the same meaning184: the assertability of ij A(i, j) means 

precisely to be given a function f for which A(i, fi) holds for all i. 

The bijection, as it were, converts each element of the set 

representing ij A(i, j) into an element of the set representing  

fi A(i, j) (and vice-versa). Nothing further is required, under the 

propositions-as-types doctrine, to affirm the equivalence of the 

two statements. This equivalence has accordingly come to be 

termed the intensional Axiom of Choice: it is essentially 

tautologous185, mathematically “trivial”. By contrast, the 

equivalence between ij A(i, j) and fi A(i, j) as asserted by AC 

is represented, under the set-theoretic186 interpretation, by the 

extensional equality of the representing sets, i.e., the assertion that, 

 
184 Here we again recall Bishop’s [1967] assertion that a choice function exists in 
constructive mathematics because a choice is implied by the very meaning of existence. 
185 Precisely as Ramsey (v . supra) asserted, but in this case for quite different reasons. 
Ramsey construed, and accepted the truth of AC as asserting the objective existence of 
choice functions, given extensionally and so independently of the manner in which they 
might be described. But the intensional nature of constructive mathematics, and, in 
particular, of the “propositions-as-types” doctrine decrees that nothing is given 
completely independently of its description. This leads to a strong construal of the 
quantifiers which, as we have observed, “trivializes” AC  by rendering the antecedent of 
the implication constituting it essentially equivalent to the consequent. It is remarkable 
that AC has been considered tautological both from an extensional and from an 
intensional point of view. 
186 Or topos-theoretic: see Chapter VI. 
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as a matter of fact, they have the same elements. This, AC as 

understood by the majority of mathematicians, has come to be 

called by type-theorists the extensional Axiom of Choice. From the 

standpoint of the practicing mathematician the extensional Axiom 

of Choice is nontrivial in the sense that its affirmation is more than 

a mere matter of definition. That being the case, it might be 

appropriate to call it the Postulate, rather than the Axiom of Choice, 

in accordance with the Greek mathematicians’ use of the term 

“axiom” to signify a self-evident assertion, a universal 

assumption, while the term “postulate” was used for an assertion 

lacking such universality and applying only to the subject under 

study187.  

 It is of interest to compare all this with the analysis of AC 

presented by Paul Bernays in the 1930s.188 He saw AC as the result 

of a natural extrapolation of what he terms “extensional logic”, 

valid in the realm of the finite, to infinite totalities. He considers 

formulation AC3* . In the special case in which A contains just 

two (or, more generally, finitely many elements), AC3* is 

essentially just the usual distributive law for  over . Bernays 

now observes: 

The universal statement of the principle of choice is then nothing 
other than the extension of an elementary-logical law [i.e. the 
distributive law] for conjunction and disjunction to infinite 
totalities, and the principle of choice constitutes thus a 
completion of the logical rules that concerns the universal and the 
existential judgment, that is, of the rules of existential inference, 

 
187 In topos theory AC is treated precisely as a “postulate” in the Greek sense. For there 
the role of AC is to single out toposes of constant sets from general toposes of varying 
sets, in much the same way that the parallel postulate has come to be employed to single 
out flat geometries from curved ones. On the other hand, it is striking that – as pointed 
out above – in his 1908 formulation of AC Zermelo presents it as a genuine axiom, as 
opposed to the mere postulatory form in which it was presented in 1904.  
188 Bernays [1930-31]. 
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whose application to infinite totalities also has the meaning that 
certain elementary laws for conjunction and disjunction are 
transferred to the infinite.  

He goes on to remark that the principle of choice “is entitled to a 

special position only to the degree that the concept of function is 

required for its formulation.” Most striking is his further assertion 

that the concept of function “in turn receives an adequate implicit 

characterization only through the principle of choice.”  

 What Bernays seems to be saying is that in asserting the 

antecedent of AC3*, in this case xAyA R(x,y), one is 

implicitly asserting the existence of a function f: A → A for which 

R(x,fx) holds for all x —that is, the consequent of AC3*.  On the 

surface, this seems remarkably similar to the justification of AC 

under the constructive interpretation of the quantifiers in which, 

let us remind ourselves once again, the assertability of an 

alternation of quantifiers xyR(x,y) means precisely that one is 

given a function f for which R(x,fx) holds for all x. However, 

Bernays goes on to draw the conclusion that, for the concept of 

function arising in this way, “the existence of a function with a 

[given] property in no way guarantees the existence of a concept-

formation through which a determinate function with [that] 

property is uniquely fixed.” In other words, the existence of a 

function may be asserted without the ability to provide it with an 

explicit definition189. This is incompatible with strict 

constructivism.    

 Bernays and the constructivists both affirm AC3 through 

the claim that its antecedent and its consequent have the same 

meaning. But there is a difference, namely that, while Bernays in 

 
189 This fact, according to Bernays, renders the usual objections against the principle of 
choice invalid, since these latter are based on the misapprehension that the principle “ 
claims the possibility of a choice”.    
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essence agrees with the constructive interpretation in treating the 

quantifier block xy as meaning fx, he interprets the 

existential quantifier in the latter classically, so that in affirming 

“there is a function ” it is not necessary, as under the constructive 

interpretation, actually to be given such a function. 

 

ZERMELO’S 1904 AND 1908 FORMULATIONS OF AC 

CONTRASTED TYPE-THEORETICALLY 

We have seen that Zermelo’s 1904 formulation of AC, in particular 

in its AC3 version (more exactly, its ACT version) is provable in 

Constructive Type Theory. However, this is not the case for 

Zermelo’s 1908 formulation, the combinatorial Axiom of Choice 

CAC. This was pointed out by Martin-Löf190, who used a 

simplified form of Constructive Type Theory as a setting within 

which to contrast the two forms of AC. In Constructive Type 

Theory, according to Martin-Löf, the essential difference between 

these two forms of AC can be seen as arising from the implicit use 

of different realizations of the concept of set. The first and most 

basic, the intensional concept of set, is that of a plurality whose 

elements are taken to be equal when they are identical in the 

intensional sense of Constructive Type Theory. The second, the 

extensional concept of set, is that of a plurality whose elements 

are taken to be equal when they are “extensionally” equal in the 

usual set-theoretical sense. This amounts to taking an extensional 

set to be a(n) (intensional) set equipped with an equivalence 

relation representing the “extensional” equality of its elements, 

that is, a pair S = (S, =S) where S is a set and =S is an equivalence 

relation on S. We shall use bold-face italic letters in this way to 

denote extensional sets.   

 
190 Martin-Löf [2006]. 
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Because the formulation of the constructively provable 

version AC3 of the Axiom of Choice involves just intensional sets 

in the above sense, it is natural to call AC3 in this context the 

intensional Axiom of Choice. This, as we have seen, is provable 

within constructive type theory, and here we shall label it simply 

AC. Thus AC is the assertion that, for any sets I and S,  

R  I  S  xIx S R(i, x)  (f: I → S)xI R(i, fi) 

 We now want to formulate the corresponding choice 

principle for extensional sets. To do this we need to introduce the 

notions of extensional relation and extensional function. Thus let I 

and S be extensional sets. A relation R between I and S is called 

extensional , Ext(R),  if it satisfies the conditions      

i =I j  [R(i, x)  R(j, x)]    x =S y  [R(i, x)  R(i, y)] . 

A function f: I → S is called extensional if                                   

iIjI (i =I j  fi  =S fj). We write   f: I ext⎯⎯⎯→ S to indicate that f 

is extensional. Then the Axiom of Choice for extensional sets takes 

the form:  

ExtAC191       R  I  S  Ext(R) iIxS R(i, x)  ( f: 

I ext⎯⎯⎯→S)                                                                                                                                            

iI R(i, fi). 

Martin-Löf shows that, when suitably formulated in an 

“extensional” form, CAC is equivalent to ExtAC (as well as to 

some other principles) within his simplified version of 

Constructive Type Theory. That is,  Zermelo’s 1904 version of AC, 

 
191 ExtAC is to be distinguished from the extensional versions of the Axiom of Choice 
UEAC  and  EAC  formulated within the weak set theory WST introduced in the 
previous chapter. In fact, formulated within WST, ExtAC is readily seen to be “in 

between” the two other versions in that the implications UEAC  ExtAC  EAC are 

provable in WST. Since, in WST, EAC  REMS (Thm. 2(c) of Ch. V), it also follows that 

ExtAC  REMS. 
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the “intensional” version, is constructively valid, but the 1908 

version, the “extensional” version, is not192. 

 We are going to present these arguments within the weak 

set theory WST introduced in the previous chapter. One 

difference between using Constructive Type Theory and WST as a 

background theory should be noted. In Constructive Type Theory, 

AC is provable, but in WST, it is not. Thus our arguments will be 

formulated within WST + AC.  

 In order to formulate a suitably “extensional” version of 

CAC, we need to introduce the concept of an extensional family of 

subsets of an extensional set. First, what should we take an 

extensional subset of an extensional set (S, =S)  to be? Precisely 

what is called in set theory a subset saturated with respect to the 

equivalence relation =S, that is, a subset X  S satisfying                 

x =S y  [x  X  y  X]. Granted this, we make the following 

definition: given an extensional set S = (S, =S), an extensionally 

indexed family of disjoint extensional subsets of S is specified by the 

following data: 

• An extensional set I = (I, =I)   

• A family {Ai: i  I} of subsets of S satisfying  

(i) x =S y  [x  Ai  y  Ai] 

(ii) i =I j  Ai ≈ Ai 193 

(iii) x[x  Ai  Aj  i =I j] 

(iv) iIxS (x  Ai) 

 
192 This exactly reverses Zermelo’s essentially realist view of the matter. For he states 
that the 1904 version of AC  was “ somewhat tainted with subjectivity”, and so 
presumably unacceptable, while in his eyes the “purely objective character” of the 1908 
version “is immediately evident”.    
193 Recall that X ≈ Y means that X and Y have the same elements, i.e. x[x  X  x  

Y]. 



THE AXIOM OF CHOICE 
 

 

 

 

211 

Let us abbreviate all this to EDF({Ai: i  I}, S). Then the 

extensional version of CAC may be written 

ExtCAC   EIF({Ai: i  I}, S)  S  S [xy[x =S y                 

                               [x  S  y  S]]  iI!Sx(x  S  Ai)]    

Here we have written !Sx for the “S-extensionalized” version of 

the unique existential quantifier !: thus !Sx(x) is an 

abbreviation for xS(x)  [xSyS[(x)  (y)  x =S y]].  

 Thus ExtCAC says that every extensionally disjoint family 

has an extensional choice set. 

 We also state the extensional version of AC4. For this we 

define a function f: I → S to be extensionally epic, written f: I
ext

S, if 

f is extensional and  xSiI(f(i) = S x). In its extensional version 

AC4 takes the form  

Epi                    f: S
ext

I   (g: I ext⎯⎯⎯→ S)iI f (g(i))  =I  i.                

Thus Epi says that every extensionally epic function has an 

extensional right inverse. 

 Finally we again recall AC5 (unique representatives can be 

picked from the equivalence classes of any given equivalence relation): 

AC5      Eq(R, I)  (f: I → I) [iI R(i, fi)  iI jI R(i, j)  fi = fj]. 

 Now we can prove Martin-Löf’s result in the form of the  

 Theorem. In WST + AC, the principles ExtAC, ExtCAC, Epi, 

and AC5 are all equivalent.  

 Proof.   We argue informally in In WST + AC 

 ExtAC  ExtCAC.  Assuming EDF({Ai: i  I}, S), apply 

ExtAC to the relation R(i, x)  (x  Ai) to  get f: I ext⎯⎯⎯→ S such 

that iI fi  Ai. Now define S = {xS: jI(x =S fj)}  Then clearly  

x =S y  [x  S  y  S], so it only remains to show that any pair 

of members of S  Ai are =S –equivalent. Suppose then that x, y  
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S  Ai. Then x =S fj and y =S fk for some j, k  I. Now x  Ai  and x 

=S fj gives fj  Ai  by (i), and this, together with fj  Aj gives i =I j 

by (iii). Similarly i =I k. Hence j =I k. From the extensionality of f 

we deduce fj =S fk, whence x =S y. ExtCAC follows. 

 ExtCAC  Epi.  Suppose  f: S
ext

I . For i  I define             

Ai = {x S: fx =I i}. It is then easily verified that EDF({Ai: i  I}, S) 

holds. Applying ExtCAC, we get a subset S  S for which  

(*)        [xy[x =S y  [x  S  y  S]]  iI!Sx(x  S  Ai)]. 

 

Next, apply IAC to the relation R(i, x)  (x  S  Ai) to get g: I → S 

for which iI(gi  S  Ai). It follows that iI f (g(i))  =I  i, so it 

only remains to show that g is extensional. Given i, j  I, we have 

gi  S  Ai and gj  S  Aj. So if i =I j, then Ai ≈ Aj, whence          

gi  S  Aj. But now from gj  S  Aj and the second conjunct of 

(*) it follows that gi =S gj. So g is extensional and Epi follows. 

 Epi  AC5. Let R be an equivalence relation on a set I and 

write IdI  for the identity relation on I. Then clearly the identity 

map on I is extensionally epic from (I, IdI) to (I, R). Assuming Epi, 

there is then a function f: I → I for which  R(gi, i) and R(i, j)  

IdI(fi, fj) )  fi = fj. This gives AC5. 

 AC5  ExtAC. Assume the antecedent of ExtAC, and use 

IAC to obtain a choice function f: I → S for which iI(R(i, fi). 

Assuming AC5, get a g: I → I satisfying gi =I i and i =I j  gi = gj. 

Let h = f ○ g. Then h is extensional, since i =I j  gi = gj  fgi =S fgj. 

Also, for i  I, we have R(gi, fgi), i.e. R(gi, hi). Since  gi =I i and R is 

extensional we conclude that R(gi, hi). ExtAC follows.  ■ 

 

INTENSIONAL AND EXTENSIONAL AC COMPARED 

We have noted that, from a set-theoretic point of view, the 

affirmability of the intensional Axiom of Choice in Constructive 
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Type Theory corresponds to the fact that, for any doubly-indexed 

family of sets {Aij : i  I, j  J} there is a bijection                    

 (1)                                
( )

I
ij if i

i I i Ij J f J

A A
  

  . 

This bijection is easily described: to wit, it is the map  

(2)                                         g  (1g, 2g) = g*, 

where 1, 2 are the projections of ordered pairs onto their first 

and second coordinates.  

Note that  

(3)      for g  ij
i I j J

A
 
 , g* is a pair of functions (e, f) with f  JI 

and e  
( )if i

i I
A


 . 

 We have also observed that in set theory, the Axiom of 

Choice is equivalent to the assertion that, for any doubly-indexed 

family of sets  {Aij : i  I, j  J}, 

   (4)                           
( )

I
ij if i

i I i Ij J f J

A A
  

  . 

Let us attempt to elucidate, within set theory, the connection 

between the two formulations of AC given by (1) and (4).  

 First observe that there is a natural epic map 

ij
i I j J

A
 
  ij

i I j J
A

 
  

given by 

g  1  g 

Now let us assume that this map has a right inverse u, that is, 

u: 
ij

i I j J
A

 
 → ij

i I j J
A

 
  

satisfies 

(5)                                               1u(k) = k,  

for all k  ij
i I j J

A
 
 . 



THE AXIOM OF CHOICE 
 

 

 

 

214 

 We are now in a position to use (1), together with the 

existence of the map u, to obtain (4). Given any k  ij
i I j J

A
 
 , 

under  the natural bijection (2), u(k) is correlated with the pair of 

maps  

(1u(k) , 2u(k)), 

i.e., using (5), with  

                                                 (k , 2 u(k)). 

Writing f = 2 u(k), it follows from (3) that 

f  JI  and k  
( )if i

i I
A


 , 

whence 

k  
( )

I
if i

i If J

A

 . 

Thus we have derived (4). 

 Of course, from a formal standpoint the argument we have 

given amounts merely to a derivation in set theory of (4) from 

AC4, using the set-theoretically provable principle (1) as a step 

along the way. However, this can be put in much more suggestive 

terms.  For each g  
ij

i I j J
A

 
  and each i  I, the identity of the 

(unique) j  J for which g(i)  Aij. is, as it were, information 

“coded” into 
ij

i I j J
A

 
 . To apply the epi 

ij
i I j J

A
 
  

ij
i I j J

A
 
  is, 

thus, in effect, to discard this information: after the application, 

one only “knows” that g(i) is a member of some Aij but not 

precisely which. The map u furnished by AC4 essentially 

resupplies that information. So starting with k  
ij

i I j J
A

 
 , if one 

applies u to it, and then applies to the result the bijection (2), one 

winds up with a map f  JI for which k(i)  Aif(i) for all i  I.  This is 

exactly what is demanded by (1). 
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A LAST LOOK AT AC AND THE PROPOSITIONS-AS-TYPES DOCTRINE  

As we have seen, under the propositions- as-types interpretation, 

AC is provable, and so a fortiori has no “untoward” logical 

consequences within that framework. On the other hand, we also 

know that in intuitionistic set theory, or in the internal language 

of a topos this is far from being the case, for, as Diaconescu’s 

theorem shows, in the latter AC implies LEM. This prompts the 

question: what modification needs to be made to the propositions-

as-types doctrine so as to yield the set- or topos-theoretic 

interpretation of AC? An illuminating answer to this question has 

been given by Maietti [2005] through the use of so-called 

monotypes (or mono-objects), that is, (dependent) types containing 

at most one entity or having at most one proof. In Set, mono 

objects are singletons, that is, sets containing at most one element.  

 Monotypes correspond to monic maps. This can be 

illustrated concretely by considering the toposes Biv of bivariant 

sets introduced above and the topos Indset of indexed sets. The 

objects of Indset are indexed sets of the form M = {<i, Mi>: i  I} 

with arrows  f: M  N indexed sets of maps fi: Mi → Ni .It can be 

shown that these two categories are equivalent. If we think of (the 

objects of) Set as representing simple or static types, then (the 

objects of) Indset, and hence also of  Biv , represent dependent or 

variable types. It is easily seen that a monotype, or object, in 

Indset, is precisely an object M for which each Mi has at most one 

element. Moreover, under the equivalence between Indset and 

Biv , such an object corresponds to a monic map- object in Biv .  

 Now consider Biv  as a topos. Under the topos-theoretic 

interpretation in Biv, formulas correspond to monic arrows, which 

in turn correspond to mono-objects in Indset. Carrying these 
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correspondences over entirely to Indset yields the sought 

modification of the propositions-as-types interpretation to bring it 

into line with the topos-theoretic interpretation of formulas, 

namely, to take formulas or propositions to correspond to mono-

objects, rather than to arbitrary objects. Let us call this the formulas-

as-monotypes interpretation. 

 Finally let us reconsider AC under the formulas-as-

monotypes interpretation within Set.  It will be convenient to 

rephrase AC as the assertion 

(*)                              iI jJ Mij   fJI iI Mif(i) 

where <Mij: iI, jJ> is any doubly indexed family of propositions 

(or sets). In the propositions-as-types interpretation, (*) 

corresponds to the existence of an isomorphism between 



 ij
j Ji I

M and 
 

 ( )
If J

if i
i I

M . On the other hand, AC interpreted in 

the usual way, that is, using the rules of topos semantics, can be 

presented in the form of the distributive law 

(**)                                        ( )
I

ij if i
i I j J i If J

M M
  

= . 

 In the propositions-as-types interpretation (as applied to 

Set), the universal quantifier iI corresponds to the product 

i I

 and the existential quantifier iI to the coproduct, or 

disjoint sum, .
i I

 Now in the formulas-as-monotypes 

interpretation, wherein formulas correspond to singletons, iI 

continues to correspond to ,
i I

  since the product of singletons is 

still a singleton. But the interpretation of iI is changed. In fact, 

the interpretation of iI Mi (with each Mi a singleton) now 
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becomes [ ]i
i I

M


, where for each set X, [X] = {u: u = 0  x. x  X} 

is the canonical singleton associated with X. 

  It follows that, under the formulas-as-monotypes 

interpretation, the proposition iI jJ Mij  is interpreted as the 

singleton 

(1 )                                                     


 [ ]
ij

j Ji I

M  

and the proposition fJI iI Mif(i)  as the singleton 

(2)                        
                        

 ( )[ ].
If J

if i
i I

M  

Under the formulas-as-monotypes interpretation AC would be 

construed as asserting the existence of an isomorphism between 

(1) and (2).  

 Now it is readily seen that to give an element of (1) 

amounts to no more than affirming that, for every i  I, ij
j J

M


is 

nonempty. But to give an element of (2) amounts to specifying 

maps f JI and g with domain I such that iI g(i)  Mif(i) . It 

follows that to assert the existence of an isomorphism between (1) 

and (2), that is, to assert AC under the formulas-as-monotypes 

interpretation, is tantamount to asserting AC in the form (**), so 

leading in turn to classical logic. This is in sharp contrast with AC 

under the propositions-as-types interpretation, under which, let 

us reiterate, its assertion is automatically correct and so has no 

nonconstructive consequences. 
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Appendix I 

Intuitionistic Logic 
 

 (Free) intuitionistic first-order logic has the following axioms and 

rules of inference.  

Axioms 

   → ( → ) 

  [ → ( → ) → [( → ) → ( → )] 

   → ( →   ) 

     →      →  

   →       →     

  [ → ( → ) → [( → ) → ( → )] 

    ( → ) → [( → ) → (   → )] 

    ( → ) → [( → ) → ] 

       → ( → ) 

     (t) → x(x)        x(x) → (y)   (x free in  

            and t free for x in )                                                                                        

     x = x                   (x)  x = y → (y) 

Rules of Inference 

                  →    

                                                         

                     (all free variables of  free in ) 

      

         → (x)         (x) →    

       → x(x)             x(x) →    

                                 (x  not free in ) 

 

Classical first-order logic is obtained by adding to the intuitionistic 

system the rule of inference 

                                          

                                             
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 In intuitionistic logic none of the classically valid 

logical schemes  

       LEM (Law of Excluded Middle)         

         LDN (Law of Double Negation)    →  

DEM (de Morgan’s Law)  (  ) →    

are derivable. However LEM and LDN are intuitionistically 

equivalent and DEM is intuitionistically equivalent to the 

Weakened Law of Excluded Middle:  

WLEM    . 

Also the weakened form of LDN for negated statements,  

  WLDN   →  

 is intuitionistically derivable. It follows that any formula 

intuitionistically equivalent to a negated formula satisfies LDN. 
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Appendix II 

Basic Concepts of Category Theory 

 

A category C is determined by first specifying two classes Ob(C), 

Arr(C)—the collections of C-objects and C-arrows (or morphisms).  

These collections are subject to the following axioms: 

 

• Each C-arrow f is assigned a pair of C-objects dom(f), cod(f) 

called   the  domain  and   codomain  of f,  respectively.  To   

indicate  the  fact  that  C-objects  X  and  Y  are  

respectively   the   domain  and   codomain  of  f  we write  

f: X → Y or fX Y⎯⎯→ . The collection of C-arrows with 

domain X and codomain Y is written C(X, Y). 

• Each C-object X is assigned a C-arrow 1X: X → X called the 

identity arrow on X. (1X is sometimes written id.) 

• Each pair f, g of C-arrows such that cod(f) = dom(g) is 

assigned an arrow  g  f:  dom(f) → cod(g)   called  the  

composite  of  f  and  g. Thus if f: X → Y and g: Y → Z  then   

g  f: X → Z. We also write  f gX Y Z⎯⎯→ ⎯⎯→  or gf  for  

g  f. Arrows f, g satisfying cod(f) = dom(g) are called 

composable. 

• Associativity law. For composable arrows (f, g) and (g, h), we 

have   h  (g  f) = (h  g)  f. 
•  Identity law. For any arrow f: X → Y, we have f  1X = f =     

1Y  f. 
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As a fundamental example of a category, we have the 

category Set of sets whose objects are all sets and whose arrows 

are all maps between sets (strictly, triples (f, A, B) with       

domain(f) = A and range(f)  B.) Other examples of categories are 

the category Grp  of groups, with objects all groups and arrows all 

group homomorphisms and the category Top of topological 

spaces with objects all topological spaces and arrows all 

continuous maps. A category with just one object may be 

identified with a monoid, that is, algebraic structures with an 

associative multiplication and an identity element. At the other 

extreme, a category in which there is at most one arrow between 

any pair of objects may be identified with a preordered class, that is, 

a class equipped with a reflexive transitive relation. 

 A subcategory C  of a category D is any category whose class 

of objects and arrows is included in the class of objects and arrows 

of D, respectively, and which is closed under domain, codomain, 

identities, and composition. If, further, for any           C-objects C, 

C we have C(C, C) = D(C, C), we shall say that C is a full 

subcategory of D. 

 

BASIC CATEGORY-THEORETIC DEFINITIONS 
 

                                                         

Commutative diagram  Diagram of objects and arrows such that the arrow 
obtained by composing the arrows of any 
connected path depends only on the endpoints of 
the path. 

Initial object Object 0 suach that, for any object X, there is a 

unique arrow 0  X. (In Set, 0 is Ø.) 

Terminal object Object 1 such that, for any object X, there is a 

unique arrow X  1. (In Set, 1 is{ } .) 

Element of an object X Arrow 1  X. 
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Monic arrow    X  Y Arrow f: X  Y such that, for any arrows g, h: Z  

X, fg = fh  g = h. (In Set, injective map.) 

Epic arrow       X  Y Arrow f: X  Y such that, for any arrows g, h: Y  

Z, gf = hf  g = h. (In Set, surjective map.) 

Isomorphism    X  Y Arrow f: X   Y for which there exists g: Y  X such 
that gf = 1X,  fg = 1Y. (In Set, bijective map.) 

 
 
 
 
 
 
Product of objects X, Y 

Object X  Y with arrows (projections) 
1 2 

⎯⎯ ⎯⎯→X X Y Y  such that any diagram 
                              A 
                         f            g       

 
can be uniquely completed to a commutative 
diagram 
                              A 
                    f                      g 
                                 <f,g> 

           1 2 
⎯⎯ ⎯⎯→X X Y Y  

 

In Set, X  Y is the usual Cartesian product of X 
and Y. 

Product of arrow                
f1: X1  Y1, f2: X2  Y2 

The arrow f1  f2 = < f11, f22>: X1 Y1  X2  Y2 

 
 
Diagonal arrow on object X 

Unique arrow X: X  X  X making the diagram 

                                 X 
                         1X                     1X 

                                     X               

              1 2X X
 

⎯⎯ ⎯⎯→X X      commute. 

 
 
 
 
 
 
 
 
Coproduct of objects  
X, Y 

Object X + Y with arrows (injections) 
1 2 

⎯⎯→ ⎯⎯X X + Y Y  such that any diagram 
                            X              Y                               
   
                              f             g 
                                    
                                      A 
can be uniquely completed to a commutative 
diagram 

                 1 2 
 

⎯⎯→ ⎯⎯X X + Y Y    
                                f +g 
                        f                          g 

                                        
                                       A 
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In Set, X + Y is the disjoint union of X and Y. 

 
 
 
 
 
 
 
 
 
 
 
Pullback diagram 

 
 
 
Commutative diagram of the form 
                    A                      B 
                                              f 
                                g 

                    C                       D 
such that for any commutative diagram 
                    X                      B 
                                               f 
                                g 

                    C                       D 

there is a unique !⎯⎯→X A such that  
 X 
 
                    A                      B 
                                               f 
                                g 

                    C                       D   commutes. 
 

 
 
Equalizer of pair of arrows 
          f 
A                  B 
         g 

 

Arrow 
eE ⎯⎯→ A such that fe = ge and, for any 

arrow 
'' eE ⎯⎯→ A such that fe = ge there is a 

unique ' uE ⎯⎯→E  such that eu = e. 

 
 
 
 
 
 
 
Truth value object or 
subobject classifier 
 
 
 
 
 
 
 

Object  together with arrow : 1   such that 

every monic m: A  B can be uniquely extended to 

a pullback diagram of the form 
 
                    A                      1 
                  m                           

                               (m)  

                    B                        

and conversely every diagram of the form 
                                            1 
                                                

                                          

                     B                           

has a pullback.  (m)  is called the characteristic 
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 arrow of  m. The maximal characteristic arrow TA, or 
simply T, on A, is defined to be the characteristic 
arrow of 1A. The characteristic arrow of 0  1 is 

written : 1  .    (In Set,  is the set 2 = {0, 1} and 

 is the map 1  2 taking value 1.)       

 

 
 
 
 
 
 
Power object of an object X 

Object PX together with arrow eX: X  PX   such 

that, for any f: X  Y  , there is a unique               

f*: Y  PX such that 

         X  Y 
 
    1X  f*                     f 

            

          X  PX                        commutes. 

                                eX 

(In Set, PX is the power set of X and eX is the 
characteristic function of the membership relation 
between X and PX.) 

 
 
 
 
 
Exponential of objects Y, X 

Object YX together with arrow ev: X  YX  Y such 

that, for any f: X  Z  Y, there is a unique               
f*: Z  YX such that 

         X  Z 
 
   1X  f*                     f 

            

          X  YX                      Y    commutes. 
                                eX 

(In Set, YX is the set of all maps X  Y and ev is the 
map sending (x, f) to f(x).) 

 
 
 
 
 
Product of indexed set of 

objects   {Ai: i  I} 

Object 
i

i I

 A together with arrows i: i

i I

 A  Ai 

(i  I) such that, for any arrows fi: B  Ai             

(i  I) there is a unique arrow                        

h: B   
i

i I

 A such that, for each i  I, the 

diagram        
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                        h 

          B                     
i

i I

 A  

                    fi                       i 

 
                                        Ai     commutes. 

(In Set, 
i

i I

 A is the Cartesian product of the 

Ai and the I are projection maps.) 

 

 
 
 
 
 
 
 
 
 
 
Coproduct of indexed set 

of objects {Ai: i  I} 

Object
i

i I

A together with arrows i: Ai   
i

i I

A  

(i  I) such that, for any arrows fi: Ai   B             

(i  I) there is a unique arrow                        

h: 
i

i I

A  B  such that, for each i  I, the 

diagram        

                      i 

         Ai                     i
i I

A  

                    fi                       h 

 

                                        B    commutes. 

If each Ai is a fixed object A, i
i I

A is called the  I-

indexed copower of A. (In Set, i
i I

A is the disjoint 

union of the Ai, i.e, the set { }
i I

i i


A . In 

particular the I-indexed copower of 1 in Set is 

the set {<Ø, i>: i  I}. 

               
 

A category is cartesian closed if it has a terminal object, as well 

as products and exponentials of arbitrary pairs of its objects. It is 

finitely complete if it has a terminal object, products of arbitrary 

pairs of its objects, and equalizers. A topos is a category possessing 

a terminal object 1, products, a truth-value object, and power 

objects. In particular Set is a topos. It can be shown that every 
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topos has an initial object 0, is cartesian closed, finitely complete, 

and has coproducts of arbitrary pairs of its objects. A topos in 

which  0  1  is said to be nondegenerate. A topos E is well-copowered 

if arbitrary set-indexed copowers of 1 exist in E. In particular Set 

is well-copowered. 

More on products in a category. A product of objects  A1, ..., An 

in a category C is an object A1  ...  An together with arrows        i: 

A1  ... An → Ai for i = 1, ..., n, such that, for any arrows            fi: B  

→ Ai, i = 1, ..., n, there is a unique   arrow ,    denoted  by      <f1, ..., 

fn>:   B → A1  ... An   such    that   i  <f1, ..., fn> = fi,             i = 1, 

..., n. Note that,  when n = 0,  A1  ... An is the terminal object 1. 

The category is said to have finite products if A1  ... An exists for 

all A1, ..., An. If C  has binary products, it has finite products, since 

we may take A1  ... An to be A1  (A2  (... An)...). It is easily seen 

that the product operation is, up to isomorphism, commutative 

and associative. The relevant isomorphisms are called canonical 

isomorphisms. 

A functor F: C → D between two categories C and D is a map 

that “preserves commutative diagrams”, that is, assigns to each C-

object A a D-object FA and to each C-arrow f: A → B  a D-arrow Ff:  

FA → FB in such a way that, for any object A, F(1A) = 1FA and, for 

any composable arrows f, g, we have F(g f)= Fg Ff.  

 A functor F: C → D is an equivalence if it is “an isomorphism 

up to isomorphism”, that is, if it is 

• faithful:  Ff = Fg   f = g. 

• full:  for any h: FA → FB there is f: A → B such that    

h = Ff. 

• dense:  for any D-object B there is a C-object A such 

that B    FA. 
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Two categories are equivalent, written  , if there is an equivalence 

between them. Equivalence is the appropriate notion of “identity 

of form” for categories. 

 Given functors F, G: C → D, a natural transformation 

between F and G is a map   from the objects of C  to the arrows of 

D satisfying the following conditions: 

For each C-object A, A is a  D-arrow FA → GA;  

for each C-arrow f: A → A  the diagram                                    

                                          A  

                          FA                      GA    
 
                       Ff                                     Gf 

   
                                            A       

                            A                        GA    commutes. 
 

 Finally, two functors F: C → D and G: D →C  are said to be 

adjoint to one another, written  F  G, if, for any objects A of C, B of 

D, there is a “natural” bijection between arrows  A → GB in C  and 

arrows FA → B in D. To be precise, for each such pair A, B we 

must be given a bijection AB: C(A, GB) → D(FA, B) satisfying the 

“naturality” conditions 

• for each f: A → A and h: A → GB, AB(h  f) =          

AB(h)  Ff 

• for each g: B → B and h: A → GB, AB(Gg  h) =              

g  AB(h). 

Under these conditions F is said to be left adjoint to G, and G right 

adjoint to F. 
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