APPENDIX: FREGE'S THEOREM AND THE ZERMELO-BOURBAKI LEMMA 40 JOHN L. BELL

This Appendix establishes the existence of an infinite well-ordering as a (hitherto unremarked) consequence of a general version of Zermelo's Well-ordering theorem. We also indicate how this fact can be derived along 'Fregean' lines within a certain system F of many-sorted first-order logic whose sorts correspond to Frege's domains of objects, relations, and first and second level concepts. We show that the system of axioms we formulate within F constitutes a consistent fragment of Frege's original (inconsistent) system sufficient for the development of arithmetic.

We begin by specifying the basic constituents of the system \mathbb{F} . Sorts (or domains)

 \mathcal{O} — objects

 \mathcal{B} — basic (first level) concepts

 \mathcal{R} — relations

 S_b — second level concepts

 \mathcal{S}_r — second level relational concepts

Variables and Constants

Sort	Variable	Constant
\mathcal{O} \mathcal{B}	x,y,z,\dots	a,b,c,\dots
\mathcal{R}	$X,Y,Z,\dots \ \underline{X},\underline{Y},\underline{Z},\dots$	A, B, C, \dots
\mathcal{S}_b	$\overset{\underline{\lambda}}{\underset{\sim}{X}},\overset{\underline{I}}{\underset{\sim}{Y}},\overset{\underline{J}}{\underset{\sim}{Z}},\ldots$	$\underline{\underline{A}}, \underline{\underline{B}}, \underline{\underline{C}}, \dots$
\mathcal{S}_r	$\underbrace{\widetilde{X}}, \underbrace{\widetilde{Y}}, \underbrace{\widetilde{Z}}, \dots$	$\underbrace{\overset{A}{\sim}},\overset{B}{\sim},\overset{C}{\sim},\ldots$
A term is a main 11		<i>≌',≅',</i> ⊆', · · ·

A term is a variable or a constant or one of the concept or relation or extension terms to be introduced shortly. A variable of sort \mathcal{B} or \mathcal{S}_b will be called a *concept variable* for brevity.

We assume the presence of an *identity* sign = yielding atomic statements of the form s = t where s and t are terms of the same

⁴⁰Abstracted from the Appendix to William Demopoulos and John L. Bell, "Frege's theory of concepts and objects and the interpretation of second-order logic," *Philosophia mathematica* (Series III), 1 (1993) 139–56. Reprinted by kind permission of Robert Thomas, editor of that journal, and John L. Bell.

sort. On all domains except \mathcal{O} , = is to be thought of as intensional equality.

We also assume the presence of a predication sign η yielding atomic statements of the form $s \eta t$, $(s't') \eta u$ where s is of sort \mathcal{O} , \mathcal{B} , \mathcal{R} and t is of sort \mathcal{B} , \mathcal{S}_b , \mathcal{S}_r respectively; and s', t' are both of sort \mathcal{O} and u is of sort \mathcal{R} . We read ' $s \eta t$ ' as 's falls under t.'

We shall assume the following comprehension scheme for concepts:

Corresponding to any formula $\Phi(x)$, $\Phi(x,y)$, $\Phi(X)$ or $\Phi(\underline{X})$ we are given a term s of sort \mathcal{B} , \mathcal{R} , \mathcal{S}_b , \mathcal{S}_r , respectively, for which we adopt as an axiom the formula

$$\forall \left\{ \begin{matrix} x \\ xy \\ X \\ \underline{X} \end{matrix} \right\} \left[\left\{ \begin{matrix} x \\ (xy) \\ X \\ \underline{X} \end{matrix} \right\} \eta s \leftrightarrow \Phi \left\{ \begin{matrix} x \\ xy \\ X \\ \underline{X} \end{matrix} \right\} \right].$$

We write $\widehat{x}\Phi$, $(xy)^{\widehat{}}\Phi$, $\widehat{X}\Phi$, $\widehat{\underline{X}}\Phi$ for s, as the case may be. A term of the first, third and fourth types is called the *concept* (term) determined by Φ , and a term of the second type the *relation* (term) determined by Φ .

We define the relation \equiv of extensional equality on the domains \mathcal{B} , \mathcal{R} , \mathcal{S}_b , \mathcal{S}_r by

$$X \equiv Y \iff_{df} \forall x (x \eta X \leftrightarrow x \eta Y)$$

$$\underline{X} \equiv \underline{Y} \iff_{df} \forall x \forall y [(xy) \eta \underline{X} \leftrightarrow (xy) \eta \underline{Y}]$$

$$\underline{X} \equiv \underline{Y} \iff_{df} \forall X [X \eta \underline{X} \leftrightarrow X \eta \underline{Y}]$$

$$\underline{X} \equiv \underline{Y} \iff_{df} \forall \underline{X} [\underline{X} \eta \underline{X} \leftrightarrow \underline{X} \eta \underline{Y}].$$

Clearly concepts are determined uniquely by formulas up to extensional equality. We assume that $\mathbb F$ contains

- a term e such that $e(\mathfrak{X})$ is well-formed and of sort \mathcal{O} for any concept variable \mathfrak{X} ;
- a predicate symbol E such that $E(\mathfrak{X})$ is well-formed for any concept variable \mathfrak{X} .

We finally assume the axioms

$$(1) \ \forall \mathfrak{X} \forall \mathfrak{Y} [E(\mathfrak{X}) \land E(\mathfrak{Y}) \rightarrow [e(\mathfrak{X}) = e(\mathfrak{Y}) \leftrightarrow \mathfrak{X} \equiv \mathfrak{Y}]]$$

(2)
$$\forall \mathfrak{X} \forall \mathfrak{Y} [E(\mathfrak{X}) \land \mathfrak{X} \equiv \mathfrak{Y} \rightarrow E(\mathfrak{Y})]$$

where in both (1) and (2) \mathfrak{X} and \mathfrak{Y} are concept variables of the same sort.

If we think of $e(\mathfrak{X})$ as an object representing \mathfrak{X} , Axiom 1 above expresses the idea that extensional equality of any concepts satisfying E is equivalent to identity of their representing objects. That is, for any concept \mathfrak{X} satisfying E, $e(\mathfrak{X})$ may be regarded as the extension of \mathfrak{X} . And the predicate E itself represents the property of possessing an extension. For these reasons Axiom 1 will be called the Axiom of Extensions. As for Axiom 2, it states the reasonable requirement that any concept extensionally equivalent to a concept possessing an extension itself possesses one (that is, \equiv is a congruence relation with respect to E).

A straightforward Russell type argument in \mathbb{F} enables us to infer $\neg \forall \mathfrak{X} E(\mathfrak{X}),^{41}$ that is, not every concept possesses an extension. This being the case, what concepts do we need to (consistently) assume possess extensions in order to enable an infinite well-ordering to be constructed? It was Frege's remarkable discovery that for this it suffices to assume just that extensions be possessed by the members of a certain class of simple and natural second-order concepts—those that, following Boolos, 42 we shall term numerical.

Numerical concepts are defined as follows. First, we formulate the relation \approx of equinumerosity or equipollence on $\mathcal B$ as usual:

$$\begin{split} X \approx Y &\iff_{df} \exists \underline{Z} [\forall x \forall y [(xy) \, \eta \, \underline{Z} \to x \, \eta \, X \wedge y \, \eta \, Y] \\ & \wedge \forall x \forall y \forall z [(xy) \, \eta \, \underline{Z} \wedge (xz) \, \eta \, \underline{Z} \to y = z] \\ & \wedge \forall x [x \, \eta \, X \to \exists y \, (xy) \, \eta \, \underline{Z}] \\ & \wedge \forall y [y \, \eta \, Y \to \exists x \, (xy) \, \eta \, \underline{Z}] \end{split}$$

With any basic concept X we associate the second level concept

$$||X|| =_{df} \widehat{Y}[X \approx Y].$$

Concepts of the form ||X|| are called *numerical*.

42 "The standard of equality of numbers," Chapter 8, below.

⁴¹To be explicit, define $A =_{df} \hat{x}[\forall X[e(X) = x \land E(X) \rightarrow \neg x \eta X]]$. Then $\neg E(A)$ is inferrable in \mathbb{F} .

If we assume that every numerical concept possesses an extension (i.e., $\forall XE(\|X\|)$, then the extension

$$|X| =_{df} e(||X||)$$

is called the (cardinal) number of X. Objects of the form |X| are called (cardinal) numbers. Under these assumptions it is easy to derive Hume's principle, viz.

$$\forall X \forall Y [X \approx Y \leftrightarrow |X| = |Y|].$$

We shall call a concept X (Dedekind) infinite if $\exists Y [Y \subsetneq X \land X \approx Y]$, where $Y \subsetneq X$ of course stands for $\forall x (x \eta Y \to x \eta X) \land Y \not\equiv X$. Objects of the form |X| with X infinite are called infinite numbers.

We are going to show how, in F, the existence of an infinite well-ordering (i.e. an infinite well-ordered concept) may be derived as a special case of a general set-theoretic result—formulable and provable in F—which is normally used to derive Zermelo's Well-ordering theorem. In its original form this result is what we shall call the

Zermelo-Bourbaki lemma. ⁴³ Let E be a set, \mathcal{F} a family of subsets of E and $p: \mathcal{F} \to E$ a map such that $p(X) \not\in X$ for all $X \in \mathcal{F}$. Then there is a subset M of E and a well-ordering \leq of M such that, writing S_x for $\{y: y < x\}$,

- (i) $\forall x \in M [S_x \in \mathcal{F} \land p(S_x) = x]$
- (ii) $M \not\in \mathcal{F}$.

Bourbaki employs this result to construct an elegant derivation of Zermelo's Well-ordering theorem from the Axiom of Choice. In the present context, however, it will be used to produce an equally elegant proof of what we shall call, following a suggestion of Boolos,

⁴³Lemma 3, § 2, Ch. 3 of N. Bourbaki, *Théorie des ensembles*, 2nd ed. Paris: Hermann, 1963. Bourbaki's proof is a generalization of Zermelo's argument for his Well-ordering theorem in his "Proof that every set can be well-ordered" (1904) in Jean van Heijenoort, ed., *From Frege to Gödel: a sourcebook in mathematical logic*, 1879–1931, Cambridge: Harvard University Press, 1967, Stefan Bauer-Mengelberg, tr.

Frege's theorem. Suppose given a set E and a map $n: PE \rightarrow E$ such that

$$(*) \qquad \forall X \subseteq E \ \forall Y \subseteq E \ [n(X) = n(Y) \leftrightarrow X \approx Y].$$

Then E has an infinite well-ordered subset.

Proof. We apply the Zermelo-Bourbaki lemma with \mathcal{F} the family of all subsets X of E for which $n(X) \not\in X$ and p the map n. We obtain $M \subseteq E$ and a well-ordering \leq of M such that (i) $n(S_x) = x$ for all $x \in M$, (ii) $n(M) \in M$. Writing m for n(M) we have $m \in M$ by (ii), whence $n(S_m) = m = n(M)$ by (i). Condition (*) now yields $S_m \approx M$. Since $m \notin S_m$, S_m is a proper subset of M and it follows that the latter is infinite. \square

Now both of these results can be translated into and proved within \mathbb{F} . Carrying this out for the Zermelo-Bourbaki lemma yields the

Zermelo-Bourbaki lemma in \mathbb{F} . Let S be any second level concept with respect to which \equiv is a congruence relation and t a term such that t(X) is an object for all basic concepts X and satisfies

$$\forall X \forall Y \left[X \equiv Y \land X \eta \underset{\sim}{S} \to t(X) = t(Y) \right]$$

$$\forall X \left[X \eta \underset{\sim}{S} \to \neg t(X) \eta X \right].$$

Then there is a relation R such that R is a well-ordering and, writing M for its field, and R_x for $\widehat{y}[(yx) \eta R \land y \neq x]$,

(i)
$$\forall x \left[x \eta M \to R_x \eta \underset{\sim}{\mathcal{S}} \wedge t(R_x) = x \right]$$

(ii)
$$\neg M \eta S$$
.

In the case of Frege's theorem, the same process yields

Frege's theorem in \mathbb{F} . Suppose that every numerical concept has an extension. Then there exists an infinite well-ordered concept and hence an infinite number.

Since, as is well known, Frege's original system in the *Grundge-setze* was inconsistent, we should assure ourselves that the axioms of

 \mathbb{F} , together with the hypothesis of Frege's theorem—that every numerical concept has an extension—are consistent. The easiest way to see this is by noting that the following set-theoretic interpretations yield a model of the axioms of \mathbb{F} in which the hypothesis of Frege's theorem holds. To wit, interpret \mathcal{O} as $\omega+1$, \mathcal{B} as $P(\omega+1)$, \mathcal{R} as $P((\omega+1)\times(\omega+1))$, \mathcal{S}_b as $PP(\omega+1)$, \mathcal{S}_r as $PP((\omega+1)\times(\omega+1))$, E as the subset of $PP(\omega+1)$ consisting of all elements of the form $\|X\| =_{df} \{Y \in P(\omega+1) : X \approx Y\}$ with $X \in P(\omega+1)$, and e as the map $PP(\omega+1) \to \omega+1$ which sends each $\|X\|$ with $X \in P(\omega+1)$ to its cardinality |X| ($\in \omega+1$) and everything else to 0. Thus the axioms of \mathbb{F} — together with the hypothesis of Frege's theorem — may be regarded as a consistent fragment of Frege's original system.