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APPENDIX: FREGE’S THEOREM
AND THE ZERMELO-BOURBAKI LEMMA40
JOHN L. BELL

This Appendix establishes the existence of an infinite we]l-
ordering as a (hitherto unremarked) consequence of a general ver-
sion of Zermelo’s Well-ordering theorem. We also indicate how this
fact can be derived along ‘Fregean’ lines within a certain system F
of many-sorted first-order logic whose sorts correspond to Frege’s
domains of objects, relations, and first and second level concepts.
We show that the system of axioms we formulate within F consti-
tutes a consistent fragment of Frege’s original (inconsistent) system
sufficient for the development of arithmetic.

We begin by specifying the basic constituents of the system F.
Sorts (or domains)

O — objects

B — basic (first level) concepts

R — relations

Sy — second level concepts

S, — second level relational concepts
Variables and Constants

Sort Variable Constant
O T,Y,2,... a,b,c,...
B XY, Z, ... A, B,C,...
R XY, Z,... A4,B,C,...
Sy %’X)N"" é,g,g,...
S, XY, Z,... ABC, ...

A term is a variable or a constant or one of the concept or relation
Or extension terms to be introduced shortly. A variable of sort B or
Sy will be called g concept variable for brevity.

We assume the presence of an identity sign = yielding atomic
statements of the form s = ¢ where s and ¢ are terms of the same

40 Abstracted from the Appendix to William Demopoulos and John L. Bell,
“Frege’s theory of concepts and objects and the interpretation of second-order
logic,” Philosophiq mathematica (Series II), 1 (1993) 139-56. Reprinted by
kind permission of Robert Thomas, editor of that journal, and John L. Bell.
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sort. On all domains except @, = is to be thought of as intensional
equality.

We also assume the presence of a predication sign n yielding
atomic statements of the form snt, (s't') nu where s is of sort O,
B, R and t is of sort B, S, S. respectively; and s’, ¢’ are both of
sort O and u is of sort R. We read ‘snt’ as ‘s falls under t.’

We shall assume the following comprehension scheme for con-
cepts:

Corresponding to any formula ®(z), ®(z,y), ®(X) or D(X) we

are given a term s of sort B, R, Sy, S, respectively, for which we
adopt as an aziom the formula

xT T x
zy (zy) xy
Y x x (7522 x
X X X

We write 2@, (zy)™®, )?(I), X‘b for s, as the case may be. A
term of the first, third and fourth types is called the concept (term)
determined by ®, and a term of the second type the relation (term)
determined by ®.

We define the relation = of ertensional equality on the domains
B, R, S, S, by

X =Y <=y V:c(:chLaasnY)
X =Y <=y VaVy|(zy)n X < (zy)nY]
X=Y vy VX[X?]%HXT}Z]
X=Y =y VX[XnX - XnY]

Clearly concepts are determined uniquely by formulas up to exten-
sional equality. We assume that F contains

* a term e such that e(X) is well-formed and of sort @ for any
concept variable X;

e a predicate symbol E such that E(X) is well-formed for any con-
cept variable X.

We finally assume the axioms

(1) VIVY[E(X) A E(®) - [e(X) = e(D) o X = )]
(2) VAVY[E(X) A X =D — E®)]
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where in both (1) and (2) X and Y are concept variables of the same
sort.

If we think of e(X) as an object representing X, Axiom 1 above
expresses the idea that extensional equality of any concepts satisfy-
ing E is equivalent to identity of their representing objects. That
is, for any concept X satisfying E, e(X) may be regarded as the ez-
tension of X. And the predicate E itself represents the property of
possessing an extension. For these reasons Axiom 1 will be called
the Aziom of Ertensions. As for Axiom 2, it states the reasonable
requirement that any concept extensionally equivalent to a concept
possessing an extension itself possesses one (that is, = is a congru-
ence relation with respect to E).

A straightforward Russell type argument in F enables us to infer
~VXE(X),* that is, not every concept possesses an extension. This
being the case, what concepts do we need to (consistently) assume
possess extensions in order to enable an infinite well-ordering to be
constructed? It was Frege’s remarkable discovery that for this it
suffices to assume just that extensions be possessed by the members
of a certain class of simple and natural second-order concepts—those
that, following Boolos,*? we shall term numerical.

Numerical concepts are defined as follows. First, we formulate
the relation ~ of equinumerosity or equipollence on B as usual:

X =Y =g IZVaVyl[(ay)nZ > zn X AynY)
AVaVYYz[(zy) n Z A (z2)nZ — y = 2]
AVzjzn X — Jy (wy)n Z]
AVylynY — 3z (zy)n Z]

With any basic concept X we associate the second level concept

IX]| =4 ¥ [X ~ Y.

Concepts of the form || X|| are called numerical.

“1To be explicit, define A =df £[VX[e(X) = ¢ A E(X) — —x 7 X]]. Then
—~E(A) is inferrable in .
42«The standard of equality of numbers,” Chapter 8, below.
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If we assume that every numerical concept possesses an extension
(i.e., VXE(||X])), then the extension

X1 =ar e(]| X))

is called the (cardinal) number of X. Objects of the form |X| are
called (cardinal) numbers. Under these assumptions it is easy to
derive Hume’s principle, viz. ‘

VXVY [X %Y o |X] = |V]].

We shall call a concept X (Dedekind) infinite if 3y Y& XAX ~
Y], where YV S X of course stands for Ve(znY - anX)AY £ X,
Objects of the form |X| with X infinite are called infinite numbers.

We are going to show how, in F, the existence of an infinite well-
ordering (i.e. an infinite well-ordered concept) may be derived as g
special case of a general set-theoretic result—formulable and prov-
able in F—which is normally used to derive Zermelo’s Well-ordering
theorem. In its original form this result is what we shall call the

Zermelo-Bourbaki lemma. 3 Let E be & set, F a family of
subsets of K and p: F — E 4 map such that p(X) € X for all
X € F. Then there is a subset M of E and a well-ordering < of M
such that, writing S, for {v:y <z},

(i) Yz € M[S, € F Ap(S,) = 1]
(i) M ¢ F.

Bourbaki employs this result to construct an elegant derivation
of Zermelo’s Well-ordering theorem from the Axiom of Choice. In
the present context, however, it will be used to produce an equally
elegant proof of what we shall call, following a suggestion of Boolos,

43Lemma 3, § 2, Ch. 3 of N. Bourbaki, Théorie des ensembles , 2nd ed. Paris:

Hermann, 1963. Bourbaki's proof is a generalization of Zermelo’s argument for

his Well-ordering theorem in his “Proof that every set can be well-ordered”

(1904) in Jean van Heijenoort, ed., From Frege to Gédel: a sourcebook in math.

. ematical logic, 1 879-1931, Cambridge: Harvard University Press, 1967, Stefan
Bauer-Mengelberg, tr.
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Frege’s theorem. Suppose given a set E and a mapn: PE - F
such that

(%) VXQEVYQE[H(X)IH(Y)HX%Y].

Then E has an infinite well-ordered subset.

Proof. We apply the Zermelo-Bourbaki lemma with & the family of
all subsets X of E for which n(X) ¢ X and p the map n. We obtain
M C E and a well-ordering < of M such that () n(S;) = z for all
z € M, (i) n(M) € M. Writing m for n(M) we have m € M by
(i), whence n(S,,) = m = n(M) by (3). Condition (*) now yields
Sm =~ M. Since m & Sm, Sm is a proper subset of M and it follows
that the latter is infinite. [J

Now both of these results can be translated into and proved
within F. Carrying this out for the Zermelo-Bourbaki lemma yields
the

Zermelo-Bourbaki lemma in F. Let S be any second level con-

cept with respect to which = is a congruence relation and t a term
such that t(X) is an object for all basic concepts X and satisfies

VXYY [X =Y AXnS = t(X) = t(Y)}

VX [Xn§ — —t(X) nX] .
Then there is a relation R such that R is a well-ordering and, writing
M for its field, and R, for Vilyz)nRAy # 2],
(i) Vz [a:nM — RenSAtR,) = a:]
(i) -Mn S.
In the case of Frege’s theorem, the same process yields

Frege’s theorem in F. Suppose that every numerical concept has
an extension. Then there exists an infinite well-ordered concept and
hence an infinite number.

Since, as is well known, Frege’s original system in the Grundge-
selze was inconsistent, we should assure ourselves that the axioms of
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F, together with the hypothesis of Frege’s theorem—that every nu-
merical concept has an extension—-are consistent. The easiest way
to see this is by noting that the following set-theoretic interpreta-
tions yield a model of the axioms of F in which the hypothesis of
Frege’s theorem holds. To wit, interpret O as w1, B as P(w+1),R
as P((w+1) x (w+1)), Sy as PP(w-+1), S, as PP((w+1) x (w+1)),
E as the subset of PP(w + 1) consisting of all elements of the form
X[ =as {Y € Plw+1): X ~ Y} with X ¢ P(w+1), and e as the
map PP(w+ 1) — w+ 1 which sends each [ X|| with X € P(w +1)
to its cardinality |X| (€ w + 1) and everything else to 0. Thus the
axioms of F — together with the hypothesis of Frege’s theorem —
may be regarded as a consistent fragment of Frege’s original system.



