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Let .7 be a topos and let ¢ be a topos defined over .# by a geometric morphism .
Objects of ¢ of the form y*X for X € 7 are called constant objects. In this paper we
shall study the full subcategory &* of ¢ consisting of all subobjects of constant
objects in ¢. In the case where # is the category . of sets we construct, for each
complete Heyting algebra H, a simple category H which we show to be equivalent to
¢*when H is the algebra of subobjects of the terminal object in &. This yields a new
and especially straightforward proof of the well-known result that a topos defined
over .7 is equivalent as a category to a Boolean extension of the universe of sets iff it
satisfies the axiom of choice. We go on to investigate the properties of A and in
Section 2 we extend some of our results to the case in which .# is an arbitrary base
topos.

1. Toposes defined over the category of sets

Let & be a topos defined over the category .# of sets by,a geometric morphism y.
In this case we know that y*/=] 1,1 and y«X = &(1, X) for I€ .7, X € £. Moreover,
the coproduct of any family of subobjects of 1 always exists in E (cf. the remark on
page 120 of [3]), and the objects of &*are precisely the objects of & which are of this
form. We first find a particularly simple alternative description of &*.

Let H be a complete Heyting algebra (frame, locale). We define the category A
as follows. The objects of H are all functions ]—a>H a={ap;c; for all sets I. If
1—>H J— H are two objects in H, an arrow aﬂb is a function p:IxJ—-H,
P= <plj>lel.jEJ such that

Pii<b; (el jel), a.n
PiiApii=0 (i€l j+j'el), (1.2)
VJPU=01 (iel). (1.3)
JE
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(We may think of an object @ of A as an ‘H-valued set’ in which a(i)e H is the
‘H-value’ of the statement iea. An arrow a®p in i may be thought of as an
‘H-valued functional relation’ between @ and b.) If ¢ = (¢,  is an object of A and
q:Jx K~ H is an arrow b—c in H, the composition gp=r of p and g is defined by

ri=\V PiNg.
Jed
It is easy to check that composition is associative and that the identity arrow id:a—a
is given by the ‘Kronecker delta’ function :7x /— H such that
8i=0 (i#i), d;=1.
If # is an #~topos, then (cf. the proof of 5.37 of [3]), ¥, is a complete Heyting
algebra; it is naturally isomorphic to the (partially ordered) set of subobjects of 1 in

&. Thus the latter is a complete Heyting algebra.
Now we can prove

1.1. Theorem. Let ¢ be an 7-topos, and let H be the complete Heyting algebra of
subobjects of 1 in &. Then *=H. If in addition the axiom of choice holds in ¢,

then (H is a complete Boolean algebra and) ¢ = H.

Proof. We define a functor F:H— & as folows. For each object @:/—H in H we
put

Fa)= 11 a;.

iel

If b:J— H is an object in H and p:a— b an arrow in H, we define F(p):Fla)—F(b)
as follows. From (1.2) and (1.3) we have

a=1lp; (iel)
Jjelt

and from the (unique) arrows p;>—b; given by (1.1) we obtain for each ie/ a
unique arrow s; such that the diagram

Py b;
I . I
1L py— 1LY,

i€l 1€l

commutes for all i€/, jeJ, where the downward arrows are canonical injections.
We put p; for the composition

Si
a;—=— 11 p;— 11 ;.
jed jes
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Thus p; is the unique arrow making the diagram

Py la=er iy
e
a, L. 115,

commute. We finally define F(p) to be the unique arrow such that the diagram

9
a— 1la;
iel

Pi lnp)

115,
jet
commutes for each i€ /, where g; is the canonical injection.

It is not hard to check that F is a functor, and clearly each object in * is
(isomorphic to an object) in the range of F. Accordingly, to show that F is an
equivalence it suffices to show that Fis full and faithful.

To verify the fidelity of F, we first observe that the diagram (1.4) is a pullback for
each iel, jeJ. For let

y— b
a—"— 11,

be a pullback. Then clearly, since (1.4) commutes, we have Pi=ry. On the other
hand, by the universality of coproducts in &, we have

a=11ry,
Jjel
so that
V pj=a;=V r;.
jed JjeJ

But it now follows from the disjointness of coproducts in « that rijAry:=0 when
J #J'. One easily concludes from this that Pij="ry, so (1.4) is indeed a pullback.
Now let a=b and a—b be arrows in A and suppose that F(p)=F(g). Then
pi=q|forall ieand so, since (1.4) is a pullback, it follows that gy = py. Similarly,
Pi=qyand so p=gq. Hence F is faithful as claimed.
Finally, we show that F is full. Subpose that @ b are ohiects in H and that
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F(a)—f'F(b) is an arrow in ¢. For each i, j form the pullback

pi— b;

2]

a,

a; L 11 b;
By the universality of coproducts in ¢ we have 11,., p;=a;and by the disjointness
of coproducts in ¢ we have p;Ap; =0 for j#j’, whence V., p;=4ai Hence
P={Pidieyjesis an arrow a—b in F. We claim F(p) = f. For this to be the case it
suffices that F(p)a,= fo, for all i I. But this follows immediately from (1.4), (1.5)
and the fact that p;=F(p)a;.

Thus F is an equivalence and é*=H.

Now suppose that ¢ satisfies the axiom of choice. Then, by 5.3 of [3], the
subobjects of 1 form a set of generators in & and so each object of  is covered by a
family of subobjects of 1. Using the axiom of choice in &, it follows easily from this
that each object of ¢ is isomorphic to a coproduct of subobjects of 1, whence
¢=¢*=H. D

We recall that [1] that, for each complete Boolean algebra B, the Boolean
extension V® of the universe of sets in the sense of Scott—Solovay may be regarded
as an 7-topos in a natural way. Since the axiom of choice holds in such a topos
(provided it holds in 1), Theorem 1.1 yields as an immediate consequence the
following well-known result.

1.2. Corollary. An 7-topos is equivalent to one of the form V® for a complete
Boolean algebra B if and only if it satisfies the axiom of choice.

Our next theorem shows that a number of conditions on ¢* and H are equivalent.

1.3. Theorem. Let & be an 7-topos and let H be the complete Heyting algebra of
subjects of 1 in &. Consider the conditions:
(i) ¢ satisfies the axiom of choice;
(ii) ¢*< & isan equivalence;
(i) @, is isomorphic to an object in ¢%;
(iv) ¢ is Boolean;
(v) ¢*=H is a topos;
(vi) ¢*=H has a subobject classifier;
(vii) H is a Boolean algebra;
(viii) H=V'® for some complete Boolean algebra B.
Then (i)« (i) = (iii) # (iv)= (v), and (v) through (viii) are equivalent. If ¢ is localic
over ¥, then all the ditions are equivalent. Thus conditions (v) through (viii) are
equivalent for any complete Heyting algebra H.
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Proof. (i)= (ii) follows from Theorem 1.1.

(ii) = (iii) is trivial.

(iii)= (iv). Recall lha&1 an object X of a topos is said to be decidable if the
diagonal subobject X »=— X X X has a complement. It is easy to verify that, since
each object X of 7 is decidable, so is each object of ¢ of the form y*X and hence so
is any subobject of such an object; i.e. any object in #*is decidable. Thus condition
(iii) implies that @, is decidable, and this is well known to be equivalent to
Booleanness of .

(iv)= (iii). If ¢ is Boolean, then Q,=1+1=y*(1+ eér.

(ii)= (i). If (i) holds, then ¢ is certainly localic over 7; but since (ii) = (i) = (iv) ¢
is also Boolean. Then by 5.39 of [3] the axiom of choice in  yields the axiom of
choice in ¢. K

(iiii)= (vi). Since ¢*is easily seen to be closed under products and subobjects in ¢,
it follows that it is also closed under pullbacks in ¢. The implication in question now
follows easily.

(v)= (vi) is trivial.

(vi)=(vii). Let ¢b;);, be the subobject classifier in A. Then, given ae H, the
object (a) of A is a subobject of the terminal object (1) in A and so there are arrows

W—Ebyjen  D—bpjes

in A such that

(@)= i SO

l I" (1.6)
»
(D) —— (bpjes
is a pullback. Since p and g are arrows in H, we have
PiNDk=q;NG;=0 for j#kel,
1=V p;=V a
jel kel
so that

V V pingi=1.

wied kek

(1.7

Since (1.6) commutes, we have

ang;=anp; (jeJ),

s

Ll SR L
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50 that

a=anl=V ahp;
jed
=V anpAg;
Jjed

=V piAg;. (1.8)
Jed

But since (1.6) is a pullback, we must have, for all ce H,
VjieJ [cApj=cAg;] = c=a.
In particular, taking c=V,., p;Aq;, we get
V ping;=a,
jes
so that, by (1.8), =V,., p;Aq;. But then, by (1.7), a has a complement V,, . p;Agx
in H. This gives (vii).
(vii)= (viii). This follows from Theorem 1.1.
(viii)= (v) is trivial.
Finally, if ¢ is localic over 7, then (vii)=(iv) and hence (in this case) (vii)= (i).

For suppose that ¢ is not Boolean; thc‘y - :2-Qis not the identity. Hence by the
localicity of ¢ there is U>+1 and U—— £ such that

« « -
U—Q+U—> 00— Q.
Since Q is injective there is 1 —ﬂ*!) such that
v—"sgru—i1—L 0

Clearly, then
14 s

1——Q——Q#1——Q.
But this means that the subobject of 1 classified by £ is not equal to its double
complement in H, i.e. H is not Boolean. [

Remark. It is well known that the implication (i) = (iv) cannot be reversed; e.g. take
4 10 be the topos .7 of G-sets for a group G. A similar counterexample shows the
irreversibility of the implication (iv)= (v): take ¢ to be the topos ™ of M-sets for a
monoid M which is not a group. Then E is not Boolean; on the other hand 1 has
only two subobjects 0 and 1 in ¢, so #*=% and (v) is satisfied.
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2. Toposes defined over an arbitrary base topos

We now suppose that ¢ is a topos defined over an arbitrary base topos .# by a
geometric morphism y and investigate the extent to which the results and
constructions of the previous section carry over to this more general setting. We
shall employ freely the internal (Mitchell-Benabou) I of a topos as
presented in §5.4 of [3].

To begin with, let us see how to generalize the construction of A. Let H be an
internally complete Heyting algebra object in .#; we define the category A as
follows. (It is important to observe that / is an ‘honest-to-goodness’ category, not
an internal category in %)

First of all, the objects of H are the objects of #/H, i.e. all arrows I-“>Hin o

Before defining the arrows of A we need some notation. We let

An:Q,~H

be the arrow defined by

Au(p)=VylaeH:(a=1y)Ap},
where p is a variable of type 2 ,. For each object J of .#, we let

0,:0xI=Q,
be the classifying arrow of the diagonal subobject of Jx J, and we put eq, for the
composition

9 Au
ST g ——VH?
Now we can define the arrows of H. Given objects 1—% Hand Jﬁb Hof H, an

arrow a—2+ bin Ais an arrow IxJ 2+ Hin # satisfying the following conditions,
where i, j, j',x are variables of types /,J,J, H respectively:

Fepl, ))=nb(j) 2.1
Fepli, )HNpGLJ ) =req 0 J) 2.2)
FeVy {x: 3j [x=pG, )]} =al). 23

(Notice that these condci!ions are just the ‘internal’ analogues of the conditions
(1.1),(1.2),(1.3).) If K—= H is an object of A and J x K —%» H is an arrow b — ¢
in H, the composition gp=r is given by

(i, k) =Vy {x: dj [x= pli, )H)NG(j, K)]},
where k is a variable of type k. The identity arrow

id,
g====d
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in A is given by
id,=Ny- (eqpany),

where 7, is ‘projection onto the first coordinate’ and Ay is the meet operation in H.
It is readily checked that these data do determine a category.

Now let & —— 5 be a geometric morphism. Then ([3], 5.36) H=y.%, is an
internally complete Heyting algebra object in %, and in this case it is easily verified
that the arrow 4 = A has (y*—ya)-transpose 1: y*Q , —» Q, classifying y*(true ).

We recall that we have defined ¢* to be the full subcategory of ¢ whose objects
are all subobjects of objects of the form ¥*I for I'e 7. We shall prove the analogue
of 1.1 in this more general context.

2.1. Theorem. ¢*=(y,Q,)".
Before g}ving the proof, we need some more terminology and a lemma.
Let X —— Y be a partial arrow in ¢, given by the diagram
J

X e Y

|

We define the graph of f, gph(f), to be the image of the arrow
S
—_tr,

2.4

X XRY,

i.e. the extension of the formula
X' [ 3 =1 () S(xD),

where x,x’, y are variables of types X, X', Y respectively.

2.2. Lemma. Let Xx Y —» Q,, let R be the subobject of X x Y classified by r, and
let 'R be the corresponding global element of QXY Then the Jollowing are
equivalent:
(i) R=gph(f) for some X S/ ¥

(ii) E=¢x ) e RINx2)eR1= y=z

(iii) E=r(x, Y)Ar(x,2) <g dy(1,2),
where x, y,z are variables of type X, Y, Y respectively. Moreover, if these conditions
hold, then the subobject X' of X on which [ is defined may be taken to be
|x: 3y (x,») € 'RY|, or equivalently |x: Fy [r(x, ¥)=true,]|.

Proof. (ii) « (iii) holds by definition.
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(i)=(ii). We have, introducing variables x’, x” of type X’,
4 & (x, ») € "gph(f)'A¢x, 2) € Tgph(f)]
=X [x=[(X)Ny = f(ATX" [x=f'(x")Az=f(x")]
=)=z,

by the monicity of f” (see diagram (2.4)).
(ii)= (i). Form the pullback

o
X

Y
I'I IH
X i

[{y:x e Ry

.5)

Then we have
¢EM ) egph(f) & 3x [x=1(x)Ap=fix)]
@ {x(x2eR'}={y} (since (2.5) is a pullback)
@ xneR (by ().

Thus R =gph(/f) as required.
To prove the final assertion, we merely observe that, by the above,

CEIAX [x=f(x)) » Ay x»eR]. O
Now we can provide the

Proof of Theorem 2.1. We define a functor
Bi(yeQ,) e

as follows. Given an arrow /— P42, in (y.2,)", let
-0,

be its transpose across the adjunction 7* 7, and let f(a) be the subobject of y*/
classified by a. Clearly f(a) € #* and every object of #*is isomorphic to an object of
this form.

Next, given an object J—b* 7+, and an arrow a—2+ b in (y+82,)7, i.e. an arrow
IxJ—Es 7+Q, in 7 satisfying (2.1), (2.2), (2.3) (with H=y,Q,), let

Py Ixyt =y (IxJ)— Q,

be its transpose across y*—y,. After Lransposition across y* —y,, conditions (2.1),
(2.2) and (2.3) become the following, where x, y, z are variables of type y*/, y*/, y*J,
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respectively, and @, b are the transp of a, b, respectively:
4= p(x, )< b(y) @.1)
=P YIAPX,Z) = Dye)(1,2) 2.2)
|3y [p(x, y)=true, ]| =a(x). (2.3)

From Lemma 2.2 we see that (2.2') implies that there is a partial arrow

i
A==tk
unique up to isomorphism, such that gph(f) is equal to the subobject of y*I x y*J
classified by p. Condition (2.3') tells us that / is defined on the subobject f(a) of p*I
classified by @, and (2.1’) that the image of f is contained in the subobject f(b) of
y*/J classified by b. Thus we may regard f as an arrow

pa—L Bb).

We put A(p)=£.

One can now check (tediously!) that # preserves composition and the identity
arrows. Thus we have a functor

B:(r*Q,)"— &,

It remains to show that £ is an equivalence of categories. We have already remarked
that every object in #* is isomorphic to one in the range of f. Also, f is clearly
faithful. To show that f is full, let a,be (7+92,)" and let ﬂ(a)—fo P(b) be an arrow
in * Let p be the characteristic arrow of the subobject of y*I x y*J corresponding
to the graph of f. It is then easy to check that (2.1, (2.29, (2.3") hold for p, and
transposition across y*—y, yields (2.1), (2.2), (2.3) for its transpose p. Thus
a——bis an arrow in (y,£,)~, and clearly f(p) = f. Hence A is full, and therefore
and equivalence. [

By taking ¢ =7 and y the identity functor in Theorem 2.1, we immediately
obtain

2.3. Corollary. @,=7. []

Having affirmed that Theorem 1.1 carries over to the case of an arbitrary base
topos, we may now ask to what extent the same is true of Theorem 1.3. I have not
been able to solve this problem completely, but I shall give a partial solution in
Theorem 2.5. First, however, we require another lemma, which gives a canonical
representation of objects in ¢*,

2.4. Lemma. For each object X of ¢ the Jfollowing are equivalent:
@) Xed
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(ii) there is a monic X —+y*y, X, where X is the partial map classifier of X. If X is
injective, then X may be replaced by X.

Proof. (ii)= (i) being trivial, we need only prove (i)= (ii). If Xe n;“. then by defini-
tion there is Y€ .7 and a monic X >~ y*Y. Hence there is y*Y — X such that the
diagram

n
A —— X

Y
g a .
commutes. Now if ¥ — p,X is the transpose of & across y*—y,, we have the
commutative diagram

»y —2. %
@) e
5*reX

where ¢ is the counit arrow. Hence the composition
yHa
X r—— yty —— P*Vs X

is monic.
Clearly, if X is injective, we may replace X by X and # by the identity arrow. [J

Now we can prove:

2.5. Theorem. Let 7 be a topos, let & be a topos defined over 7 by a geometric
morphism y, and let H=y,Q,. Consider the conditions:

(i) Q, is isomorphic to an object in ¢%;

(ii) the counit arrow y*y,Q, £ 2, has a section;

(ili) # is Boolean;

(iv) *=H has a subobject classifier;

(V) H is an internal Boolean algebra.

Then (i)« (ii). If 7 is Boolean, then (i) & (iii) = (iv) & (v). Finally, if # is Boolean
and ¢ is localic over #, then all the conditions are equivalent.

Proof. (ii)= (i) is trivial.
(i):(ii). By Lemma 2.4, if (i) holds, then since Q, is injective we have a monic
£, y*7,Q, . Again using the injectivity of Q, , there is an arrow y*y,Q, - Q,

| S— - — ——
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such that f-a=id. Let y4Q, By 782, be the transpose of £ across y* —y,. Thel{
B=e-y*(h), so
id=g-a=¢-y*p)-a.
From now on we suppose that .# is Boolean.
(i) # (iii) is proved in exactly the same manner as (iii) # (iv) in Theorem 1.3.
(i)=(iv) is proved in just the same way as (iii)= (vi) in Theorem 1.3.
(iv)=(v). Suppose that #* has a subobject classifier

true’

B o 2

Since Q' is a subobject of an object of the form y*X for some X € .# and since each
object in the Boolean topos .# is decidable, £ itself must be decidable. By standardA
arguments, the global element

true’

L0
must then have a complement

false

F—=—==x0f
It follows that
(lrue’ )
false’
is an isomorphism between 1+ 1 and 2’. Thus 1+ 1 is the subobject classifier in ¢*.
Now, by §1 of [2], we may without loss of generality replace ¢ by the /ocalic topos|

#[H] of internal sheaves on H (since #* is unaffected by the change). Since #[H] is|
localic over .7, we have a diagram of the form

Yty

|

Q

where Xe 7 and Q is the subobject classifier in #[]. Since 2 is injective, we have
an epic y*X — Q. Form the pullback

&e———tp]

I

y’X—q»!).

true

Since Z and y*X are both in #*and 1 + 1 is the subobject classifier in «*, we have a
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pullback (in #* and hence also in #[H])

AR e WG ¢

B
P»PX——1+1

where g is a | injection. Combining this with the obvious pullback diagram

S 5 |

|

(4}
true
false
— e

true

1+1
yields a pullback
z 1
true
[!‘alse] T
Xk

But then a and § - ({fi.) both classify the subobject Z of y*X, so they are equal; and
since a is epic, so is ({}i5,). But (%) is obviously monic, and so it is an isomorphism.
Therefore #[H] is Boolean, which implies, by 2.2 of [2], that H is an internal
Boolean algebra.

(v)=(iv). Again we may without loss of generality replace & by .#[H]. If H is an
internal Boolean algebra, then #[H] is Boolean by 2.2 of [2]. So the subobject
classifier 1+ 1 of #[H]isin #*, and is clearly a subobject classifier there as well.

Finally, if ¢ is localic over .#, then ¢ = .7 [H] by the relative Giraud theorem, and
(v) yields (iii) by 2.2 of [2). O

3. Final remarks

In the original version of this paper, I posed a number of open problems, one of
which has recently been solved by Gordon Monro in [4]. These problems were:

(a) Does #*= A always have exponentials?

(b) If ¢ is a Boolean topos, defined and localic over a Boolean topos .#, must the
inclusion #*¢, ¢ be an equivalence? (By Theorem 1.3, this is true when # = 7 and
the axiom of choice holds. It can also be shown to hold when # is any topos
satisfying the axiom of choice.)

(c) If the answer to (b) is, in general, no, find a characterization of those toposes
defined over a (Boolean) topos .# for which # = ¢*,
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Let me sketch a proof that a positive answer to (a) (even just for Boolean ¢) yields
the same for (b). To begin with, it is easy to show that #* inherits (finite) products
from ¢. So if #* has exp ials, where ¢ is lean and defined over a Boolean
topos .# by a geometric morphism y, then £* is a Boolean topos with subobject
classifier 2= 1+ 1 inherited from ¢. Thus ¢ and ¢* are both localic 7-toposes and,
by the relative Giraud theorem, they are both equivalent over .# to the topos #[B]
of internal sheaves on the internally complete Boolean algebra B=y,2in 7. Accord-

ingly we have a commutative diagram

et

where a is an equivalence. If X € ¢ * there is a diagram of the form X p*Ain ¢ and
hence in ¢*. Applying a gives aX > a(y*A)=y*A. Therefore aX € ¢*. Since a is an
equivalence, every object in ¢ is isomorphic to one of the form X, and hence to
one in £* Therefore ¢* ¢ is an equivalence.

Now Monro has shown that the answer to (b) is, in general, no. In fact he shows
that ¢*c ¢ can fail to be an equivalence even when the base topos # is .7, provided
the axiom of choice fails in a certain (relatively consistent) way in 7. He starts with
the well-known Halpern—Levy model N of set theory in which the axiom of choice
fails but in which every set is totally orderable. Then he constructs a certain
complete Boolean algebra B in N such that, in the corresponding Bool i
N'®), with probability 1 the power set P(R) of the set of real numbers is not totally
orderable. Thinking of N as our base topos 7 of sets and N® as the (Boolean)
topos ¢ defined over 7, it follows that the object P(R) of # cannot be (isomorphic
to an object) in %, for it is not hard to see that any object in ¢* must be totally
orderable. So in this case the inclusion #*c ¢ cannot be an equivalence. We also see
that (a) fails as well: B does not have exponentials.

Problem (c) is, however, still open.
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