SOME ASPECTS OF THE CATEGORY OF SUBOBJECTS OF CONSTANT OBJECTS IN A TOPOS

J.L. BELL

Mathematics Department, London School of Economics, London, England

Communicated by D.S. Scott Received 6 June 1980 Revised 1 April 1981

Let \mathscr{F} be a topos and let \mathscr{E} be a topos defined over \mathscr{F} by a geometric morphism γ . Objects of \mathscr{E} of the form $\gamma*X$ for $X \in \mathscr{F}$ are called *constant* objects. In this paper we shall study the full subcategory $\mathscr{E}*$ of \mathscr{E} consisting of all *subobjects* of constant objects in \mathscr{E} . In the case where \mathscr{F} is the category \mathscr{F} of sets we construct, for each complete Heyting algebra H, a simple category \widetilde{H} which we show to be equivalent to $\mathscr{E}*$ when H is the algebra of subobjects of the terminal object in \mathscr{E} . This yields a new and especially straightforward proof of the well-known result that a topos defined over \mathscr{F} is equivalent as a category to a Boolean extension of the universe of sets iff it satisfies the axiom of choice. We go on to investigate the properties of \widetilde{H} and in Section 2 we extend some of our results to the case in which \mathscr{F} is an arbitrary base topos.

1. Toposes defined over the category of sets

Let $\mathscr E$ be a topos defined over the category $\mathscr S$ of sets by a geometric morphism γ . In this case we know that $\gamma^*I=\coprod_I 1$ and $\gamma_*X=\mathscr E(1,X)$ for $I\in\mathscr S$, $X\in\mathscr E$. Moreover, the coproduct of any family of subobjects of 1 always exists in E (cf. the remark on page 120 of [3]), and the objects of $\mathscr E$ are precisely the objects of $\mathscr E$ which are of this form. We first find a particularly simple alternative description of $\mathscr E$.

Let H be a complete Heyting algebra (frame, locale). We define the category \tilde{H} as follows. The *objects* of \tilde{H} are all functions $I \stackrel{a}{\to} H$, $a = \langle a_i \rangle_{i \in I}$ for all sets I. If $I \stackrel{a}{\to} H$, $J \stackrel{b}{\to} H$ are two objects in \tilde{H} , an *arrow* $a \stackrel{p}{\to} b$ is a function $p: I \times J \to H$, $p = \langle p_{ij} \rangle_{i \in I, j \in J}$ such that

$$p_{ij} \le b_j \qquad (i \in I, j \in J), \tag{1.1}$$

$$p_{ij} \wedge p_{ij'} = 0 \quad (i \in I, j \neq j' \in J), \tag{1.2}$$

$$\bigvee_{i \in I} p_{ij} = a_i \quad (i \in I). \tag{1.3}$$

(We may think of an object a of \tilde{H} as an 'H-valued set' in which $a(i) \in H$ is the 'H-value' of the statement $i \in a$. An arrow $a \stackrel{p}{\rightarrow} b$ in \tilde{H} may be thought of as an 'H-valued functional relation' between a and b.) If $c = \langle c_k \rangle_{k \in K}$ is an object of \tilde{H} and $q: J \times K \rightarrow H$ is an arrow $b \rightarrow c$ in \tilde{H} , the composition qp = r of p and q is defined by

$$r_{ik} = \bigvee_{i \in I} p_{ij} \wedge q_{jk}$$
.

It is easy to check that composition is associative and that the identity arrow id: $a \rightarrow a$ is given by the 'Kronecker delta' function $\delta:I\times I\to H$ such that

$$\delta_{ii'} = 0 \quad (i \neq i'), \qquad \delta_{ii} = 1.$$

If ℓ is an \mathscr{I} -topos, then (cf. the proof of 5.37 of [3]), $\gamma_*\Omega_\ell$ is a complete Heyting algebra; it is naturally isomorphic to the (partially ordered) set of subobjects of 1 in \mathscr{E} . Thus the latter is a complete Heyting algebra.

1.1. Theorem. Let ℓ be an ℓ -topos, and let H be the complete Heyting algebra of subobjects of 1 in ℓ . Then ℓ *= \hat{H} . If in addition the axiom of choice holds in ℓ , then (H is a complete Boolean algebra and) $\ell \simeq \tilde{H}$.

Proof. We define a functor $F: \tilde{H} \to \ell$ as follows. For each object $a: I \to H$ in \tilde{H} we

$$F(a) = \coprod a_i$$

If $b: J \to H$ is an object in \tilde{H} and $p: a \to b$ an arrow in \tilde{H} , we define $F(p): F(a) \to F(b)$ as follows. From (1.2) and (1.3) we have

$$a_i{\cong\coprod p_{ij}} \ (i{\in}I)$$

and from the (unique) arrows $p_{ij} \rightarrow b_j$ given by (1.1) we obtain for each $i \in I$ a unique arrow s_i such that the diagram

$$\begin{array}{ccc}
p_{ij} & \longrightarrow & b_j \\
\downarrow & & & \downarrow \\
\coprod p_{ij} & \xrightarrow{s_i} & \coprod b
\end{array}$$

commutes for all $i \in I$, $j \in J$, where the downward arrows are canonical injections. We put p'_i for the composition

$$a_i \xrightarrow{\sim} \coprod_{j \in J} p_{ij} \xrightarrow{s_i} \coprod_{j \in J} b_j.$$

Thus p'_i is the unique arrow making the diagram

$$\begin{array}{ccc}
p_{ij} & \longrightarrow & b_i \\
\downarrow & & \downarrow \\
a_i & \stackrel{p'_i}{\longrightarrow} & \coprod b_i
\end{array}$$
(1.4)

commute. We finally define F(p) to be the unique arrow such that the diagram

$$a_{i} \xrightarrow{\sigma_{i}} \coprod_{i \in I} a_{i}$$

$$\downarrow^{F(p)} \coprod_{i \in I} b_{j}$$

commutes for each $i \in I$, where σ_i is the canonical injection. It is not hard to check that F is a functor, and clearly each object in ℓ^* is (isomorphic to an object) in the range of F. Accordingly, to show that F is an equivalence it suffices to show that F is full and faithful.

To verify the fidelity of F, we first observe that the diagram (1.4) is a pullback for each $i \in I$, $j \in J$. For let

$$\begin{array}{ccc}
r_{ij} & \longrightarrow & b_j \\
\downarrow & & \downarrow \\
a_i & \stackrel{p_i^*}{\longrightarrow} & \coprod b_j
\end{array}$$

be a pullback. Then clearly, since (1.4) commutes, we have $p_{ij} \le r_{ij}$. On the other hand, by the universality of coproducts in \mathcal{E} , we have

$$a_i \cong \coprod_{i \in J} r_{ij}$$
,

so that

$$\bigvee_{j \in J} p_{ij} = a_i = \bigvee_{j \in J} r_{ij}.$$

But it now follows from the disjointness of coproducts in ℓ that $r_{ij} \wedge r_{ij'} = 0$ when $j \neq j'$. One easily concludes from this that $p_{ij} = r_{ij}$, so (1.4) is indeed a pullback. Now let a^D b and a^D b be arrows in B and suppose that F(p) = F(q). Then $p'_i = q'_i$ for all $i \in I$ and so, since (1.4) is a pullback, it follows that $q_{ij} \leq p_{ij}$. Similarly, $p_{ij} \le q_{ij}$ and so p = q. Hence F is faithful as claimed. Finally, we show that F is full. Suppose that q, b are objects in \vec{H} and that

 $F(a) \xrightarrow{f} F(b)$ is an arrow in \mathscr{E} . For each i, j form the pullback

$$\begin{array}{ccc}
p_{ij} & \longrightarrow & b_{j} \\
\downarrow & & \downarrow \\
a_{i} & \xrightarrow{f\sigma_{i}} & \coprod b_{j}
\end{array}$$
(1.5)

By the universality of coproducts in $\mathscr E$ we have $\coprod_{j\in J}p_{ij}\cong a_i$ and by the disjointness by the universality of coproducts in ℓ we have $\prod_{i \in I} p_{ij} = a_i$ and by the disjoint and of coproducts in ℓ we have $p_{ij} \wedge p_{ij} = 0$ for $j \neq j'$, whence $\bigvee_{j \in I} p_{ij} = a_i$. Hence $p = (\gamma_{ij})_{i \in I, j \in J}$ is an arrow $a \rightarrow b$ in \hat{H} . We claim F(p) = f. For this to be the case it suffices that $F(p)\sigma_i = f\sigma_i$ for all $i \in I$. But this follows immediately from (1.4), (1.5) and the fact that $p_i' = F(p)\sigma_i$.

Thus F is an equivalence and $\ell^* \simeq \hat{H}$. Now suppose that ℓ satisfies the axiom of choice. Then, by 5.3 of [3], the subobjects of 1 form a set of generators in & and so each object of & is covered by a family of subobjects of 1. Using the axiom of choice in &, it follows easily from this that each object of ℓ is isomorphic to a coproduct of subobjects of 1, whence $\mathcal{E} = \mathcal{E}^* \simeq \tilde{H}$. \square

We recall that [1] that, for each complete Boolean algebra B, the Boolean extension $V^{(B)}$ of the universe of sets in the sense of Scott-Solovay may be regarded as an I-topos in a natural way. Since the axiom of choice holds in such a topos (provided it holds in \mathcal{I} !), Theorem 1.1 yields as an immediate consequence the following well-known result.

1.2. Corollary. An \mathcal{G} -topos is equivalent to one of the form $V^{(B)}$ for a complete Boolean algebra B if and only if it satisfies the axiom of choice.

Our next theorem shows that a number of conditions on ℓ^* and H are equivalent.

1.3. Theorem. Let & be an I-topos and let H be the complete Heyting algebra of subjects of 1 in &. Consider the conditions:

- (i) & satisfies the axiom of choice;
 (ii) &*← & is an equivalence;
- (iii) Ω_ε is isomorphic to an object in ε*;
- (iv) & is Boolean;
 (v) &*= H is a topos;
- (vi) &*= H has a subobject classifier;
- (vii) H is a Boolean algebra; (viii) $\tilde{H} \simeq V^{(B)}$ for some complete Boolean algebra B.

Then (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v), and (v) through (viii) are equivalent. If $\mathscr E$ is localic over I, then all the conditions are equivalent. Thus conditions (v) through (viii) are equivalent for any complete Heyting algebra H.

Proof. (i) ⇒ (ii) follows from Theorem 1.1.

(ii) ⇒ (iii) is trivial.

(iii) \Rightarrow (iv). Recall that an object X of a topos is said to be decidable if the diagonal subobject $X \to X \times X$ has a complement. It is easy to verify that, since each object X of $\mathscr I$ is decidable, so is each object of $\mathscr I$ of the form γ^*X and hence so is any subobject of such an object; i.e. any object in ℓ^* is decidable. Thus condition (iii) implies that Ω_ℓ is decidable, and this is well known to be equivalent to Booleanness of &.

(iv) \Rightarrow (iii) If ℓ is Boolean, then $\Omega_{\ell} \cong 1 + 1 \cong \gamma^*(1 + 1) \in \ell^*$. (ii) \Rightarrow (i). If (ii) holds, then ℓ is certainly localic over \mathcal{S} ; but since (ii) \Rightarrow (iii) \Rightarrow (iv) ℓ is also Boolean. Then by 5.39 of [3] the axiom of choice in I yields the axiom of

(iii) \Rightarrow (vi). Since ℓ^* is easily seen to be closed under products and subobjects in ℓ , it follows that it is also closed under pullbacks in 8. The implication in question now follows easily.

(v) ⇒ (vi) is trivial.

 $(vi) \Rightarrow (vii)$. Let $\langle b_i \rangle_{i \in I}$ be the subobject classifier in \tilde{H} . Then, given $a \in H$, the object $\langle a \rangle$ of \tilde{H} is a subobject of the terminal object $\langle 1 \rangle$ in \tilde{H} and so there are arrows

$$\langle 1 \rangle \xrightarrow{p} \langle b_j \rangle_{j \in J}, \qquad \langle 1 \rangle \xrightarrow{q} \langle b_j \rangle_{j \in J}$$

in \tilde{H} such that

$$\langle a \rangle \longrightarrow \langle 1 \rangle$$

$$\downarrow \qquad \qquad \downarrow q$$

$$\langle 1 \rangle \stackrel{p}{\longrightarrow} \langle b \rangle_{j \in J}$$

$$(1.6)$$

is a pullback. Since p and q are arrows in \tilde{H} , we have

$$p_j \wedge p_k = q_j \wedge q_k = 0$$
 for $j \neq k \in J$,
 $1 = \bigvee_{i \in J} p_j = \bigvee_{k \in J} q_k$,

so that

$$\bigvee_{m \mid e, l \mid k \in K} p_j \wedge q_k = 1. \tag{1.7}$$

Since (1.6) commutes, we have

$$a \wedge q_j = a \wedge p_j \quad (j \in J),$$

so that

$$a = a \wedge 1 = \bigvee_{j \in I} a \wedge p_j$$

$$= \bigvee_{j \in I} a \wedge p_j \wedge q_j$$

$$\leq \bigvee_{j \in I} p_j \wedge q_j.$$
(1.8)

But since (1.6) is a pullback, we must have, for all $c \in H$,

$$\forall j \in J \ [c \land p_i = c \land q_i] \Rightarrow c \le a.$$

In particular, taking $c = \bigvee_{j \in J} p_j \wedge q_j$, we get

$$\bigvee p_j \wedge q_j \leq a$$
,

so that, by (1.8), $a = \bigvee_{j \in J} p_j \wedge q_j$. But then, by (1.7), a has a complement $\bigvee_{j \neq k} p_j \wedge q_k$ in H. This gives (vii).

(vii) ⇒ (viii). This follows from Theorem 1.1.

(viii) ⇒ (v) is trivial

Finally, if ℓ is localic over ℓ , then (vii) \Rightarrow (iv) and hence (in this case) (vii) \Rightarrow (i). For suppose that ℓ is not Boolean; then $\neg \neg : \Omega \rightarrow \Omega$ is not the identity. Hence by the localicity of ℓ there is $U \mapsto 1$ and $U \stackrel{a}{\longrightarrow} \Omega$ such that

$$U \xrightarrow{\alpha} \Omega \neq U \xrightarrow{\alpha} \Omega \xrightarrow{\neg \neg} \Omega.$$

Since Ω is injective there is $1 \xrightarrow{\beta} \Omega$ such that

$$U \xrightarrow{\alpha} \Omega = U \xrightarrow{\beta} \Omega.$$

Clearly, then

$$1 \xrightarrow{\beta} \Omega \xrightarrow{\neg \neg} \Omega \neq 1 \xrightarrow{\beta} \Omega.$$

But this means that the subobject of 1 classified by β is not equal to its double complement in H, i.e. H is not Boolean. \square

Remark. It is well known that the implication (i) = (iv) cannot be reversed; e.g. take ℓ to be the topos \mathcal{F}^G of G-sets for a group G. A similar counterexample shows the irreversibility of the implication (iv) = (v): take ℓ to be the topos \mathcal{F}^M of M-sets for a monoid M which is not a group. Then E is not Boolean; on the other hand 1 has only two subobjects 0 and 1 in ℓ , so ℓ *= \mathcal{F} and (v) is satisfied.

2. Toposes defined over an arbitrary base topos

We now suppose that ℓ is a topos defined over an arbitrary base topos $\mathscr F$ by a geometric morphism γ and investigate the extent to which the results and constructions of the previous section carry over to this more general setting. We shall employ freely the internal (Mitchell–Benabou) language of a topos as presented in §5.4 of [3].

To begin with, let us see how to generalize the construction of \hat{H} . Let H be an internally complete Heyting algebra object in \mathscr{F} ; we define the category \hat{H} as follows. (It is important to observe that \hat{H} is an 'honest-to-goodness' category, not an internal category in \mathscr{F} .)

First of all, the objects of \hat{H} are the objects of \mathcal{F}/H , i.e. all arrows $I \xrightarrow{a} H$ in \mathcal{F} . Before defining the arrows of \hat{H} we need some notation. We let

$$\lambda_H : \Omega_{\mathcal{F}} \to H$$

be the arrow defined by

$$\lambda_H(p) = \bigvee_H \{a \in H : (a = 1_H) \land p\},\$$

where p is a variable of type $\Omega_{\mathcal{F}}$. For each object J of \mathcal{F} , we let

$$\delta_J: J \times J \to \Omega_J$$

be the classifying arrow of the diagonal subobject of $J \times J$, and we put eq $_J$ for the composition

$$J \times J \xrightarrow{\delta_J} \Omega \xrightarrow{\lambda_H} H$$
.

Now we can define the arrows of \hat{H} . Given objects $I \xrightarrow{a} H$ and $J \xrightarrow{b} H$ of \hat{H} , an arrow $a \xrightarrow{p} b$ in \hat{H} is an arrow $I \times J \xrightarrow{p} H$ in \mathcal{F} satisfying the following conditions, where i, j, j', x are variables of types I, J, J, H respectively:

$$F \vDash p(i,j) \le_H b(j) \tag{2.1}$$

$$F = p(i, j) \land p(i, j') \le_H \operatorname{eq}_J(j, j')$$
(2.2)

$$F \vDash \bigvee_{H} \{x \colon \exists j \ [x = p(i, j)]\} = a(i). \tag{2.3}$$

(Notice that these conditions are just the 'internal' analogues of the conditions (1.1), (1.2), (1.3),) If $K \stackrel{c}{\longrightarrow} H$ is an object of \tilde{H} and $J \times K \stackrel{q}{\longrightarrow} H$ is an arrow $b \longrightarrow c$ in \tilde{H} , the *composition qp = r* is given by

$$r(i,k) = \bigvee_{H} \left\{ x \colon \mathcal{I}j \ [x = p(i,j) \land q(j,k)] \right\},\$$

where k is a variable of type k. The identity arrow

$$a \xrightarrow{\mathrm{id}_a} a$$

in \tilde{H} is given by

$$id_a = \wedge_H \cdot \langle eq_I, a\pi_1 \rangle$$
,

where π_1 is 'projection onto the first coordinate' and \wedge_H is the meet operation in H. It is readily checked that these data do determine a category. Now let $\mathscr{E} \xrightarrow{\gamma} \mathscr{F}$ be a geometric morphism. Then ([3], 5.36) $H = \gamma_* \Omega_{\mathscr{E}}$ is an

internally complete Heyting algebra object in \mathcal{F} , and in this case it is easily verified that the arrow $\lambda = \lambda_H$ has $(\gamma^* \to \gamma_*)$ -transpose $\lambda : \gamma^* \Omega_J \to \Omega_c$ classifying γ^* (true J).

We recall that we have defined ℓ^* to be the full subcategory of ℓ whose objects are all subobjects of objects of the form γ^*I for $I \in \mathcal{F}$. We shall prove the analogue of 1.1 in this more general context.

2.1. Theorem. $\mathscr{E}^* \simeq (\gamma_* \Omega_{\mathscr{E}})^{\sim}$.

Before giving the proof, we need some more terminology and a lemma. Let $X \xrightarrow{f} Y$ be a partial arrow in ℓ , given by the diagram

$$X \xrightarrow{f} Y$$

We define the graph of f, gph(f), to be the image of the arrow

$$X' \xrightarrow{\langle f', f \rangle} X \times Y,$$

i.e. the extension of the formula

$$\exists x' \ [\langle x, y \rangle = \langle f'(x'), f(x') \rangle],$$

where x, x', y are variables of types X, X', Y respectively.

2.2. Lemma. Let $X \times Y \xrightarrow{r} \Omega_{\delta}$, let R be the subobject of $X \times Y$ classified by r, and let $\lceil R \rceil$ be the corresponding global element of $\Omega_{\delta}^{X \times Y}$. Then the following are equivalent:

- (i) R = gph(f) for some $X \xrightarrow{f} Y$:
- (ii) $E \vDash \langle x, y \rangle \in \lceil R \rceil \land \langle x, z \rangle \in \lceil R \rceil \Rightarrow y = z;$
- (iii) $E \vDash r(x, y) \land r(x, z) \le \Omega_n \delta_{\gamma}(y, z)$,

where x, y, z are variables of type X, Y, Y respectively. Moreover, if these conditions hold, then the subobject X' of X on which f is defined may be taken to be $|x: \exists y \langle x, y \rangle \in \lceil R \rceil |$, or equivalently $|x: \exists y [r(x, y) = \text{true}_{\ell}]|$.

Proof. (ii) ⇔ (iii) holds by definition.

(i) \Rightarrow (ii). We have, introducing variables x', x'' of type X',

$$\begin{split} & \mathscr{E} \models \langle x, y \rangle \in \lceil \mathrm{gph}(f) \rceil \land \langle x, z \rangle \in \lceil \mathrm{gph}(f) \rceil \\ & \Rightarrow \exists x' \ [x = f'(x') \land y = f(x')] \land \exists x'' \ [x = f'(x'') \land z = f(x'')] \\ & \Rightarrow y = z. \end{split}$$

by the monicity of f' (see diagram (2.4)). (ii) ⇒ (i). Form the pullback

$$X' \xrightarrow{f} Y$$

$$f' \downarrow \qquad \qquad \downarrow \{ \{ \} \}$$

$$X \xrightarrow{\{ \{ y : (x,y) \in [R] \} \}} Q^{Y}$$

$$(2.5)$$

Then we have

$$\mathscr{E} \models \langle x, y \rangle \in \lceil \operatorname{gph}(f) \rceil \Leftrightarrow \exists x' [x = f'(x') \land y = f(x')]$$

$$\Leftrightarrow \{x: \langle x, z \rangle \in \lceil R \rceil \} = \{y\} \quad \text{(since (2.5) is a pullback)}$$

$$\Leftrightarrow \langle x, y \rangle \in \lceil R \rceil \quad \text{(by (ii))}.$$

Thus R = gph(f) as required.

To prove the final assertion, we merely observe that, by the above,

$$\mathcal{E} \models \mathcal{I} x' \; [x = f'(x')] \; \Leftrightarrow \; \mathcal{I} y \; [\langle x,y \rangle \in \lceil R^{\rceil}]. \qquad \Box$$

Now we can provide the

Proof of Theorem 2.1. We define a functor

$$\beta: (\gamma_* \Omega_{\mathbb{A}})^- \to \mathcal{E}^*$$

as follows. Given an arrow $I \xrightarrow{a} \gamma_* \Omega_{\ell}$ in $(\gamma_* \Omega_{\ell})^-$, let

$$\gamma^*I \xrightarrow{\bar{a}} \Omega$$

be its transpose across the adjunction $\gamma^* - \gamma_*$, and let $\beta(a)$ be the subobject of γ^*I classified by \bar{a} . Clearly $\beta(a) \in \mathscr{E}^*$ and every object of \mathscr{E}^* is isomorphic to an object of

Next, given an object $J \stackrel{b}{\longrightarrow} \gamma_* \Omega_\ell$ and an arrow $a \stackrel{p}{\longrightarrow} b$ in $(\gamma_* \Omega_\ell)^-$, i.e. an arrow $I \times J \stackrel{p}{\longrightarrow} \gamma_* \Omega_\ell$ in $\mathscr F$ satisfying (2.1), (2.2), (2.3) (with $H = \gamma_* \Omega_\ell$), let

$$\bar{p}: \gamma^*I \times \gamma^*J \cong \gamma^*(I \times J) \longrightarrow \Omega_A$$

be its transpose across $\gamma^* \to \gamma_*$. After transposition across $\gamma^* \to \gamma_*$, conditions (2.1), (2.2) and (2.3) become the following, where x, y, z are variables of type $\gamma^*I, \gamma^*I, \gamma^*J$,

respectively, and \bar{a}, \bar{b} are the transposes of a, b, respectively:

$$\mathscr{E} \models \bar{p}(x, y) \le \bar{b}(y) \tag{2.1'}$$

$$\mathcal{E} \models \bar{p}(x, y) \land \bar{p}(x, z) \le \delta_{y \bullet j}(y, z) \tag{2.2'}$$

$$|\exists y \ [\bar{p}(x, y) = \text{true}_{\alpha}]| = \bar{a}(x).$$
 (2.3')

From Lemma 2.2 we see that (2.2') implies that there is a partial arrow

$$\gamma *I \xrightarrow{f} \gamma *J$$
,

unique up to isomorphism, such that gph(f) is equal to the subobject of $y*I \times y*J$ classified by p. Condition (2.3') tells us that f is defined on the subobject $\beta(a)$ of γ^*I classified by \bar{a} , and (2.1') that the image of f is contained in the subobject $\beta(b)$ of $\gamma*J$ classified by δ . Thus we may regard f as an arrow

$$\beta(a) \xrightarrow{f} \beta(b)$$
.

We put $\beta(p) = f$.

One can now check (tediously!) that β preserves composition and the identity arrows. Thus we have a functor

$$\beta: (\gamma^*\Omega_{\varepsilon})^- \longrightarrow \varepsilon^*.$$

It remains to show that β is an equivalence of categories. We have already remarked that every object in ℓ^* is isomorphic to one in the range of β . Also, β is clearly faithful. To show that β is full, let $a,b \in (\gamma_*\Omega_\ell)^-$ and let $\beta(a) \xrightarrow{f} \beta(b)$ be an arrow in \mathcal{E}^* . Let \bar{p} be the characteristic arrow of the subobject of $\gamma^*I \times \gamma^*J$ corresponding to the graph of f. It is then easy to check that (2.1'), (2.2'), (2.3') hold for \bar{p} , and transposition across $\gamma^* \neg \gamma_*$ yields (2.1), (2.2), (2.3) for its transpose p. Thus $a \xrightarrow{P} b$ is an arrow in $(\gamma_* \Omega_c)^-$, and clearly $\beta(p) = f$. Hence β is full, and therefore and equivalence.

By taking $\mathscr{E} = \mathscr{F}$ and γ the identity functor in Theorem 2.1, we immediately obtain

2.3. Corollary. $\tilde{\Omega}_j \simeq \tilde{\mathcal{F}}$.

Having affirmed that Theorem 1.1 carries over to the case of an arbitrary base topos, we may now ask to what extent the same is true of Theorem 1.3. I have not been able to solve this problem completely, but I shall give a partial solution in Theorem 2.5. First, however, we require another lemma, which gives a canonical representation of objects in ℓ^* .

2.4. Lemma. For each object X of ℰ the following are equivalent:

 (i) X ∈ ℰ*;

(ii) there is a monic $X \to \gamma^* \gamma_* \bar{X}$, where \bar{X} is the partial map classifier of X. If X is injective, then \bar{X} may be replaced by X.

Proof. (ii) \Rightarrow (i) being trivial, we need only prove (i) \Rightarrow (ii). If $X \in \ell^*$, then by definition there is $Y \in \mathscr{F}$ and a monic $X \mapsto y^*Y$. Hence there is $y^*Y \xrightarrow{\alpha} X$ such that the diagram

$$X \xrightarrow{\eta} \bar{X}$$

commutes. Now if $Y \xrightarrow{\alpha} \gamma_* \bar{X}$ is the transpose of α across $\gamma^* \dashv \gamma_*$, we have the commutative diagram

where ε is the counit arrow. Hence the composition

$$X \longmapsto \gamma^* Y \xrightarrow{\gamma^*(\bar{\alpha})} \gamma^* \gamma_* \bar{X}$$

Clearly, if X is injective, we may replace \bar{X} by X and η by the identity arrow. \Box

Now we can prove:

2.5. Theorem. Let F be a topos, let & be a topos defined over F by a geometric morphism γ_{ϵ} and let $H = \gamma_{\epsilon}\Omega_{\epsilon}$. Consider the conditions: (i) Ω_{ϵ} is isomorphic to an object in ℓ^{*} ; (ii) the counit arrow $\gamma^{*}\gamma_{*}\Omega_{\epsilon} \stackrel{\epsilon}{\longrightarrow} \Omega_{\epsilon}$ has a section;

- (iii) & is Boolean;
- (iv) &*≈ H has a subobject classifier;
- (v) H is an internal Boolean algebra.

Then (i) \Leftrightarrow (ii). If $\mathscr F$ is Boolean, then (i) \Leftrightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v). Finally, if $\mathscr F$ is Boolean and & is localic over F, then all the conditions are equivalent.

Proof. (ii) ⇒ (i) is trivial.

(i) = (ii). By Lemma 2.4, if (i) holds, then since Ω_{ε} is injective we have a monic $\Omega_{\varepsilon} \stackrel{\triangle}{\longrightarrow} \gamma^* \gamma_* \Omega_{\varepsilon}$. Again using the injectivity of Ω_{ε} , there is an arrow $\gamma^* \gamma_* \Omega_{\varepsilon} \stackrel{\triangle}{\longrightarrow} \Omega_{\varepsilon}$

such that $\beta \cdot \alpha = \text{id}$. Let $\gamma_* \Omega_{\alpha} \xrightarrow{\beta} \gamma_* \Omega_{\alpha}$ be the transpose of β across $\gamma^* - \gamma_*$. Then $\beta = \varepsilon \cdot \gamma^*(\overline{\beta})$, so

$$id = \beta \cdot \alpha = \varepsilon \cdot \gamma^*(\overline{\beta}) \cdot \alpha.$$

From now on we suppose that \mathcal{F} is Boolean.

(i) ⇔ (iii) is proved in exactly the same manner as (iii) ⇔ (iv) in Theorem 1.3. (i) ⇒ (iv) is proved in just the same way as (iii) ⇒ (vi) in Theorem 1.3.

(iv) \Rightarrow (v). Suppose that \mathscr{E}^* has a subobject classifier

$$1 \xrightarrow{\text{true}'} \Omega'.$$

Since Ω' is a subobject of an object of the form γ^*X for some $X \in \mathcal{F}$ and since each object in the Boolean topos $\mathcal F$ is decidable, Ω' itself must be decidable. By standard arguments, the global element

must then have a complement

$$1 \xrightarrow{\text{false'}} \Omega'.$$

It follows that

is an isomorphism between 1+1 and Ω' . Thus 1+1 is the subobject classifier in $\mathscr E$ Now, by §1 of [2], we may without loss of generality replace & by the localic topos $\mathcal{F}[H]$ of internal sheaves on H (since ℓ^* is unaffected by the change). Since $\mathcal{F}[H]$ is localic over \mathcal{F} , we have a diagram of the form

$$Y \longmapsto \gamma^* X$$

$$\downarrow$$

where $X \in \mathcal{F}$ and Ω is the subobject classifier in $\mathcal{F}[H]$. Since Ω is injective, we have an epic $\gamma^*X \rightarrow \Omega$. Form the pullback

$$Z \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \text{true}$$

$$\gamma^* X \xrightarrow{\alpha} \Omega.$$

Since Z and γ^*X are both in ℓ^* and l+1 is the subobject classifier in ℓ^* , we have a

pullback (in \mathcal{E}^* , and hence also in $\mathcal{F}[H]$)

where σ_1 is a canonical injection. Combining this with the obvious pullback diagram

yields a pullback

But then α and $\beta \cdot (\frac{\text{true}}{\text{false}})$ both classify the subobject Z of $\gamma *X$, so they are equal; and since α is epic, so is (frue). But (frue) is obviously monic, and so it is an isomorphism. Therefore $\mathcal{F}[H]$ is Boolean, which implies, by 2.2 of [2], that H is an internal Boolean algebra. (v) = (iv). Again we may without loss of generality replace ℓ by $\mathcal{F}[H]$. If H is an

internal Boolean algebra, then $\mathcal{F}[H]$ is Boolean by 2.2 of [2]. So the subobject

classifier 1+1 of $\mathscr{F}[H]$ is in ℓ^* , and is clearly a subobject classifier there as well. Finally, if ℓ is localic over \mathscr{F} , then $\ell = \mathscr{F}[H]$ by the relative Giraud theorem, and (v) yields (iii) by 2.2 of [2].

3. Final remarks

In the original version of this paper, I posed a number of open problems, one of which has recently been solved by Gordon Monro in [4]. These problems were:

- (a) Does $\mathscr{E}^* \simeq \tilde{H}$ always have exponentials?
- (b) If $\mathscr E$ is a Boolean topos, defined and localic over a Boolean topos $\mathscr F$, must the inclusion $\mathscr{E}^* \hookrightarrow \mathscr{E}$ be an equivalence? (By Theorem 1.3, this is true when $\mathscr{F} = \mathscr{F}$ and the axiom of choice holds. It can also be shown to hold when \mathcal{F} is any topos satisfying the axiom of choice.)

 (c) If the answer to (b) is, in general, no, find a characterization of those toposes
- defined over a (Boolean) topos $\mathscr F$ for which $\mathscr E=\mathscr E^*$

Let me sketch a proof that a positive answer to (a) (even just for Boolean ℓ) yields the same for (b). To begin with, it is easy to show that ℓ * inherits (finite) products from 8. So if 8* has exponentials, where 8 is Boolean and defined over a Boolean from e. So II e^{*} has exponentiats, where e is a Boolean topos with subobject classifier 2 = 1 + 1 inherited from e. Thus e and e^{*} are both localic F-toposes and, by the relative Giraud theorem, they are both equivalent over $\mathcal F$ to the topos $\mathcal F[B]$ of internal sheaves on the internally complete Boolean algebra $B = \gamma_* 2$ in \mathscr{F} . Accordingly we have a commutative diagram

where α is an equivalence. If $X \in \ell^*$ there is a diagram of the form $X \mapsto \gamma^* A$ in ℓ and hence in ℓ^* . Applying α gives $\alpha X \mapsto \alpha(\gamma^* A) = \gamma^* A$. Therefore $\alpha X \in \ell^*$. Since α is an equivalence, every object in ℓ is isomorphic to one of the form αX , and hence to one in ℓ^* . Therefore $\ell^* \hookrightarrow \ell$ is an equivalence.

Now Monro has shown that the answer to (b) is, in general, no. In fact he shows that $\delta^* \subseteq \delta$ can fail to be an equivalence even when the base topos \mathcal{F} is \mathcal{F} , provided the axiom of choice fails in a certain (relatively consistent) way in \mathcal{F} . He starts with the well-known Halpern–Levy model N of set theory in which the axiom of choice fails but in which every set is totally orderable. Then he constructs a certain complete Boolean algebra B in N such that, in the corresponding Boolean extension complete Boolean algebra B in N such that, in the corresponding Boolean Extension N(B), with probability 1 the power set P(R) of the set of real numbers is not totally orderable. Thinking of N as our base topos \mathcal{F} of sets and $N^{(B)}$ as the (Boolean) topos \mathcal{E} defined over \mathcal{F} , it follows that the object P(R) of \mathcal{E} cannot be (isomorphic to an object) in \mathcal{E}^* for it is not hard to see that any object in \mathcal{E}^* must be totally orderable. So in this case the inclusion $\ell^* \hookrightarrow \ell$ cannot be an equivalence. We also see that (a) fails as well: \vec{B} does not have exponentials.

Problem (c) is, however, still open.

Acknowledgements

I would like to thank Mike Brockway for the many discussions we've had concerning the results presented here, Peter Johnstone for pointing out implication (ii) ⇒ (iv) of Theorem 1.3 to me, and Gordon Monro for providing a preprint of [4].

References

- [1] D. Higgs, A category approach to Boolean-valued set theory, Unpublished typescript, University of Waterloo (1973).
- waterioo (19/3).

 [2] P.T. Johnstone, Factorization and pullback theorems for localic geometric morphisms, Institut de Mathematique Pure et Appliqué, Univ. Cath. de Louvain, Seminaire de Math. Pure, Rapport no. 79 (1979).
- (1979).
 [3] P.T. Johnstone, Topos Theory (Academic Press, London, 1977).
 [4] G.P. Monro, On generic extensions without the axiom of choice, Journal of Symbolic Logic,