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1. Structure in Bourbaki’s Éléments de Mathématique. 

 

A remarkable passage in Edward Gibbon's Decline and Fall of the Roman Empire 

goes 

 

The mathematics are distinguished by a particular privilege, that is, in the course of 

ages, they may always advance and can never recede.  

         

Gibbon's assertion could serve as the starting point of an absorbing discussion of 

whether "the mathematics" has in fact never made a backward step. But I quote it here 

only to draw attention to the fact that Gibbon uses the plural form "mathematics", even 

with the (now obsolete use of) the definite article. This may be because classical Greek 

mathematics -  the quadrivium - was a plurality, divided into arithmetic, geometry, 

astronomy and music. In English the singular form "mathematic" does not exist as a 

noun, but in French the singular form la mathématique and the plural form les 

mathématiques are both acceptable, even if the singular has a whiff of the archaic. 

Bourbaki adopted the singular form in entitling his masterwork Éléments de 

Mathématique1. I have a particular affection for Bourbaki's Élements because it - more 

specifically, the chapters on Topologie Génerale, Théorie des Ensembles, and Algèbre opened 

my undergraduate eyes to the world of what I was pleased to identify as "real" 

mathematics.   

 

It has been suggested, quite plausibly, by Maurice Marshaal2 that the use of the singular 

"mathématique" in the title of the Élements is tendentious, intended to convey the 

authors' conviction that mathematics is a unity, contrary to what the use of the plural 

 
1 Bourbaki (1939 -). 
2 Marshaal (2006). 



form of the term “mathematics” might suggest. Marshaal also claims that the use of the 

plural form in Bourbaki’s Éléments d'histoire des mathématiques3 is intended to indicate 

that, before they appeared on the scene, mathematics was a set of scattered practices, 

and that the modern notion of structure enabled these practices to become fused into a 

single discipline.  This claim also has a certain plausibility.  

 

Bourbaki’s article The Architecture of Mathematics (ghostwritten by J. Dieudonné)4, begins 

with a question: Mathematic or mathematics? The article continues: 

 

To present a view of the entire field of mathematical science as it exists, - this is an enterprise 

which presents, at first sight, almost insurmountable difficulties, on account of the extent and 

the varied character of the subject. As is the case in all other sciences, the number of 

mathematicians and the number of works devoted to mathematics have greatly increased since 

the end of the 19th century. The memoirs in pure mathematics published in the world during a 

normal year cover several thousands of pages. Of course, not all of this material is of equal value; 

but, after full allowance has been made for the unavoidable tares [weeds}, it remains true 

nevertheless that mathematical science is enriched each year by a mass of new results, that it 

spreads and branches out steadily into theories, which are subjected to modifications based on 

new foundations, compared and combined with one another. No mathematician, even were he to 

devote all his time to the task, would be able to follow all the details of this development. Many 

mathematicians take up quarters in a corner of the domain of mathematics, which they do not 

intend to leave; not only do they ignore almost completely what does not concern their special 

field, but they are unable to understand the language and the terminology used by colleagues 

who are working in a corner remote from their own. Even among those who have the widest 

training, there are none who do not feel lost in certain regions of the immense world of 

mathematics; those who, like Poincaré or Hilbert, put the seal of their genius on almost every 

domain, constitute a very great exception even among the men of greatest accomplishment. It 

must therefore be out of the question to give to the uninitiated an exact picture of that which the 

mathematicians themselves cannot conceive in its totality. Nevertheless it is legitimate to ask 

whether this exuberant proliferation makes for the development of a strongly constructed 

organism, acquiring ever greater cohesion and unity with its new growths, or whether it is the 

external manifestation of a tendency towards a progressive splintering, inherent in the very 

nature of mathematics, whether the domain of mathematics is not becoming a tower of Babel, in 

which autonomous disciplines are being more and more widely separated from one another, not 

only in their aims, but also in their methods and even in their language. In other words, do we 

have today a mathematic or do we have several mathematics? 

 
3 Bourbaki (1994) 
4 Bourbaki (1950). 



 

 

Here Bourbaki/Dieudonné uses the phrase "tower of Babel" with its usual connotation 

of "place of confusion". But it is worth pointing out that, according to Genesis, it was the 

fact that human beings possessed only a single language that enabled them to embark on 

the construction of the tower of Babel.  God frustrates these aims by the introduction of 

linguistic diversity. Before God's intervention, the Tower of Babel was actually a place of 

order, not confusion. Thus the tower of Babel might be seen, not as representing the 

jumble of separate practices that Bourbaki deplores, but rather as the unity that they 

wished to impose on mathematics. In that case, Bourbaki's Élements would, ironically 

perhaps, amount precisely to the attempt to build a mathematical "tower of Babel". The 

fact that Bourbaki failed  - as is well-known - to complete his grandiose project as 

originally conceived was not, as in Genesis, the result of God sowing linguistic 

confusion - the Bourbaki members, after all, still spoke a common mathematical 

language. Rather, Bourbaki’s project was simply too ambitious to be brought to 

completion. Nevertheless, the Éléments, unlike the tower of Babel, remains a 

magnificent plinth. 

 

In the Architecture of Mathematics Bourbaki/Dieudonné asserts that the unity of 

contemporary mathematics rests on the axiomatic method, and that the latter, in 

mathematics at least, rests in turn on the notion of structure. Bourbaki identifies three 

basic types of mathematical structure -  structures mères" - or "mother structures".  These 

are algebraic, order, and topological structures, which can be summed up as the "three  

C's" : Combination, Comparison and Continuity.  

 

The group concept is presented as a simple, fundamental kind of mathematical 

structure: 

 

One says that a set in which an operation ... has been defined which has the three properties (a), 

(b), (c) is provided with a group structure.... (or, briefly, that it is a group); the properties (a), 

(b), (c) are called the axioms of the group structures.  

 

Here we see that a group is a set, while group structure is a "something", specified by 

axioms, imposed on the set.  The use of the term "axiom" to specify structure is 

analogous to the Definitions of geometric objects (as opposed to the axioms and 

postulates) in Euclid's Elements.   

 



The text continues: 

 

It can now be made clear what is to be understood, in general, by a mathematical structure. The 

common character of the different concepts designated by this generic name, is that they can be 

applied to sets of elements whose nature has not been specified; to define a structure, one takes as 

given one or several relations, into which these elements enter, then one postulates that the given 

relation, or relations, satisfy certain conditions (which are explicitly stated and which are the 

axioms of the structure under consideration.) To set up the axiomatic theory of a given structure 

amounts to the deduction of the logical consequences of the axioms of the structure, excluding 

every other hypothesis on the elements under consideration (in particular, every hypothesis as to 

their own nature). 

 

Now this passage does not make it entirely clear what is to be understood by a 

"mathematical structure". It would seem that a structure is to be taken as a definite set 

having some prescribed form. This impression is reinforced by the fact that in the 

Théorie des Ensembles Bourbaki uses the phrase ``structure of the species T``. A species is 

thus a collection of structures sharing a common form.  

 

As to the notion of set itself, we read in a footnote: 

 

We take here a naive point of view and do not deal with the thorny questions, half philosophical, 

half mathematical, raised by the problem of the "nature" of the mathematical "beings or 

"objects." Suffice it to say that the axiomatic studies of the nineteenth and twentieth centuries 

have gradually replaced the initial pluralism of the mental representation of these "beings" 

thought of at first as ideal "abstractions" of sense experiences and retaining all their 

heterogeneity-by a unitary concept, gradually reducing all the mathematical notions, first to the 

concept of the natural number and then, in a second stage, to the notion of set. This latter 

concept, considered for a long time as "primitive" and "undefinable," has been the object of 

endless polemics, as a result of its extremely general character and on account of the very vague 

type of mental representation which it calls forth; the difficulties did not disappear until the 

notion of set itself disappeared (my boldening) and with it all the metaphysical pseudo-

problems concerning mathematical "beings" in the light of the recent work on logical formalism.  

 

 The observation that the difficulties did not disappear until the notion of set itself 

disappeared is striking. What Bourbaki seems to mean is that while the notion of a 

mathematical structure in the strictest sense is dependent on the concept of set, in using 

mathematical structures the intrinsic properties of the sets (whatever these are) from 

which the structures are actually built can be safely ignored. In handling structures all 



one needs to know is that [the structure in question] "can be applied to sets of elements 

whose nature has not been specified".  

 

Accordingly, the departure from the scene of the concept of set opened the way for 

Bourbaki to maintain that the unity of mathematics stems, not from the set concept, but 

from the concept of structure.  

 

Bourbaki's manifesto can be seen as a declaration, avant la lettre, of what has come to be 

termed mathematical strcturalism. Yet, as Leo Corry5 has pointed out, the concept of 

mathematical structure as such plays a very minor role in Bourbaki's  development of 

mathematics in the Éléments de Mathematique.  True, Chapter 4 of the Théorie des 

Ensembles is devoted to the presentation of a theory of structures in which, roughly 

speaking, a structure is defined to be a collection of sets together with functions and 

relations on them. Similar structures are organized into what are called species. (This 

theory cane to be described by Pierre Cartier, a later Bourbaki member, as "a monstrous 

endeavor to formulate categories without categories".)  But the cumbersome mechanism 

fashioned there is never again called forth. All of the succeeding volumes of the 

Éléments can be read in complete ignorance of what Bourbaki terms a "structure". In 

particular, no explanation is provided of the importance of the "mother structures".  

 

The hierarchy of structures as presented in the Elements is best understood as an 

(unconscious) version of simple type theory.   For, give a collection C of base sets (types), 

Bourbaki's "structures" are essentially just the members of the universe C* of sets 

obtained by closing C under the operations of power set and Cartesian product. (Since 

Bourbaki takes ordered pairs as primitive, rather than defining them as sets, the 

operation of Cartesian product is required.)  The types of simple type theory can, 

analogously, be obtained by starting with a collection T of base types and closing under 

the operations of power type, product, and subtype. Church's definitive 1940 

formulation of simple type theory is actually based on functions rather than relations or 

classes, and incorporates certain features of the λ-calculus which he had already 

developed. It seems unlikely, given Bourbaki's well-known distaste for logic, that he 

would have known of Church's contributions, and even if he had, he would likely have 

regarded it as irrelevant to his concerns.  

 

In any case, as already remarked, Bourbaki's general concept of structure, organized 

into species, plays only a very minor role in his actual development of mathematics. By 

 
5 E.g. in Corry (1992). 



and large, only specific kinds of structure are discussed:  e.g., topological spaces, 

algebraic structures, and combinations of the two such as topological groups. In 

practice, the role of structure in general is played by the defining axioms of the various 

species of structures.  

 

 

2. Category Theory as a Theory of Mathematical Structure and Form 

 

In the middle 1940s, a decade after the launch of the Éléments, Eilenberg (later to become 

a Bourbaki member) and Mac Lane invented category theory6. Their original intention 

was to systematize the construction of homology theories, a procedure in algebraic 

topology which involves the correlation of topological spaces and groups - two of 

Bourbaki`s mother structures. This correlation between different sorts of structure – the 

key idea underlying category theory - was termed by Eilenberg and Mac Lane a functor. 

The idea of a category was introduced to underpin the notion of functor by furnishing it  

(like a function) with a definite domain and range. They conceived functors as acting 

not just on the structures themselves but also on the `structure-preserving`` maps, or 

morphisms, between structures. Accordingly categories would have to contain these 

latter as well.  The recognition that categories would have to incorporate as basic 

constituents not just structures but morphisms marks the fundamental advance of the 

category concept over Bourbaki’s idea of species7.  

 

Eilenberg and Mac Lane rather played down the notion of category, stating:   

 

It should be observed ... that the whole concept of a category is essentially an auxiliary one; our 

basic concepts are essentially those of a functor and of natural transformation (…). The idea of a 

category is required only by the precept that every function should have a definite class as 

domain and a definite class as range, for the categories are provided as the domains and ranges of 

functors.  

 

But this view was to change. Starting in the 1950s, the category concept came to be 

perceived as a nascent embodiment of the idea of mathematical structure in general, in 

which Bourbaki's conception of mathematical structure as individual structures, defined 

in set-theoretic terms and only then organized into species, is replaced by the category 

of all such structures given in advance.  The Bourbaki fraternity became uncomfortably 

 
6 Eilenberg and Mac Lane (1945). 
7 Roughly speaking, Bourbaki’s species of structures correspond to “mapless” categories.  



aware that their program of structuralist grounding of mathematics might be better 

realized through the systematic use of category theory, but by then it was too daunting 

a project to reconstruct the whole of their oeuvre in category- theoretic terms8. In any 

case it is far from clear - even today when category theory has assumed a commanding 

place in confirming the unity of mathematics- how this could actually have been done9.  

 

Category theory offers an account of mathematical structure far transcending that 

pioneered by Bourbaki, opening doors of conception whose very existence was 

previously undreamt of.  

 

What is a category?  Formally, a category C is determined by first specifying two 
assemblies Ob(C), Arr(C)—the of C-objects and C-arrows,  C- morphisms, or C -maps. 
These are subject to the following axioms: 
 

• Each C-arrow f is assigned a pair of C-objects dom(f), cod(f) called   the  domain  and   
codomain  of f,  respectively.  To   indicate  the  fact  that  C-objects  X  and  Y  are  

respectively   the   domain  and   codomain  of  f  we write f: X → Y or fX Y⎯⎯→ . The 
collection of C-arrows with domain X and codomain Y is written C(X, Y). 

  
• Each C-object X is assigned a C-arrow 1X: X → X called the identity arrow on X. 
 

• Each pair f, g of C-arrows such that cod(f) = dom(g) is assigned an arrow   g  f:  

dom(f) → cod(g)   called  the  composite  of  f  and  g. Thus if f: X → Y and g: Y → Z  

then g  f: X → Z. We also write  f gX Y Z⎯⎯→ ⎯⎯→ for  g  f. Arrows f, g satisfying 

cod(f) = dom(g) are called composable. 
 

• Associativity law. For composable arrows (f, g) and (g, h), we have                                  
h  (g  f) =    h  (g  f). 

 

• Identity law. For any arrow f: X → Y, we have f  1X = f = 1Y  f. 
 

The concept of category may be regarded as vastly generalized and streamlined, yet 

richer version of Bourbaki’s concept of species of structures. While a Bourbakian species 

is composed solely of structures, the structures (objects) of a category comprise just half 

 
8 It should be noted, however, in Chapter 4 of the Théorie des Ensembles Bourbaki does 

formulate versions of certain concepts  - such as universal arrows and the solution set 

condition for their existence -  which were later to become central to category theory. Mac Lane 
(1971) remarks that Bourbaki’s formulation  “ was cumbersome because [their] notion of 

‘structure’ did not make use of categorical ideas”.  
9 A pioneering first step in this regard at an elementary level was undertaken by Lawvere and 

Schanuel in their work Conceptual Mathemtics (Lawvere and  Schanuel 1997). 



of its constituents, the structure-preserving maps (arrows) between them furnishing the 

other half. In this spirit we can think of a category as an explicit presentation – an 

embodiment - of a mathematical Form or Structure, together with the various ways in 

which that Form is preserved under transformations. The objects of a category C are 

then naturally identified as instances of the associated Form  C  and the morphisms or 

arrows of C as transformations of such instances which in some specified sense 

``preserves" the Form. If we identify categories with Forms, then the specification of a 

Form requires us to specify, along with its instances, the transformations which 

"preserve" it. This opens up the possibility that two Forms may have the same instances 

but different Form-preserving transformations. This is illustrated in the first three of the 

examples below: 

 

Category/Instances of  Form           Form                               Transformations 

 

Sets Pure Discreteness Functional Correlations 

Sets with a Distinguished 

Point (DP) 

Pure Discreteness DP- Preserving Functional 

Correlations 

Sets with Partial Maps Pure Discreteness Functional Correlations on 

Parts 

Groups Composition/Inversion Homomorphisms 

Topological Spaces Continuity Continuous Maps 

Differentiable Manifolds Smoothness Smooth Maps 

 

In this spirit a functor between two categories may be identified as a pair of 

correlations (satisfying certain simple conditions): the first between instances of the 

two Forms embodied by the given categories and the second between Form-preserving 

transformations of these instances.  In short, a functor is a Form-preserving correlation 

between (the instances of) two Forms. 

 

To be precise, a functor F: C → D between two categories C and D is a map that 

“preserves commutative diagrams”, that is, assigns to each C-object A a D-object FA 

and to each C-arrow f: A → B  a D-arrow Ff:  FA → FB in such a way that: 

 

 

 
 



  A            FA 

          f       |                               Ff                  f:  A  
            B                               FB 
     

      A          1A  |                       FA        1FA            F(1A) = 1FA 

 
                  f                                                                   Ff 

                                                                                              
                          |                                                                  F(g  f) = Fg  Ff 
               h            g                                                       Fh              Fg 
  

                                                                          
         commutes                                       commutes   

 

When categories are regarded as Forms, a functor between two Forms is a correlation 

between instances (transformations) of the first Form with instances (transformations) 

of the second which preserves composites of morphisms and identity morphisms. 

Functors considered as acting on Forms will be called formorphisms. 

 

If the objects of a category are the instances of a given Form, when should two of these 

instances be regarded as identical? Precisely when they are isomorphic (Greek: equal 

form). In a category two objects, are seemed isomorphic, written  , if there is an 

invertible morphism, an isomorphism, from one to the other. In Bourbaki's formulation 

isomorphisms and isomorphic structures are defined set-theoretically in terms of 

bijections.  

 

One of the principal aims of the structuralist approach to mathematics is to take 

seriously the idea that isomorphic structures should be regarded as in a fundamental  

sense identical. On the set-theoretic account of structures, this is not literally possible.  

In category theory, however, each category is equivalent (in a sense to be introduced 

below) to a skeletal category, one in which isomorphic objects are always identical. So, 

if we take the further step of identifying Forms with skeletal categories, isomorphic 

instances of Forms are literally identical.  

 

If isomorphism is construed as identity of instances of a given Form, then how should 

expression be given to the idea of identity of Forms themselves?  In Bourbaki's set-

theoretic account of structures this question is never raised, nor would there seem to 

be any reasonable answer in Bourbaki's framework.  But category theory deals with 

this question most elegantly, through the idea of equivalence of categories. 

 

Given two categories C and D, a functor F: C→ D is an equivalence if it is “an 

isomorphism up to isomorphism”, that is, if it is 



• faithful:  Ff = Fg   f = g. 

• full:  for any h: FA → FB there is f: A → B such that h = Ff. 

• dense:  for any D-object B there is a C-object A such that B    FA. 

 
If categories are regarded as Forms, then an equivalence between two Forms C and D is 

a formorphism from one Form to the other which is bijective on transformations and is 

such that each instance of D is isomorphic to the correlate of an instance of C.  

 

Two categories, or Forms are equivalent, written , if there is an equivalence between 

them. Equivalence of Forms means that, considered purely as Forms, they can be taken 

as identical.   

 

The idea of equivalence of Forms afforded by category theory is rich and deep.  As a 

simple example, consider the two categories: Sets with Partial Maps (SPM) and Sets 

with a Distinguished Point (SDP).  Objects of SPM are pairs of sets (X, U) with  U   X  

and an arrow (X, U)  (Y, V) between two such objects is just a function  f: U    V. 

Objects of SDP are pointed sets, i.e. pairs (X, a) with X a set and a  X. An arrow           

(X, a)  (Y, b) between two such objects is a function f: X  Y such that f(a) = b.     

 

These two categories are equivalent. The equivalence correlates each object (X, U) of 

SPM with the pointed set (U*, ) where U* = U  {}  is the set obtained by adding a 

distinguished "point at infinity" () to U. Each arrow   f: (X, U)  (Y, V) of SPM is 

correlated with the arrow   f*: (U*, )    (V*, ) in SDP defined by f*(x) = f(x) for   x  

U,  f*() =  . 

 

 

Adopting the language of Forms, the objects of the category SPM can be considered as 

instances of the Form Whole and Part, with transformations strictly between parts. (This is 

to be distinguished from transformations between wholes which preserve parts, which 

leads to a different category and Form.) The objects of SDP can be considered as 

instances of the Form Whole and Distinguished Element, with transformations between 

Wholes preserving distinguished elements. The equivalence of the two categories, and 

so of the associated Forms, means that Whole-Part  Forms 

 

 

 



are Formally the same as Whole-Individual Forms 

 

 

 

 

 

 

in which Parts of Wholes are, so to speak, `shrunk`` to points. 

 

Another important concept in category theory which has a satisfying formulation in 

terms of Forms is that of opposite, or mirror category. Given a category C, the opposite, 

or mirror category is defined to be the category C whose objects are those of C but 

whose arrows are those of C "reversed", or "viewed in a mirror’, if you will.  That is, 

the arrows   X  Y in  C are the arrows Y  X in C.  

 

Simple examples of mirror categories are obtained by considering preoredered sets. A 

preorder on a set P is a reflexive transitive relation  on P. A preordered set is a pair                   

P = (P, ) consisting of a set P and a preorder  on P. Preordered sets can be identified 

with categories in which there is at most one arrow between each pair of objects. 

Consider the preordered set ℕ =  (ℕ, ) where ℕ is the set of natural numbers and  is 

the usual equal to or less than relation on it. Regarding ℕ as a category, its mirror 

category ℕ may be identified with the ordered set of negative numbers. 

 

Given a category C with associated Form C, the mirror Form C  is the Form associated 

with the mirror category C.  The Form N associated with the category ℕ is limitless 

succession. Its mirror N
  may be called limitless precession.  

 

For a given category (Form), the associated mirror category (Form) is usually difficult 

to identify as an autonomous category.  But in certain important cases, mirror 

categories can be shown to be equivalent to naturally defined categories. Given two 

categories C and D, a duality between C and D is an equivalence between C and D 

(or, what amounts to the same thing, between C and D).  

 

 

 

 

 

 
 
   



3. Duality Theory for Commutative Rings 

 

This sort of duality is the core of the important representation theory for commutative 

rings. Here is a brief history10. 

 

The concept of commutative ring (with identity) provides a basic link between algebra 

and geometry. Commutative rings arise naturally as algebras of values of (intensive) 

quantities over topological spaces. For example, consider the earth`s atmosphere A.  

There are many intensive quantities defined on A - temperature, pressure, density, 

(wind) velocity, etc. The real number values of these quantities varies continuously 

from point to point.  In general, we can define a (continuously varying value of an)  

intensive quantity on A to be a continuous function on A to the field  of real numbers. 

Intensive quantities construed in this way form an algebra in which addition and 

multiplication can be defined ''pointwise'': thus, given two intensive quantities f, g, the 

sum f + g and the product fg  are defined by setting, for each point x in A,  

 

 ( f + g)(x)  = f(x) + g(x)     (fg)(x) = f(x)g(x). 

 In general, given a topological space X, we consider the set C(X) of continuous real-

valued functions on X, with addition and multiplication defined pointwise as above.  

This turns C(X) into a commutative ring, the ring of real-valued (continuously varying) 

intensive quantities over X. We can also consider the subring C*(X) of C(X) consisting of 

all bounded members of C(X), the ring of bounded intensive quantities over X. When X is 

compact, C*(X) and C(X) coincide.  

 

More generally, given any commutative topological ring T, the ring C(X, T) of 

continuous T - valued functions on X is called the ring of T-valued intensive quantities on 

X.  

 

Given a commutative ring, it is natural to raise the question as to whether it can be 

represented as a ring of intensive quantities (with values in some commutative 

topological ring) on some topological space.  

 

 
10See  Johnstone (1986) for a full account of the representation theory for commutative rings. 



It was M. H. Stone who provided the first answer to this question. In the celebrated 

Stone Representation Theorem, proved in the 1930s, he showed that each member of a 

certain class of commutative rings, the so-called Boolean rings, is representable as a ring 

of intensive quantities - with values in a fixed simple topological ring (2)- over a certain 

class of spaces - the Boolean or Stone spaces. A Boolean ring is defined to a ring in which 

every element is idempotent, x2 = x for every x. A totally disconnected compact 

Hausdorff space is called a Boolean space.  

 

The Stone Representation Theorem establishes the duality between the category of 

Boolean rings and the category of Boolean spaces.  

 

In 1940 Stone established what amounts to the duality between the category of compact 

Hausdorff spaces and the category of real C*-algebras - commutative rings equipped 

rings with an order structure and a norm naturally possessed by rings of bounded real-

valued intensive quantities.  

 

The Russian mathematician I. Gelfand and his collaborators proceeded in another 

direction, replacing the real field by the complex field , so introducing rings (or 

algebras) of complex-valued intensive quantities. The abstract versions of these are called 

commutative complex C*-algebras. Gelfand and Naimark established a duality between 

the category of commutative complex C*-algebras and the category of compact 

Hausdorff spaces.  

 

The representation of rings as rings of intensive quantities to has been extended to 

arbitrary commutative rings, leading to new dualities. In these representations the given 

commutative ring is represented as the globally defined elements of a collection of 

varying rings of intensive quantities in which the ring of values of the quantities varies 

with the point in the space - a so-called ringed space - at which the quantity is defined. 

This idea leads to the so-called Grothendieck duality: 



 

the category of commutative rings is dual to a certain category of ringed spaces: the category of 

affine schemes.  

 

The idea of duality, illustrated so beautifully in the case of commutative rings, and 

naturally and precisely expressed within category theory, transcends Bourbaki’s set-

based structuralist account of mathematics.  

 

4. The Fate of the “Mother Structures”: Algebraic and Ordered 

Structues 

 

In the transition from Bourbaki's account of mathematics to its category-theoretic 

formulation, what is the fate of the "mother structures"? It is remarkable that, given 

Bourbaki`s distaste for logic, their mother structures came to play a key role in 

establishing the connection between category theory and logic. 

 

To begin with, algebraic structures become algebraic theories as introduced by 

Lawvere. Here the key insight was to view the logical operation of substitution in 

equational theories as composition of arrows in a certain sort of category. Lawvere 

showed how models of such theories can be naturally identified as functors of a certain 

kind, so launching the development of what has come to be known as functorial 

semantics11.  

 

An algebraic theory T is a category whose objects are the natural numbers and which for 

each m is equipped with an m-tuple of arrows, called projections, i: m → 1   i = 1, …, m 

making m into the m-fold power of 1: m = 1m. (Here 1 is not a terminal object in T.) 

 

In an algebraic theory the arrows m → 1 play the role of m-ary operations. Consider, for 

example, the algebraic theory Rng of rings. To obtain this, one starts with the usual 

(language of) the first-order theory Rng of rings and  introduces, for each pair of natural 

numbers (m, n) the set P(m, n) of n-tuples of polynomials in the variables x1, …, xm. The 

members of P(m,n) are then taken to be the arrows m  → n  in the category Rng. 

Composition of arrows in Rng is defined as substitution of polynomials in one aother.  

 
11 See, e.g. Bell (2018).  



The projection arrow  i: m → 1 is just the monomial xi considered as a polynomial in 

the variables x1, …, xm. Each polynomial in m variables, as an arrow m → 1, may be 

regarded as an m-ary operation in Rng.  

 

In a similar way every equational theory—groups, lattices, Boolean algebras—may be 

assigned an associated algebraic theory. 

 

Now suppose given a category C with finite products. A model of an algebraic theory T 

in C, or a T-algebra in C, is defined to be a finite product preserving functor A: T → C. 

The full subcategory of the functor category CT whose objects are all T-algebras is called 

the category of T-models or T-algebras in C, and is denoted by Alg(T, C).  

 

For example, if GRP is the theory of groups, then a model of GRP in the category of 

topological spaces is a topological group;  in the category of manifolds, a Lie group; and in 

a category of sheaves a sheaf of groups. In general, modelling a mathematical concept 

within a category amounts to a kind of refraction or filtering of the concept through 

the Form associated with the category.  

 

When T is the algebraic theory associated with an equational theory S, the category of 

T-models in Set, the category of sets, is equivalent to the category of algebras 

axiomatized by S.  

 

Lawvere later extended functorial semantics to first-order logic. Here the essential 

insight was that existential and universal quantification can be seen as left and right 

adjoints, respectively, of substitution. 

 

To see how this comes about, consider two sets A and B and a map  f: A → B. The power 

sets PA and PB of A and B are partially ordered sets under inclusion, and so can be 

considered as categories. We have the map (“preimage”) f –1 : PB → PA given by: 

 

f –1(Y) = {x: f(x)  Y}, 

 

which, being inclusion-preserving, may be regarded as a functor between the categories 

PB and PA. Now define the functors f , f: PA → PB by      

 

f (X) = {y: x(x  X  f(x) = y}   f(X) = {y: x(f(x) = y  x  X}. 



 

These functors f  (“image”) and f (“coimage”), which correspond to the existential and 

universal quantifiers, are easily checked to be respectively left and right adjoint to f–1; 

that is,  f (X)    Y  X  f –1(Y) and f –1(Y)   X     Y  f(X). Now think of the 

members of PA and PB as corresponding to attributes of the members of A and B (under 

which the attribute corresponding to a subset is just that of belonging to it), so that 

inclusion corresponds to entailment. Then, for any attribute Y on B, the definition of       

f –1(Y) amounts to saying that, for any x  A, x has the attribute f –1(Y) just when f(x) has 

the attribute Y. That is to say, the attribute f –1(Y) is obtained from Y by “substitution” 

along f. This is the sense in which quantification is adjoint to substitution.  

 

Lawvere’s concept of elementary existential doctrine presents this analysis of the 

existential quantifier in a categorical setting. Accordingly an elementary existential 

doctrine is given by the following data: a category T with finite products—here the 

objects of T are to be thought of as types and the arrows of T as terms—and for each 

object A of T a category Att(A) called the category of attributes of A. For each arrow           

f: A → B we are also given a functor Att(f): Att(B)  → Att(A), to be thought of as 

substitution along f, which is stipulated to possess a left adjoint f —existential 

quantification along f. 

 

The category Set provides an example of an elementary existential doctrine: here for 

each set A, the category of attributes Att(A) is just PA and for  f: A →B, A(f) is f –1. This 

elementary existential doctrine is Boolean in the sense that each category of attributes is 

a Boolean algebra and each substitution along maps a Boolean homomorphism. 

 

Functorial semantics for elementary existential doctrines is most simply illustrated in 

the Boolean case. Thus a (set-valued) model of a Boolean elementary existential doctrine 

(T, Att) is defined to be a product preserving functor M: T → Set together with, for each 

object A of T, a Boolean homomorphism Att(A) → P(MA) satisfying certain natural 

compatibility conditions. 

 

This concept of model can be related to the usual notion of model for a first-order 

theory T in the following way. First one introduces the so-called “Lindenbaum” 

doctrine of T: this is the elementary existential doctrine (T, A) where T is the algebraic 

theory whose arrows are just projections among the various powers of 1 and in which 

Att(n) is the Boolean algebra of equivalence classes modulo provable equivalence from 

T of formulas having free variables among x1, …, xn. For f : m → n, the action of Att(f) 



corresponds to syntactic substitution, and in fact f can be defined in terms of the 

syntactic . Each model of T in the usual sense gives rise to a model of the 

corresponding elementary existential doctrine (T, A).  

 

Ordered structures become identified with categories having at most one arrow 

between any pair of objects. But they have a further significance, as we shall see. 

 

 

 

5. The Fate of the “Mother Structures” : Topological Structures 

 

 

Topological structures become associated, not with the category of topological spaces, 

but with the category of sheaves over a topological space, the archetypal example of a 

topos12 in the sense of Grothendieck. Grothendieck saw toposes as "generalized spaces".  

A sheaf over a topological space may be thought of as a set `varying continuously` over 

the space. The construction of the topos of sheaves (or presheaves) over a space T 

depends not on the elements of the underlying set of T, but only on the topology of T, 

that is, the partially ordered set of opens of T - a so-called locale or pointless space. In this 

way ordered structures come to replace topological structures in the construction of 

sheaf toposes. Observing that ordered structures are themselves categories, 

Grothendieck generalized these to the concept of a site, a (small) category together with 

a notion of covering, and further extended the concept of a sheaf over a topological 

space to that of sheaf over a sit. A Grothendieck topos is the category of sheaves over a 

site. 

 

Lawvere and Tierney later generalized Grothendieck toposes to elementary toposes. 

These are the categorical counterparts to higher-order logic. 

 

An (elementary) topos may be defined as a category possessing a terminal object, 

products, exponentials, and a truth-value object. Here a truth-value object is an object  S 

such that, for each object A, there is a natural correspondence between subobjects of A 

and arrows A  S. (Just as, in set theory, for each set X, there is a bijection between 

subsets of A and arrows A  2.)  

 

 
12 See, e.g. Mac Lane and Moerdijk (1992) for an account of topos theory.  



The system of higher-order logic associated with a topos is a generalization of classical 

set theory within intuitionistic logic: intuitionistic type theory, or as it is sometimes called 

local set theory.   

 

The category of sets is a prime example of a topos, and the fact that it is a topos is a 

consequence of the axioms of classical set theory. Similarly, in a local set theory the 

construction of a corresponding “category of sets” can also be carried out and shown to 

be a topos. In fact any topos is obtainable (up to equivalence of categories) as the 

category of sets within some local set theory. Toposes are also, in a natural sense, the 

models or interpretations of local set theories. Introducing the concept of validity of an 

assertion of a local set theory under an interpretation, such interpretations are sound in 

the sense that any theorem of a local set theory is valid under every interpretation 

validating its axioms and complete in the sense that, conversely, any assertion of a local 

set theory valid under every interpretation validating its axioms is itself a theorem. The 

basic axioms and rules of local set theories are formulated in such a way as to yield as 

theorems precisely those of higher-order intuitionistic logic. These basic theorems 

accordingly coincide with those statements that are valid under every interpretation.  

 

Once a mathematical comcept is expressed within a local set theory, it can be 

interpreted in an arbitrary topos. This leads to what I have called ilocal mathematics: 

here mathematical concepts are held to possess references, not within a fixed absolute 

universe of sets, but only relative to toposes. Absolute truth of mathematical assertions 

comes then to be replaced by the concept of invariance, that is, "local" truth in every 

topos, which turns out to be equivalent to constructive provability. 

 

In category theory, the concept of transformation (morphism or arrow) is an irreducible 

basic datum. This fact makes it possible to regard arrows in categories as formal 

embodiments of the idea of pure variation or correlation, that is, of the idea of variable 

quantity in its original pre-set-theoretic sense. For example, in category theory the 

variable symbol x with domain of variation X is interpreted as an identity arrow (1X), 

and this concept is not further analyzable, as, for instance, in set theory, where it is 

reduced to a set of ordered pairs. Thus the variable x now suggests the idea of pure 

variation over a domain, just as intended within the usual functional notation f(x). This 

latter fact is expressed in category theory by the "trivial" axiomatic condition 

 

f  1X = f, 



 

 

in which the symbol x does not appear: this shows that variation is, in a sense, an 

intrinsic constituent of a category. 

In a topos the notion of pure variation is combined with the fundamental principles of 

construction employed in ordinary mathematics through set theory, viz., forming the 

extension of a predicate, Cartesian products, and function spaces. In a topos, as in set theory, 

every object—and indeed every arrow—can be considered in a certain sense as the 

extension {x: P(x)} of some predicate P.  The difference between the two situations is 

that, while in the set-theoretic case the variable x here can be construed substitutionally, 

i.e. as ranging over (names for) individuals, in a general topos this is no longer the 

case: the "x" must be considered as a true variable. More precisely, while in set theory 

the rule of inference 

 

P(a) for every individual a 

xP(x)   

 

 

is valid, in general this rule fails in the internal logic of a topos. In fact, assuming 

classical set theory as metatheory, the correctness of this rule in the internal logic of a 

topos forces it to be a model of classical set theory: this result can be suitably 

reformulated in a constructive setting. 

 

In Bourbaki's Éléments set theory provides the "raw materials" for the fashioning of 

mathematical structures, just as stone or clay constitute the materials from which the 

sculptor’s creations are fashioned. In category theory, on the other hand, mathematical 

structures are not built from sets: they are given ab initio.  For this reason category 

theory does much more than merely reorganize the mathematical materials furnished 

by set theory: its role far transcends the purely cosmetic. This is strikingly illustrated 

by the various topos models of synthetic differential geometry or smooth infinitesimal 

analysis. Here we have an explicit presentation of the Form of the smoothly continuous 

incorporating actual infinitesimals which is simply inconsistent with classical set 

theory: a form of the continuous which, in a word, cannot be reduced to discreteness. 

In these models, all transformations are smoothly continuous, realizing Leibniz's 

dictum natura non facit saltus and Weyl's suggestions in The Ghost of Modality and 

elsewhere. Nevertheless, extensions of predicates, and other mathematical constructs, 



can still be formed in the usual way (subject to intuitionistic logic). Two startling 

features of continuity then make their appearance. First, connected continua are 

cohesive: no connected continuum can be split into two disjoimt nonempty parts, 

echoing Anaxagoras' c. 450 B.C. assertion that the (continuous) world has no parts 

which can be "cut off by an axe". And, even more importantly, any curve can be 

regarded as being traced out by the motion, not just of a point, but of an infinitesimal 

tangent vector—an entity embodying the (classically unrealizable) idea of pure 

direction—thus allowing the direct development of the calculus and differential 

geometry using nilpotent infinitesimal quantities. These near-miraculous, and yet 

natural ideas, which cannot be dealt with coherently by reduction to the discrete or the 

notion of "set of distinct individuals" (cf. Russell, who in The Principles of Mathematics 

roundly condemned infinitesimals as "unnecessary, erroneous, and self- 

contradictory"), can be explicitly formulated in category-theoretic terms and developed 

using a formalism resembling the traditional one. 

 

5. Conclusion 

 

Finally, let me return to Bourbaki’s Élements. In writing their masterwork the 

fraternity’s members saw themselves qs both sculptors and architects of mathematics. 

As sculptors, they used set theory to provide the "clay" from which the individual 

mathematical structures - the "sculptures", so to speak – which were to be exhibited 

within the grand mathematical edifice (museum, even) they aimed to build.  As 

architects, they constructed this edifice from the same set-theoretic "clay" as the 

sculptures. Yet at the same time they insisted that, once sculptures and edifice had been 

formed, the raw materials used in their production could be consigned to oblivion. This 

is the lordly attitude of the master architect concerned only with the grand design, who 

in the end ignores the constitution of the bricks from which his edifices are built, as 

opposed to the sculptor who has a much more intimate relationship – “hands on”, so to 

speak -with the materials from which her creations are shaped.  

 

By contrast, category theorists - those, at least, who are sensitive to such issues (and 

those constitute the majority) - regard set theory as a kind of ladder leading from pure 

discreteness to the depiction of the mathematical landscape in terms of pure Form. 

Categorists are no different from artists in finding the landscape (or its depiction, at 

least) more interesting than the ladder, which should, following Wittgenstein's advice, 

be jettisoned after ascent.  
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