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In Smooth Infinitesimal Analysis (SIA) we are given a subset   of the set R of real 

numbers called the domain of infinitesimals.  is assumed to satisfy the following 

conditions: 

 

(1)   0  

(2)  Any multiple of an infinitesimal is an infinitesimal, that is, for any a  R, x    

ax  . It follows  immediately from this that  is symmetric around 0, that is,      

x (x    −x  ). 

(3) The Affineness Principle or the Kock- Lawvere axiom. This asserts that all maps 

 → R are affine in the following strong sense:   

for any f :  → R there is a unique a  R such that, for all   , f() = f(0) + a. 1 This 

real number  a  is called the slope of f, and is written slp(f). Thus, for any f :  → R 

and all   , f() = f(0) +  slp(f). 

 

Given   f :  → R, let f* :  → R   R  defined by f*() = (, f()). f* may be thought of as the 

graph of the map f n the plane. The Affineness Principle can be seen as asserting that this 

graph is a straight line with slope slp(f) passing through (0, f(0)). Thus the effect of any 

map on  is to translate and rotate it; in effect   behaves like a short “rigid rod”, just long 

enough to have a slope, but too short to bend. It is, as it were, a geometric object 

possessing location and direction but lacking extension.  

The Affineness Principle has two immediate consequences: 

 
1 We shall use symbols ,  to denote arbitrary elements of. 
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• The nondegeneracy of  :   {0}. For suppose  = {0, and let a, b be any unequal 

real numbers. Then the two maps   a and   b would both be identically 0, 

contradicting the Affineness Principle. 

• The Cancellation Principle: for any a, b  R, if a = b for all   , then a = b. This 

follows immediately from the uniqueness condition in the Affineness Principle. 

We can now show that  consists of nilsquare quantities, that is,  

  {xR: x2 = 0}. 

 

To prove this, write s:  → R for the map   2.  Then we have, for   ,  

2 = s() = s(0) +  slp(s) =  slp(s) 

and, since −  ,  

2 = (−)2  = s(−) = s(0) −  slp(s) = − slp(s). 

Hence 2 = −2  , so that 2 = 0. 

 

Notice that we do not claim that  comprises all nilsquare quantities.  This, although 

usually assumed in presentations of SIA, is not needed. 

Here is a further fact that may be of interest. Without assuming the symmetry of  around 0,  the following conditions 

are equivalent: 

(i)   {xR: x2 = 0} 

(ii) slp(s) = 0. 

(i)   (ii). Assuming (i), we have, for all   , 0 = 2 = s() = s(0) +  slp(s) =     . slp(s). The Cancellation Principle yields  

slp(s) = 0. 

(ii)  (i)   Assuming (ii), we have, for all    ,  2 = s() = s(0) +  slp(s) = 0 + 0 = 0. Hence (i).  
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Let us call a real function any real-valued function defined on an interval in to R. The 

derivative of an arbitrary real function can now be introduced.  Given an interval2 I  in R 

and a  function  f : I → R, for each  x  I define the function fx:  → R by fx() = f(x + ). 

The derivative  f : I → R of f is defined by f (x) = slp (fx). It follows easily that 

f(x + ) = f(x) +  f (x). 

This is the Fundamental Equation of the Differential Calculus in SIA. The quantity f (x) is the 

slope at x of the curve determined by f and the infinitesimal  

 f (x) = f(x + ) − f(x)  

is the infinitesimal change or increment in the value of f on passing from x to x + .  

Derivatives of elementary functions are easily calculated in SIA using the Cancellation 

Principle. For example, here is the calculation of the derivative of the function xn: 

(xn) = (x + )n − xn = n xn−1 + terms in 2- and higher powers = n xn−1 

Hence, by the Cancellation Principle, 

(xn) = n xn−1. 

And here is the calculation of the derivative of the function 1/x (for x > 0): 

(1/x) = 1/x+ − 1/x = −/x(x+) = −(x−)/x(x+)(x−)  

                                                                                         = −x+2/x(x2−2)  

                                                                                         = −x/x3 

                                                                                                                                      = −/x2. 

Cancelling  on both sides of the equation gives 

(1/x) =−1/x2. 

 
2 We assume that intervals are closed under the addition of infinitesimals. 
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From the Fundamental Equation a version of the Principle of Continity can be  deduced, 

namely, that in SIA all real functions are continuous, in the sense of sending neighbouring 

points to neighbouring points. (Here two points x, y on R are said to be neighbours if   x – y 

is in , that is, if x and y differ by an infinitesimal.) To see this, given a real function  f and 

neighbouring points x, y, note that y = x +  with  in  , so that 

 

f(y) – f(x) = f(x + ) – f(x) =  f ‘(x). 

 

Since is infinitesimal, the result follows. 

 

From this we see that in SIA every real function is differentiable, hence continuous. In 

particular the derivative of an arbitrary real function is itself differentiable, so that any 

real function is arbitrarily many times differentiable. This fact justifies the use of the term 

“smooth”. 

If we think of a real function f as defining a curve, then, for any a, the image under f of 

the “infinitesimal interval”  + a obtained by translating  to a is straight and coincides 

with the tangent to the curve at x = a.   Thus each real function has the effect of “bringing” 

 
 
                                                                         y = f(x) 

 

                                                                 image under f of  + a 
  
 
                                                                              

                                                          + a 
                                                                        

 

  into coincidence” with the tangent vector to the curve associated with the function at 

any point on it. In this sense, then,  plays the role of a generic tangent vector.  Also, since 

the image of  under a function is necessarily a straight line and a part of the associated 

curve, it follows that each point on a curve is contained in a nondegenerate infinitesimal 

( )f x



5 
 

straight segment of the curve. In other words, in SIA curves are infinitesimally straight.  

This is the Principle of Infinitesimal Straightness. 

In SIA there is a sense in which everything is generated by the domain of infinitesimals. For 

consider the set  of all maps  → . It follows from the Affineness Principle that R can 

be identified as the subset of  consisting of all maps vanishing at 0. In this sense R is 

“generated” by  3. Once one has R, Euclidean spaces of all dimensions may be obtained 

as powers of R, and arbitrary Riemannian manifolds may be obtained by patching 

together subspaces of these. 

 

We observe that the postulates of SIA are incompatible with the Law of Excluded Middle of 

classical logic (LEM)– the assertion that, for any proposition p, either p holds or not p holds.  

This incompatibility can be demonstrated in two ways, one informal and the other 

rigorous.  First the informal argument. Consider the function f defined for real numbers 

x by  f(x) = 1 if x = 0 and f(x) = 0 whenever x  0. If LEM held, each real number would 

then be either equal or unequal to 0, so that the function f would be defined on the whole 

of R. But, considered as a function with domain R, f is clearly discontinuous. Since, as we 

know, in SIA every function on R is continuous, f cannot have domain R there4. So LEM 

fails in SIA. To put it succinctly, universal continuity implies the failure of the Law of Excluded 

Middle. 

 

Here now is the rigorous argument. We derive the failure of LEM from the Cancellation 

Principle. To begin with, if x  0, then x2  0, so that, if x2 = 0, then necessarily not x  0. 

 
3 Explicitly,   is a monoid under composition which may be regarded as acting on  by 

composition: for f  , f   = f(). The subset V consisting of all maps vanishing at 0 is a 

submonoid naturally identified as the set of ratios of infinitesimals. The identification of R and V 
made possible by the principle of infinitesimal affineness thus leads to the characterization of R 

itself as the set of ratios of infinitesimals. This was essentially the view of Euler, who regarded 

infinitesimals as formal zeros and real numbers as representing the possible values of 0/0. For 

this reason Lawvere has suggested that R in SIA should be called the space of Euler reals. 
4 The domain of f is in fact (R – {0})  {0}, which, because of the failure of the law of excluded 

middle in SIA, is provably unequal to R. 
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This means that  

 

                                for all infinitesimal , not   0.                                       (*) 

 

Now suppose that LEM were to hold. Then we would have, for any , either  = 0 or   

0. But (*) allows us to eliminate the second alternative, and we infer that, for all ,  = 0. 

This may be written 

 

for all ,  .1 = .0, 

 

from which we derive by Cancellation Principle the falsehood 1 = 0. So again LEM must 

fail. 

 

The “internal” logic of SIA is accordingly not full classical logic. It is, instead, intuitionistic 

logic, that is, the logic derived from the constructive interpretation of mathematical 

assertions. In practice when working in SIA one does not notice this “change of logic” 

because, like much of elementary mathematics, the topics discussed there are naturally 

treated by constructive means such as direct computation.    

 

To illustrate this point, let us derive in SIA a basic law of the differential calculus, the 

product rule: 

  

 (fg) = f g + fg.  

 

To do this we compute 
 

(fg)(x + ) = (fg)(x) + (fg)(x) = f(x)g(x) +  (fg)(x), 

    (fg)(x + ) = f(x + )g(x + ) = [f(x) +  f (x)].[g(x) +  g'(x)]  

                                                                        = f(x)g(x) +  (f g + fg') +2f g'  

                                                                        = f(x)g(x) +  (f g + fg), 
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since 2 = 0. Therefore  (fg) = (f g + fg), and the result follows by the 

Cancellation Principle. This calculation is depicted in the diagram below. 

 
 

                        g                    fg                    2f g 

 

                         g                    fg                        f g 

                                         

                                          f                           f  

 

Infinitesimals in SIA have two fundamental aspects, algebraic and geometric. 

Algebraically, they are real numbers whose squares vanish; geometrically, they are 

straight segments of curves. Both of these aspects are used in applications.  

The interplay of these aspects is well illustrated by the derivation in SIA of the 

fundamental theorem of the calculus.  To this end, let I be a closed interval {x: a  x  b} in R 

— or R itself—and let f: I →  R; also let A(x) be the area under the curve y = f(x) as 

indicated in the figure:   

 

                                                            Q      y = f(x) 

                                                     P    

                                        A(x)             

                                                     x   x +  

Then   

A(x) = A(x +  ) – A(x) =   +   = f(x) + . 

Now, by the Principle of Infinitesimal Straightness, the arc PQ is a straight line; 

accordingly  is a triangle of area ½ . f (x) = 0. It follows that A(x) = f(x), and the 

Cancellation Principle gives 

A (x) = f(x).  
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Thus, if we regard A(x) as the integral of f(x), the above equation asserts that 

differentiation is the inverse of integration – the fundamental theorem of the calculus. 

This derivation, which is typical of such arguments in SIA, displays the following 

pattern. Suppose we are investigating the behavior of some variable quantity F(x) (in the 

above derivation F is A). The approach taken in SIA, as in the differential calculus, is to 

begin the investigation by confining it initially to the infinitesimal world. Life in the 

infinitesimal  world is beautifully simple: curves are just straight lines, and the squares 

of incremental changes vanish.  This makes the determination of infinitesimal increments 

equally simple, enabling the increment F(x) in F(x) to be presented in the form k(x), 

where k(x) is some explicit function whose form has been obtained by “infinitesimal” 

analysis. Thus we obtain an “infinitesimal” equation of the form F’(x) = k(x). Applying 

the Cancellation Principle in turn yields the “differential” equation  

(*)                                                                        F’(x) = k(x) 

which holds in the world “in the large”.  

The Cancellation Principle thus provides a formal, astonishingly simple link between the 

infinitesimal world and the world “in the large”. The idea of a linkage between the two 

worlds exists was the animating principle behind applications of the calculus throughout 

the 17th and 18th centuries.  

In practice, of course, the equation (*), while of fundamental importance, is only the first 

step in determining the explicit form of the function F.  For this, it is necessary to 

“integrate” k , that is, to provide k with an antiderivative, an explicit function G such that    

G’ = k. It will then follow that F’ = G’ , from which we will be able to conclude that                   

F = G 5.   

 

 
5 Strictly speaking, F and G may differ by a constant function but we shall ignore this.  
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To carry out this procedure in SIA we need to introduce an additional postulate. Let us 

define a stationary point of a function f:  I → R is defined to be a point a  I in whose 

vicinity “infinitesimal changes in the value of the argument fail to change the value of f”, 

that is, for which f(a + ) = f(a) for all . This means that   f(a) + f ‘(a) = f(a), so that f ‘(a) = 

0 for all , from which it follows by the Cancellation Principle that f ‘(a) = 0. Thus a 

stationary point of a function is precisely a point at which the derivative of the function 

vanishes.  

 

In classical analysis, if the derivative of a function is identically zero, the function is 

constant. This fact is the source of the following postulate concerning stationary points 

adopted in SIA: 

 

Constancy Principle. If every point in an interval J is a stationary point of f: J  → R (that 

is, if f ‘is identically 0), then f is constant.    

 

It follows from the Constancy Principle that two functions with identical derivatives 

differ by at most a constant. Using this, we can formulate simple derivations of basic 

equations of mathematics and physics. We illustrate the method by deriving the equation 

of a tractrix.  

 

The tractrix has the property that the length of the tangent to the curve from an arbitrary 

point on it to the y-axis is constant.  It is the curve traced out by an object dragged, under 

the influence of friction, by a string attached to a pulling point that moves at a right angle 

to the initial line between the object and the puller. 
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                                                                    S 

                                                                                a        P’ 

                                                                    R                 Q         P 

                                                                                

                                                                                x 

 

 

            

 

 

Referring to the figure above, let P, P’ be two neighbouring points on the tractrix curve y 

= y(x) with coordinates (x, y) and (x - , y(x - )) respectively. Let a be the constant length 

of the tangent from a point of the curve to the y-axis. Then by the Principle of Infinitesimal 

Straightness the tangent PS to the curve passes through P’.  Write L for the length of a 

line segment L. Then we have 

 

(*)                                                    P’Q = y(x - ) – y(x)= -y’(x). 

 

But also, writing  for the angle RPS, we have 

 

P’Q = PQ tan = tan =  RS/PR = (a2 – x2)½/x. 

 

Equating this with (*) gives 

 

y’(x) = -(a2 – x2)½/x. 

 

Using the Cancellation Principle to cancel  on both sides of this equation, we get 

 

(**)                                                             y’(x) =  -(a2 – x2)½/x. 

 

Accordingly y(x) is the antiderivative of the function -(a2 – x2)½/x. But the usual 

computation in the differential calculus (which can be carried out in SIA) shows that 

antiderivative to be the function alog[(a +(a2 – x2)½)/x)] -(a2 – x2)½ . Since, by the Constancy 

Principle, antiderivatives are unique up to a constant (which we shall set to 0), it follows 

that 

 

y = a log[(a +(a2 – x2)½)/x)] -(a2 – x2)½ 
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This is the equation of the tractrix. 

          

Put succinctly, the Constancy Principle asserts that “universal infinitesimal (or “local”) 

constancy implies global constancy”, or “infinitesimal behaviour determines global 

behaviour” The Constancy Principle brings into sharp focus the difference in SIA 

between points and infinitesimals. For if in the Constancy Principle one replaces 

“infinitesimal constancy” by “constancy at a point” the resulting “Principle” is false 

because any function whatsoever is constant at every point. But since in SIA all functions 

on R are smooth, the Constancy Principle embodies the idea that for such functions local 

constancy is sufficient for global constancy, that a nonconstant smooth function must be 

somewhere nonconstant over arbitrarily small intervals.    

 

The Constancy Principle provides another bridge between the infinitesimal world and 

the world “in the large”, the lack of which Hermann Weyl believed doomed the idea of 

infinitesimal, and led to its inevitable replacement by the limit concept. In his Philosophy 

of Mathematics and Natural Science he saya: 

 

[In its struggle with the infinitely small] the limiting process was victorious. For the 

limit is an indispensable concept, whose importance is not affected by the acceptance or 

rejection of the infinitely small. But once the limit concept has been grasped, it is seen to 

render the infinitely small superfluous. Infinitesimal analysis proposes to draw 

conclusions by integration from the behavior in the infinitely small, which is governed by 

elementary laws, to the behavior in the large; for instance, from the universal law of 

attraction for two material “volume elements” to the magnitude of attraction between two 

arbitrarily shaped bodies with homogeneous or non-homogeneous mass distribution. If the 

infinitely small is not interpreted ‘potentially’ here, in the sense of the limiting process, 

then the one has nothing to do with the other, the process in infinitesimal and finite 

dimensions become independent of each other, the tie which binds them together is cut. 

 

In SIA the Constancy Principle reconnects the infinitesimal and the extended. Behaviour 

“in the large” is completely determined by behaviour “in the infinitely small”. 

 

 

 


