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Pluralism and the Foundations
of Mathematics

Contrary to the popular (mis)conception of mathematics as a cut-and-
dried body of universally agreed-on truths and methods, as soon as one
examines the foundations of mathematics, one encounters divergences of
viewpoint and failures of communication that can easily remind one of re-
ligious, schismatic controversy. While there is indeed universal agreement
on a substantial body of mathematical results, and while classical meth-
ods overwhelmingly dominate actual practice, as soon as one asks ques-
tions concerning fundamentals—such as “What is mathematics about?”
“What makes mathematical truths true?” “What axioms can we accept
as unproblematic?” and notoriously, even “What are the acceptable logi-
cal rules by which mathematical proofs can proceed?”—we find we have
entered a minefield of contentiousness. Platonists treat mathematics as
an objective study of abstract reality, no more created by human thought
than the galaxies, and, accordingly, classical logic and a rich theory of
the transfinite are entirely legitimate.! Radical constructivists (intuition-
ists) challenge even the meaningfulness of classical, objectivist thinking
in connection with the infinite, and propose a reconstructed mathematics
with restricted logic (e.g., no existence proofs by reductio ad absurdum) |
and different axioms (e.g., the least upper-bound principle is jettisoned).
Classicists respond (if they respond at all, which is unusual) by accusing |
their critics of changing the subject. And between and beyond these camps |
there is a significant variety of positions or “schools,” e.g., predicativism,
or “semi-constructivism,” which accepts classical logic but only those in-
finite sets we can actually describe in an acceptable way (which can be |
spelled out precisely); constructivism of the Bishop school, which, in con- |
trast with intuitionism, adds no new, nonclassical mathematical axioms;
constructivism of the Russian school, which lives with Church’s thesis
identifying constructive functions with the Turing-computable ones; strict 1
finitism; and so on (see Beeson 1985). A plurality or multiplicity of ap-

proaches to central questions of truth and proof is simply an observable

fact. What is the nature and significance of this multiplicity? Is it reason- ;
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able to think it can be transcended, or is it a permanent fact of life? What
lessons, if any, does it hold for general questions concerning pluralism?

A second locus of pluralism in mathematics is ontology. Even within the
classical framework, one may ask whether there is a single, all-embracing
universe of discourse for mathematics, as set-theoretic reductionism on a
customary reading would have it, that is to say, the cumulative hierarchy
of sets, or should we think of a plurality of universes? Although ordi-
nary mathematics—all that is required in typical graduate programs in
the subject—can indeed be developed within set theory, specifically in the
favored system known as ZF (Zermelo-Fraenkel), when one considers set
theory itself (a branch of “extraordinary mathematics”), one in fact en-
counters a multiplicity of theories. Usually the Axiom of Choice is added
(giving ZFC), but we know that its negation is a consistent option (relative
to the consistency of ZF itself). We also know that we need not insist on
well-foundedness (sets can be allowed to contain themselves; there can
be infinitely descending membership chains). And then there is the whole
subject of large cardinal extensions of ZFC, many of which are very natu-
ral from a set-theoretic standpoint but that cannot even be proved relatively
consistent (a phenomenon known as “Gddel’s curse”). Does it make sense
to think of unique, determinate answers to all such questions, as talk of
the “cumulative hierarchy” implies? Or should we rather think of “many
worlds”? Furthermore, there is a different foundational approach with
claims to universality, namely, category theory, more specifically topos
theory, which generalizes on set theory in certain ways. Originating in al-
gebraic geometry, toposes are categories in which certain key set-theoretic
operations are generalized, notably, the formation of Cartesian products,
function classes by exponentiation, and extensions of predicates. They
have been proposed as universes of discourse for mathematics, introduc-
ing even more options. Thus topos relativity (unlike set-theoretic relativity
with regard to large cardinals, for example) prima facie flies in the face
of ordinary talk of “the real numbers,” “the complex numbers,” “the con-
tinuous functions of reals,” and so on, where uniqueness is presupposed.
This suggests a structuralist (re)interpretation of such talk, and even of set
theory itself (better, set theories themselves), contrary to the single, fixed-
universe view.

Let us elaborate on these two main topics in turn.

Constructivism versus (?) Classicism

The various forms of constructivism (apart from predicativism) have at
their common core adherence to intuitionistic logic, usually described
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as “rejecting the law of excluded middle (LEM),” in the sense of not al-
lowing it in proofs (not in the sense of affirming its negation—in fact,
the double negation of LEM is a theorem of intuitionistic [propositional]
logic). Similarly, allied principles are rejected, such as the law of double
negation, proof of existence by reductio ad absurdum, and so on. Formally,
intuitionistic logic appears simply to be a proper part of classical logic;
if you restore LEM to the intuitionistic rules, you recover classical logic.
So formally there is no inconsistency between the two.? But intuitionists
are famous for holding that LEM and allied principles are “not correct”;
it seems that we have a genuine disagreement over certain laws of logic!
s that really so? Can even pluralists tolerate such a disagreement? Is even
propositional logic up for grabs? Whatever one thinks about the analytic/
synthetic distinction in general, don’t the (truth-functional) meanings of
‘or’ and ‘not’ guarantee that, within the intended domain of determinate
propositions such as those of arithmetic, LEM has to be correct?

Indeed, if one looks more closely at intuitionistic usage—even as its
proponents have explained it—it 18 abundantly clear that the key logical
words are being used with very different meanings from the classical ones.
The very idea of giving truth-conditions for logically complex statements
is abandoned in favor of proof-conditions in which one explains when a
(mathematical) construction counts as a proof of a complex statement. So,
for example, intuitionistic ‘or’ is explained by a condition such as

c proves ‘p or q’ iff c proves p or ¢ proves 4.

(Here the ‘or’ on the right is supposed to be neutral or pretheoretic, some-
how shared by all parties.) The conditional is explained by

¢ proves ‘p — q’ iff ¢ is an operation on constructions tranforming any
proof of p into a proof of q.

And intuitionistic negation is then explained via
¢ proves ‘=p’ iff ¢ proves ‘p = 0= I

(Here “0 = 1” may be replaced by any other absurdity.) Given these mean-
ings, no classicist would wish to affirm ‘p or -p’ as a general logical prin-
ciple, for, when spelied out, it asserts that every (mathematical) proposi-
tion is decidable! Similarly, considering that existential quantification is
explained as a generalization of ‘or,” so that a proof of ‘Axq’ provides a
method of finding an instance together with a (constructive) proof that it
satisfies ¢, no classicist would apply the method of reductio to establish
such “existence.” Clearly, to avoid confusion, all the connectives should
carry subscripts indicating “intuitionistic” or “classical” readings. And
then, we have not a single-law “LEM” but two radically distinct ones, the
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intuitionistic instance of which no one accepts, and similarly for the allied
laws. So the controversy seems not to be over the correctness of any logi-
cal laws after all!

At this stage, constructivist positions split apart. The mere decision to
eschew certain classical forms of proof can be made for a variety of rea-
sons and does not by itself indicate any genuine disagreement with classi-
cal mathematics. Specifically, we must distinguish a radical constructiv-
ist view, which insists that mathematical reasoning must be intuitionistic
and that classical reasoning is illegitimate or incoherent (views expressed
in different ways by intuitionists from Brouwer to Dummett), from a lib-
eral view, which, without challenging the meaningfulness or correctness
of nonconstructive classical mathematics, prefers to pursue constructive
mathematics for its own intrinsic interest and virtues. So here we have a
stark contrast, within constructivism, between hegemonists and pluralists.

The hegemonist position, as Dummett (1977) has articulated it, rests on
a verificationist view of meaning. Platonist or realist truth conditions per-
taining to the infinite are in general incommunicable, as terminating pro-
cedures for testing them are not available. Rather than taking this (in ad-
dition to all the criticisms of verificationism developed by Quine, Sellars,
Smart, Putnam, and others over many decades) as indicating a deficiency
in the view of meaning, the hegemonist view leads to an extreme stance
that Shapiro (1997, 6, passim) has dubbed “philosophy first,” namely, that
of rejecting mathematics itself for philosophical reasons. David Lewis’s
reaction (originally to a version of nominalism, but equally applicable
here) is germane:

I’'m moved to laughter at the thought of how presumptuous it would be to
reject mathematics for philosophical reasons. How would you like the job
of telling the mathematicians that they must change their ways. . . . Can you
tell them, with a straight face, to follow philosophical argument wherever it
may lead? If they challenge your credentials, will you boast of philosophy’s
other great discoveries: that motion is impossible, that a Being than which
no greater can be conceived cannot be conceived not to exist, that it is un-
thinkable that anything exists outside the mind, that time is unreal, that
no theory has ever been made at all probable by evidence (but on the other
hand that an empirically ideal theory cannot possibly be false), that it is a
wide-open scientific question whether anyone has ever believed anything,
and so on, and on, ad nauseam?
Not me! (Lewis 1991, 59; italics in original)’

That Dummett’s reasoning can also be invoked to challenge the determi-
nateness of, for example, ordinary claims about the past (e.g., four years
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ago to this day, there were exactly twenty-seven paper clips on my desk)
has not been a deterrent.

Thus far, we have seen that the dispute between radical constructiv-
ism and classicism is not really over Jogical laws per se; rather, it is over
the meaningfulness of talk presupposing truth-determinate sentences Or
propositions of infinitistic mathematics. The classical logical connectives
and quantifiers, however intelligible they may be in other contexts, are al-
leged to be unintelligible here in mathematics (except in its constructive
part, on which the classical and intuitionistic theorems coincide), ironi-
cally the very domain in which the idealization of genuine bivalence built
into classical logic has its clearest illustration, and for which it was origi-
nally developed!

Fortunately, not all constructivists are radicals. If you want to keep track
of computational content in mathematics, requiring reasoning to obey intu-
itionistic logic makes eminent sense. It is an excellent bookkeeping device.
So long as your starting points are constructively justifiable, your conclu-
sions will also be. But if you try to recover standard mathematics along
such lines, you will encounter many problems. As soon as you come to
the real numbers (as convergent rational sequences), for example, you will
realize that you cannot assert that they are totally linearly ordered. You
will have to make do (and often can) with a weaker condition: if you know
that x < y, then you will also be able to show, for any z, that either x < z
or z < y. You will also not be able to prove fundamental facts, such as the
intermediate-value theorem (that every continuous function on [0,1] nega-
tive at 0 and positive at 1 has a 0 for some x, 0 < x < 1), but you will be
able to prove something very close to that by tinkering with the statement,
strengthening the hypothesis of the theorem or weakening the conclusion
(getting within € of 0). Indeed, Errett Bishop (1967) took constructive
~ analysis far beyond anything previously thought possible by the persistent
and clever use of such methods, conquering even such apparently noncon-
structive territory as measure theory. It is nontrivial to find genuine exam-
ples of scientifically applicable mathematics that cannot be recovered con-
structively in this sense, although there do appear to be some limitations.*

An important lesson we can learn from all this is that there are, indeed—
as Carnap recognized through his principle of tolerance—rmultiple log-
ics, legitimate for their own purposes. The notion of “the correct logic”
is simply a mistake, one which fails to take account of the purpose-
relativity and language-relativity of logic. Classical logic is designed for
truth-preservation in an idealized setting in which we are dealing with
bivalent propositions. The classical connectives (and quantifiers) are in-
troduced as idealizations or simplifications of ordinary language expres-
sions with simply statable, bivalent truth conditions, and classical logical
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principles and rules pertain to reasoning with these connectives. If a rule
is sound (truth preserving), that is sufficient justification for it, regardless
of (lack of) constructivity. But whether classical systems are applicable in
a given domain or context is not a matter of logic, but a matter of usage
and goals. Logic does not proclaim its own applicability to particular
situations. Independently, however, it is clear that classical reasoning is
especially useful in scientific, as well as purely mathematical, contexts in
which we are interested in what holds or would hold in a certain situa-
tion or model, given certain assumptions, as an objective matter regardless
of computability. Then there can be no objection to use of LEM_,__, or
reductio, ..., and indeed, forswearing their use would seem like tying
a hand behind one’s back. However, if computability or constructivity
is our goal, then obviously it will not be achieved unless we modify our
rules, and we may even introduce a new language (also rooted in ordi-
nary language), as intuitionism does. For these new connectives, some but
not all of the classical forms will be correct. Intuitionistic formal systems
codify correct forms of reasoning from this standpoint, and no one can
quarrel with that.> Classicists as well as constructivists can see all of this.
Moreover, as both purposes—truth-preservation simpliciter and construc-
tive interpretability—are worthy and important, we should certainly have
peaceful coexistence and even cooperation.®

This brings us to a second main lesson. Mathematics as practiced is
clearly very rich and diverse in its content and in the interests and pur-
poses it supports. As just indicated, both classical and constructive pur-
poses are encompassed; moreover, often they may be intertwined and not
neatly separated by branch or subfield. The situation was well summed up
by Feferman over twenty years ago:

Since neither the realist nor constructivist point of view encompasses the
other, there cannot be any present claim to a universal foundation for
mathematics, unless one takes the line of rejecting all that lies outside the
favored scheme. Indeed, multiple foundations in this sense may be neces-
sary, in analogy to the use of both wave and particle conceptions in physics.
Moreover, it is conceivable that still other kinds of theories [of operations
and collections] will be developed as a result of further experience and re-
flection. (Feferman 1977, 151; italics in original)

This accords with the general hypothesis that the complexity and richness
of scientific subject matter and practice may actually require a pluralistic
approach, that any single one that we have contrived, or perhaps can con-
trive, will simply not do justice to an important aspect of the subject. The
classicism-constructivism duality in mathematics is, we submit, an excel-
lent illustration.
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Many Worlds

At the end of a landmark paper, credited with the discovery of large car-
dinals in set theory, Zermelo wrote of “two polar opposite tendencies of
the thinking mind, the idea of creative progress and that of all-embracing
completeness” (italics in original). These, he continued:

find their symbolic expression and resolution in the concept of the well-
ordered transfinite number-series, whose unrestricted progress comes to no
real conclusion, but only to relative stopping points, the “boundary num-
bers” [inaccessible cardinals] that divide the lower from the higher models.
And so the “antinomies” of set theory, properly understood, lead not to a
restriction and mutilation, but rather to a further, as yet unsurveyable, un-
folding and enrichment of mathematical science. (Zermelo 1930, 47, trans.
the author)

The central problem calling forth these “two polar opposite tendencies,” in
a nutshell, is this: over what totality do the unrestricted quantifiers of set
theory range? We know that, on pain of contradiction, it cannot be taken
to be a set, but if we take itas a collection of some higher type, we face the
conundrum that we can apply set-like operations to it leading to collec-
tions of higher and higher type, behaving just like sets, SO that our effort to
speak of absolutely all sets seems indistinguishable from speaking of all
sets below a certain inaccessible level (one of Zermelo’s “poundary num-
bers”)” Indeed, whatever totality of collections we recognize—whatever
we call it—can be properly extended, indeed, by the very operations that
gave rise to set theory in the first place (forming singletons, power Sets,
etc.) The standard set-theoretic “way out” of remaining within a first-order
language, officially recognizing no totality of all sets, while consistent and
useful for mathematics in practice, does not really solve the problem, for
the very possibility of considering new totalities and proper extensions is
intrinsic to mathematics. As Mac Lane has put it:

Understanding Mathematical operations leads repeatedly to the formation
of totalities: the collection of all prime numbers, the set of all points on an
ellipse . . . the set of all subsets of a set . . . , Or the category of all topologi-
cal spaces. There are no upper limits; it is useful to consider the “universe”
of all sets (as a class) or the category Cat of all small categories as well as
CAT, the category of all big categories. After each careful delimitation,
bigger totalities appear. No set theory and no category theory can encom-
pass them all—and they are needed to grasp what Mathematics does. (1986,
390 italics in original)
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Still, we do seem to have unrestricted quantifiers in our language, al-
lowing us to speak of anything and everything. But then we should be able
to speak of anything and everything mathematical, among which would
be all collections or set-like objects, totalities which would violate the
general principle of extendability articulated by Mac Lane (generalizing
Zermelo’s own versions, independently arrived at also by Putnam).

It counts as a strike against set-theoretic foundations that it seems to be
incapable of resolving this problem. Zermelo’s resolution of recognizing
an unending, ascending series of models of set theory, each of greater and
greater ordinal characteristic (strongly inaccessible cardinal), is a major
advance over the fixed universe view, but, as already indicated, it is only a
partial resolution, for we still seem capable of speaking without contradic-
tion of “all inaccessible cardinals,” or “all full models of ZFC (character-
ized by Zermelo),” and so on, leading right back to our puzzle. (Indeed, if
we formalize Zermelo’s logic, which would be a fragment of second-order
logic, the standard comprehension scheme leads to classes of all sets, all
ordinals, all inaccessibles, all models, etc., after all, conflicting with gen-
eral extendability, as already described.)

This naturally leads us to consider alternatives to set theory, and indeed
category theory (CT) stands ready and waiting to step in. Its proponents
have been maintaining for decades that it provides an autonomous, alterna-
tive foundational scheme that in fact is superior in a number of ways to set-
theoretic foundations. Not only is it claimed to be more closely in contact
with the actual content of advanced mathematics (e.g., algebraic topology
and geometry problems, which it helps solve), it is also claimed to capture
better certain key structuralist ideas, such as the interdependence of struc-
tures through various kinds of mappings and, in particular, the idea of a
multiplicity of universes of discourse for mathematics in contrast with the
fixed universe view of set theory. Unlike set theory, in which the content
of a mathematical concept is fixed by referring it once and for all to a fixed
absolute universe of sets, in “category theory” any mathematical concept
acquires a plural reference through varying the category of discourse to
which it is referred. This is well illustrated by the group concept. As a set-
theoretical object, a group is a set equipped with a couple of operations
satisfying certain elementary axioms expressed in terms of the elements
of the set. By contrast, in category theory the group concept is given an
“arrows only” formulation, in which it becomes a “group object” capable
of living in virtually any category. In the category of topological spaces,
for example, a group object is nothing other than a topological group; in
the category of differentiable manifolds it is a Lie group; and in a category
of sheaves it is a sheaf of groups.
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Mac Lane, Bell, and others have proposed developing mathematics within
suitable toposes, categories with a rich hierarchical structure generalizing
certain key features of sets, roughly, those features that persist when sets
are allowed to vary in some way. (As we have said, these features include
the formation of Cartesian products, function classes by exponentiation,
and extensions of predicates.) Any topos may be conceived as a possible
universe of discourse in which mathematical arguments can be pursued
and mathematical constructions carried out. A topos has its own internal
language that describes it, and its own internal logic, which, in general,
is not classical but intuitionistic. But classical logic emerges if certain
further mathematical conditions, for example, the Axiom of Choice, are
imposed. Thus, topos theory already accommodates both classical and
constructive mathematics, allowing different universes for them built on a
common core.

The plurality of reference already conferred on mathematical concepts
by category theory is carried a stage further in topos theory. Take, for
example, the concept real-valued continuous function on a topological
space X. Any such function may be regarded as a real number, or quantity,
varying continuously over X. Now consider the topos Sh(X) of sheaves
on X. Here a sheaf on X may be conceived as a set undergoing continuous
variation, in a suitable sense, over (the open subsets of) X. In that case,
Sh(X) may be viewed as a universe in which everything is undergoing
continuous variation over X, “co-moving,” as it were, with the variation
over X of any given varying real number. This causes the variation of the
latter to be “unnoticed” in Sh(X); it is accordingly regarded there as being
a constant real number. In other words, the concept real number, interpret-
ed in Sh(X), corresponds to the concept real-valued continuous function
on X. This shows that, from the standpoint of topos theory, a mathematical
concept may be assigned a fixed sense, but may nevertheless have a plural
reference. Indeed, we may take the sense of the concept real number as
being fixed by a suitable definition in the common internal language of
toposes, while its reference will depend on the topos of interpretation. In
Sh(X), that reference will be, as we have seen, not the usual real number
concept but real-valued continuous function on X. That is, reference is
determined only relative to a topos of interpretation.

Another instance of the relativity of mathematical concepts, one fa-
miliar to all set-theorists, is the phenomenon of cardinal collapse. Here,
given an uncountable set I, we can produce a “universe of sets’—actually
a Boolean extension of the universe of sets—in which I is countable. This .
means that the cardinality of an infinite set is not an absolute or intrinsic
feature of the set but is determined only in relation to the mathematical
framework with respect to which that cardinality is “measured.” ;
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This shows that topos theory is pluralistic. But it is at the same time
objective in that (certain) toposes may be seen as depicting, in an idealized
way, objective aspects of the world, only no unique topos describes that
world in its totality. For example, the smooth topos provides an idealized
description of the geometric structure of the world, idealized through the
assumption that all objects and maps are continuous and smooth. At the
other extreme, the fopos of sets presents the world as an entirely discrete
structure in which objects are given purely in terms of their cardinality.
Still another example is the effective topos, in which the world is viewed
in terms of computability, and requires all functions to have algorithms.
The evident pluralism we again see here arises not because we are dealing
with competing theories, but because the alternatives are suited to differ-
ent purposes. So it is not meaningful to ask whether it is “really” the case
that all functions from the real line to itself are differentiable, or whether
it is really “true” that all functions from the natural numbers to themselves
are recursive, let alone whether any solid sphere is “really” decomposable
into five pieces that can be fitted together to make two solid spheres of
the same size. (This is an instance of the Banach-Tarski paradox, a con-
sequence of the Axiom of Choice, which is generally assumed to hold in
a topos of sets.) Instead, one recognizes such features as being tied to the
relevant idealization, as being, if you like, “objective” features of that ide-
alization, but not embodying any sort of claim about the (mathematical or
physical) world tout court.

All this has led Bell (1986), for example, to propose that mathematics
should be seen as local, or relative to a choice of background topos. Theo-
rems common to all the suitable toposes form the constructively provable
common core. Beyond that, objectivity requires relativization to particular
toposes, in analogy with relativistic physics. (Whether famous examples
of undecidables of set theory, such as the Continuum Hypothesis, can be
thought of as “objective” even in such a relative sense—i.e., in the case of
CH, relative to a topos in which power objects are maximal—is a separate,
debatable matter.)

This is an attractive view, as far as it goes. Category theory does provide
a mathematically interesting generalization of set theory and does offer
insights into “mathematical structure,” revealing, for instance, how mathe-
matical content is often only “up to isomorphism.” However, it does not go
far enough, or, better, it does not start early enough, or—more accurately
still—it is not clear just where it starts. The problem can be brought out by
attending to the term “category theory” itself. It is ambiguous, along with
the term “axiom.” On the one hand, there are first-order axioms defining
what a category is, and various additions to these defining various types
of topos (elementary, free, well-pointed, etc.). These are axioms only in
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the sense of defining conditions, telling us what these structures are, as in
abstract algebra, where one has axioms for groups, rings, fields, and so on.
As components of definitions, these so-called axioms assert nothing, and
s0 are not proper axioms in the traditional, Fregean sense—evident truths,
in an absolute sense, or at any rate assertions with a determinate truth-
value, apart from being evident. (To be sure, this is compatible with such
axioms decisively capturing a prior, well-motivated conception of a do-
main or type of object, as in the cases of the axioms for toposes mentioned
above, for smoothness or discreteness or recursivity. Here the axioms are
akin to the postulates of Euclidean geometry, if we read those as being true
of our conception of space, rather than applying literally to actual physical
space.) In fact, some category theorists have gone even further, explicitly
reading their defining conditions in a Hilbertian, structuralist way: any
objects whatever bearing a relation formally behaving like composition of
functions (as spelled out in the CT axioms) constitute a category. In other
words, the primitives of the language of CT are not even given a definite
interpretation, but are treated as placeholders or variables. On the other
hand, “category theory” as practiced by mathematicians involves substan-
tive, even deep theorems, and surely these are assertory. But in what frame-
work are these results proved? Not simply in the systems of definitions, as
is clear from cases in which various categories or toposes are brought into
functorial relations with one another. As Feferman (1977) pointed out, no-
tions of collection and operation are presupposed just in saying what a
category or a topos is as well as in relating them. And indeed, the typical
text in the subject, which of course is presented as informal mathemat-
ics, makes reference early on to a given, background universe of sets, that
is, category theory is not being presented as an autonomous foundational
framework at all; rather, set theory is presupposed in the background as
is standard in other branches of abstract mathematics (algebra, topology,
etc.). As pure mathematics, this is fine; but clearly the CT foundationalist
who would transcend the single-universe set-theoretic hierarchy must put
on another hat and articulate an alternative framework. At a minimum, a
background logic must be specified, including (asserted) axioms govern-
ing operations or relations and, presumably, governing the mathematical
existence of categories and toposes.

Efforts to create such an alternative framework by explicitly axiomatiz-
ing the metacategory of all categories were in fact initiated by Lawvere
(1966) and extended by Blanc and Donnadieu (1976). But there are dif-
ficulties with the claim that these axiomatizations could constitute an au-
tonomous foundation for mathematics. Primitives such as “category” and
“functor” must be taken as having definite, understood meanings, yet they
are in practice treated algebraically or structurally, which leads one to
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consider interpretations of such axiom systems, that is, their semantics.
But such semantics, as of first-order theories generally, rest on the set
concept: a model of a first-order theory is, after all, a set. The foundational
status of first-order axiomatizations of the metacategory of categories is
thus still somewhat unclear.

The bearing of all this on the issue of pluralism shouyld be evident: if
indeed CT is dependent on a background universe of sets, then the plu-

more fundamental, and CT’s promise of an alternative, autonomous foun-
dational approach would not be fulfilled. This is especially disappointing
when we recall that if we ask, “What plurality of intended universes for set
theory is there?” the standard answer is “None, there is Just the cumulative
hierarchy,” although within this there may also be many (less than exhaus-
tive) models. And it seems we are also stuck with set theory as a massive
€xception to a structuralist interpretation of mathematics.

It turns out, however, that there is a way out of this impasse, but at a

sense of collecting, forming wholes, and so on, only within a world, so to
speak, not across worlds, (Officially, worlds are not recognized; all this
is spelled out with modal oOperators, ultimately with just one: “it is mathe-
matically possible that . . ) In fact, surprisingly, second-order logical
machinery is available to describe not only large domains, in the sense
of having inaccessible cardinality, but also structures for set theory and
category theory, without ever officially quantifying over classes or rela-
tions as objects. Clever combinations of mereology and plural quantifica-

wise nonoverlapping things (about whose nature we can remain neutral),
and we must allow plural locutions, such as “Any things whatever that Q
also v,” as achieving the expressive power of quantification over arbitrary
subcollections of the ( given, hypothetical) domain of things.® For example,
the second-order least upper-bound principle takes this form: “Any reals
Wwhatever which are all < some real are all < a least such.” This, together



76 Geoffrey Hellman and John L. Bell

with the usual axioms for a complete ordered field, characterizes the real
number system up to isomorphism. Similar methods yield characteriza-
tions of other key mathematical structures such as the natural numbers,
full models of set theory, and various toposes, and so on, again, without
ever countenancing classes or relations as objects.

The upshot is that we do have at least one way of consistently combin-
ing set theory, category theory, and an open-ended plurality of universes
of discourse for mathematics, in accordance with structuralist insights.
The assertory axioms of the proposed framework are those of the back-
ground logic (essentially second-order logic with mereology) together
with axioms asserting the possibility of large domains and guaranteeing
extendability, that is, the possibility of ever larger ones. The axioms of
set theories proper can then be interpreted structurally as defining condi-
tions on certain kinds of structures. And category theory can be carried
out relative to background domains without thereby becoming a (late-ish)
chapter of set theory. (In effect, the Grothendieck method of universes has
been recovered nominalistically.)

Unlike the first kind of pluralism discussed above, this pluralism in on-
tology seems distinctively attractive, even necessary, for mathematics, as
compared with the natural sciences. After all, we live in a unique world,
don’t we? Pure mathematics is content to deal with mere conceptual possi-
bilities, but the natural sciences aim to describe and explain reality.” Surely
there is no analogue of the principle of extendability, articulating the “crea-
tive progress” that Zermelo found inherent in mathematics. Short of this,
there may well be other multiplicities involving ontology. Of course, on
the plane of metascience and perhaps in physics, there are multiple ways
of conceiving even the material world, with or without properties, with or
without space-time points as objects, with or without particles (e.g., with
only quantum fields), and so on. Are these cases of genuine equivalence,
and hence (?) only apparent choices, or undecidable questions? Or are we
driven to a kind of ontological relativity favored by Carnap (1956, Suppl.
A, 205-21)7 If so, then in the natural sciences, as well as in mathemat-
ics, absolutist talk of “reality” or even the more humble sounding “every-
thing,” should really be given up.

For a scientific example of “many worlds” in a very different sense, |
there is, of course, the notorious “many worlds” interpretation of quantum
mechanics (the de Witt version of the Everett interpretation, with actual
splitting practically whenever “anything definite happens”), but the objec-~
tions that have been raised against this seem to us decisive. More promis-
ing, perhaps, cosmologists now explore ideas about a multiverse instead
of the universe, multiple real cosmoses arising from quantum mechanicat

processes, including inflation. Certain seemingly intractable questions are i
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then blocked, for example, “Why does the actual cosmos satisfy the very
special conditions of the constants of nature permitting the formation of
galaxies, let alone life?”” (Answer: Bad question, for there are many actual
cosmoses in which galaxies never form. The reformulated question, “Why
does this cosmos—the one we experience—satisfy those special condi-
tions?” seems like a nonsense question, something like “Why am I me and
not you?” which nevertheless kept us from getting to sleep sometimes as
children.) And, of course, there is the whole issue of emergence (versus re-
duction), still not entirely resolved, even at the level of chemistry vis-a-vis
quantum physics. Should we recognize multiple categories of properties
and relations (attributes), corresponding to different, irreducible levels
of scientific inquiry? But these questions cannot be addressed within the
scope of this essay (which we hereby guarantee by stopping).

Notes

1. To be sure, classical practice itself does not imply endorsement of Platonism, as
many mainstream mathematicians, if pressed, fall back on some kind of formalism or fic-
tionalism. “Platonism” designates a reflective view, based on a literal, face-value reading
of mathematical discourse, which would justify the practice. It may well not be the only,
or the best, justification, however.

2. While it is true that no consistent intuitionistic propositional theory can be in
formal contradiction with classical logic, this is far from being the case for intuition-
istic first or higher-order theories. For example, the sentence ~VxVy (x = YV x=y)is
consistent in intuitionistic, but not classical logic. Indeed, such striking “conflicts” with
classical mathematics—famously Brouwer’s continuity theorem—arise in intuitionistic
analysis, where nonclassical axioms of continuity governing choice sequences are avail-
able. The Bishop framework abandons any such nonclassical axioms and so generates no
such conflicts. However, even in the intuitionistic case, these formal conflicts are only
apparent, not real, turning on ambiguity of the logical notation, as will be explained
later. (For a fuller discussion bringing out certain expressive limitations of intuitionism,
see Hellman 1989.)

3. For a sustained critique of Dummett’s case, see Burgess 1984.

4. These arise in connection with quantum mechanics and general relativity, but
need not concern us here. See, e.g., Hellman 1993 and 1998.

5. To be sure, one can raise questions concerning the “universe of constructions” to
which constructive proof-conditions appeal. But at least on a rough-and-ready, ordinary
understanding of those conditions, anyone can see that the intuitionistic rules are correct
and why certain classical principles and rules must be dropped.

6. According to anecdote, even the intuitionist Heyting seems to have shared this
perspective, as he liked to teach classical recursion theory. He said he found it interesting.

7. On the iterative conception, sets are arranged in a hierarchy of stages correspond-
ing to (finite and transfinite) ordinals. These “go on and on” in virtue of two main opera-
tions, passing from a set to its power set (set of all subsets of the given set), and taking
the limit of any ordinal sequence of sets (or taking as a set the range of any function on a
given set or ordinal (the content of the Axiom of Replacement). A stage so large that it can-
not be reached from below by either of these operations is called “(strongly) inaccessible.”
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As Zermelo (1930) proved, an inaccessible stage provides a model for the ZF axioms, and
so, by Godel’s second incompleteness theorem, the existence of inaccessibles cannot be
proved within ZF. Nevertheless, they are regarded as quite legitimate by set theorists.

8. A famous example of Geach, “Some critics admire only one another,” illustrates
that the logic of plurals goes well beyond first order. On the usual, “singularist” view, there
is hidden quantification over classes (of critics, in this case), but Boolos (1985) proposed
turning this on its head, taking plural quantification as already understood and interpret-
ing class quantification through it. This idea has been applied by Burgess, Hazen, and
Lewis (Appendix to Lewis 1991), to get the effect of ordered pairing of arbitrary individu-
als without any set-theoretic machinery. Lewis (ibid.) has also argued, persuasively in
our view, that we do have an independent grasp of plural quantifiers. These ingredients
have played an important role in recent developments of a modal-structuralist approach to
mathematics (e.g., Hellman 1996, 2003). A systematic, more ambitious treatment of the
logic of plurals is given by Yi (2005).

9. Notoriously, Nelson Goodman (1978) challenged this assumption, where the
“real world” literally gives way to multiple world versions (even apart from mathematics).
We think, along with Scheffler, however, that here Goodman goes too far. See, e.g., Schef-
fler 1980.

10. This is quite compatible with an open-ended, context-relative understanding
of quantifier phrases, which, arguably is all that is needed for ordinary expression and
reasoning.
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