A CHARACTERIZATION OF UNIVERSAL COMPLETE BOOLEAN ALGEBRAS

J. L. BELL

Let B be an (infinite) Boolean algebra† and let κ be an infinite cardinal such that $\kappa \leq |B|$. (We write |B| for the cardinality of B.) B is κ -complete if each subset X of B of cardinality $< \kappa$ has a join $\bigvee X$. Following Morley and Vaught [3], B is said to be κ -universal if for each Boolean algebra A of cardinality $< \kappa$ there is a monomorphism of A into B. A subset X of B is an antichain if $0 \notin X$ and, for any pair of distinct elements $x, y \in X$, we have $x \wedge y = 0$. For each cardinal λ , we write A_{λ} for the Boolean algebra of all finite and cofinite subsets of λ .

Our aim in this note is to prove the following

THEOREM. Let κ be an infinite cardinal and let B be an infinite κ -complete Boolean algebra. Then the following conditions are equivalent:

- (i) B is κ-universal;
- (ii) for each $\lambda < \kappa$, there is a monomorphism of A_{λ} into B;
- (iii) for each cardinal $\lambda < \kappa$, B contains an antichain of cardinality λ .

Remark. My original proof of the implication (iii) ⇒ (i) used the technique of Boolean-valued models of set theory. The present elementary proof was discovered later.

Proof of the theorem

- (i) \Rightarrow (ii). Suppose that B is κ -universal and $\lambda < \kappa$. Then $|A_{\lambda}| < \kappa$ and (ii) follows.
- (ii) \Rightarrow (iii). Assume (ii), and let $\lambda < \kappa$. Obviously A_{λ} contains an antichain X of cardinality λ , so if h is a monomorphism of A into B, $\{h(x): x \in X\}$ is an antichain in B of cardinality λ .
- (iii) \Rightarrow (i). Suppose that (iii) holds, and let A be a Boolean algebra of cardinality $\lambda < \kappa$. If λ is finite, it is easy to show that there is a monomorphism of A into B. (For example, construct a continuous mapping of the Stone space of B onto that of A.) Thus we may assume that λ is infinite. Let $\{a_{\xi}: \xi < \lambda\}$ be an enumeration of the non-zero elements of A, and for each $\xi < \lambda$ let U_{ξ} be an ultrafilter in A containing a_{ξ} . By assumption, B contains an antichain $\{b_{\xi}: \xi < \lambda\} = X$ of cardinality λ . By adjoining the complement of $\bigvee X$ to X, if necessary, we may assume without loss of generality that $\bigvee_{\xi < \lambda} b_{\xi} = 1$. Now define $h: A \to B$ by $h(x) = \bigvee \{b_{\xi}: x \in U_{\xi}\}$ for each $x \in A$.

Received 3 December, 1974; revised 20 January, 1975.

[†] If B is a Boolean algebra, we write 0, 1 respectively for the least and greatest elements of B. For $x, y \in B$ we write $x \lor y$, $x \land y$ and x^* for the join and meet of x and y, and the complement of x, respectively.

We claim that h is a monomorphism of A into B. First, for $x, y \in A$ we have:

$$\begin{split} h(x \vee y) &= \bigvee \{b_{\xi} : x \vee y \in U_{\xi}\} = \bigvee \{b_{\xi} : x \in U_{\xi} \text{ or } y \in U_{\xi}\} \\ &= \bigvee \{b_{\xi} : x \in U_{\xi}\} \vee \bigvee \{b_{\xi} : y \in U_{\xi}\} \\ &= h(x) \vee h(y). \end{split}$$

Also,

$$h(x) \lor h(x^*) = h(x \lor x^*) = h(1) = \bigvee_{\xi < \lambda} b_{\xi} = 1,$$

and

$$h(x) \wedge h(x^*) = \bigvee \{b_{\xi} : x \in U_{\xi}\} \wedge \bigvee \{b_{\eta} : x^* \in U_{\eta}\}$$
$$= \bigvee_{\xi} \bigvee_{\eta} \{b_{\xi} \wedge b_{\eta} : x \in U_{\xi} \& x^* \in U_{\eta}\}$$
$$= 0.$$

Accordingly $h(x^*) = h(x)^*$, and it follows that h is a homomorphism.

Finally, h is one-one since, if $0 \neq x \in A$, then $x = a_{\xi}$ for some $\xi < \lambda$, so that $x \in U_{\xi}$ and $h(x) \ge b_{\xi} \ne 0$. This completes the proof.

COROLLARY 1. Every infinite ℵ₁-complete Boolean algebra is ℵ₁-universal.

Proof. It is well known (cf. Dwinger [1; Thm. 4.8]) that every infinite Boolean algebra contains an infinite antichain, so the result is an immediate consequence of the theorem.

Let $P\kappa$ be the complete Boolean algebra of all subsets of κ . Since $P\kappa$ clearly contains an antichain of cardinality κ , the theorem implies

COROLLARY 2. If $\kappa \geqslant \aleph_0$, $P\kappa$ is κ^+ -universal.

Remarks

- 1. The assumption that B is κ -complete cannot be dropped in the statement of the theorem. For example, take $\kappa = \aleph_1$ and $B = A_{\aleph_0}$. Then B obviously satisfies condition (ii) of the theorem. On the other hand, B cannot be \aleph_1 -universal. For it is easy to see that every subalgebra of B contains atoms, so since the free Boolean algebra A on countably many generators is atomless, there can be monomorphism of A into B. I do not know a necessary and sufficient condition for an arbitrary Boolean algebra to be κ -universal.
- 2. Let us call a κ -complete Boolean algebra B strongly κ -universal if for any Boolean algebra A of cardinality $< \kappa$ there is a complete monomorphism of A into B, i.e. a monomorphism which preserves any infinite joins which exist in A. If B is the collapsing (\aleph_0, κ) -algebra, the regular open algebra of the product space κ^{\aleph_0} with the product topology—where κ is assigned the discrete topology—then it follows from work of Kripke [2] that B is strongly λ^+ -universal for any λ satisfying $2^{\lambda} \le \kappa$. (Since B obviously contains an antichain of cardinality κ , it follows from the present theorem that it is κ^+ -universal.) Again, I do not know a necessary and sufficient condition for a κ -complete Boolean algebra to be strongly κ -universal.

References

- 1. P. Dwinger, Introduction to Boolean algebras (Würzburg, 1961).
- 2. S. Kripke, "An extension of a theorem of Gaifman-Hales-Solovay", Fund. Math., 61 (1967), 29-32.
- 3. M. Morley and R. L. Vaught, "Homogeneous universal models", Math. Scand., 11 (1962), 37-57.

London School of Economics and Political Science.