
Commutative Rings as Algebras of Values of Intensive Quantities 

 

The concept of commutative ring (with identity) provides a basic link between algebra 

and geometry. Commutative rings arise naturally as algebras of values of  intensive 

quantities over topological spaces. To understand this, we need first to distinguish 

between the idea of an extensive and an intensive quantity. Extensive quantities are global 

in that they are defined over extended regions of space. Examples include mass, weight, 

volume, and electrical charge. Extensive quantities are always additive as quantities:  

thus, for instance,  2 pounds + 2 pounds = 4 pounds. Intensive quantities, on the other 

hand, are defined only at a point, locally, that is, and are not (in general) additive as 

quantities in the way that extensive quantities are. Temperature, density, and pressure 

are intensive quantities which are not additive as quantities: thus, for example, on 

mixing two buckets of water each having a uniform temperature of 50 degrees one 

obtains a quantity of water at a temperature of 50, rather than 100, degrees. (But there 

are intensive quantities such as velocity and acceleration which are additive as 

quantities.) 

While intensive quantities are not, in general,  additive as quantities, the numerical values 

that they are customarily assigned (typically, real numbers ) cannot only be added, but 

also multiplied. Thus, while it makes no sense to add a density to a velocity or  to 

multiply a temperature by a pressure, adding or multiplying the numerical values          

( as  real numbers) are perfectly well defined operations.  

For example, consider the earth`s atmosphere A.  There are many intensive quantities 

defined on A - temperature, pressure, density, (wind) velocity, etc. The  real number 

values of these quantities varies continuously from point to point.  In general, we can 

define a (continuously varying value of)  intensive quantity on A to be a continuous 

function on A to the field  of real numbers. Intensive quantities construed in this way 

form an algebra in which addition and multiplication can be defined ''pointwise'': thus, 



given two intensive quantities f, g, the sum f + g and the product fg  are defined by 

setting, for each point x in A,  

 ( f + g)(x)  = f(x) + g(x)     (fg)(x) = f(x)g(x). 

 In general, given a topological space X, we consider the set C(X) of continuous real-

valued functions on X, with addition and multiplication defined pointwise as above.  

This turns C(X) into a commutative ring, the ring of real-valued (continuously varying) 

intensive quantities over X. We can also consider the subring C*(X) of C(X) consisting of 

all bounded members of C(X), the ring of bounded intensive quantities over X. When X  is 

compact, C*(X) and C(X) coincide.  

More generally, given any commutative topological ring T, the ring C(X, T) of 

continuous T - valued functions on X is called the ring of T-valued intensive quantities on 

X.  

Given a commutative ring, it is natural to raise the question as to whether it can be 

represented as a ring of intensive quantities (with values in some commutative 

topological ring) on some topological space.  

It was M. H. Stone who provided the first answer to this question. In the celebrated 

Stone Representation Theorem, proved in the 1930s, he showed that each member of a 

certain class of rings, the so-called Boolean rings, is representable as a ring of intensive 

quantities - with values in a fixed simple topological ring - over a certain class of spaces 

- the Boolean or Stone spaces.  

A Boolean ring is defined to a ring in which every element is idempotent, x2  = x for every 

x. The archetypal example of a Boolean ring is the ring, written 2, of integers modulo 2, 

whose elements may be identified with the integers 0, 1. 2 is the simplest nontrivial 

(commutative) ring. A ring isomorphic to 2 will be called rudimentary.  Clearly any 

rudimentary ring is a field. The term Boolean ring celebrates the 19th century English 



mathematician George Boole, who first demonstrated the importance of this 

mathematical structure in the analysis of logic.)  

An elegant algebraic manipulation shows that any Boolean ring is commutative. That is, 

universal  idempotency  implies commutativity. To wit,  

2 2 2( )x y x y x xy yx y x y xy yx             

Hence  0 = xy + yx, so that xy = -yx. Putting y = x then gives  x = x2  = - x2 = -x. Thus        

xy =  -yx = yx, establishing commutativity.  

Now give the ring 2 the discrete topology, so turning it into a topological ring. For a 

topological space X, the ring C(X, 2)  of 2-valued intensive quantities on X is called the 

characteristic ring  of X.  It is easily seen that characteristic rings are always Boolean. If  

(and only if) X is connected, the characteristic ring of X is just the basic Boolean ring 2.  

Stone`s idea was to represent an arbitrary Boolean ring as a characteristic ring of some 

type of topological space. Knowing that the characteristic rings of connected spaces are 

always basic, such spaces would necessarily have to be, in some sense, highly 

disconnected.  

To this end Stone employed the concept -  already introduced by topologists - of a 

totally disconnected space. A topological space is defined to be totally disconnected if its 

only connected subsets consist of single points. (This is about as close as a topological 

space can get to being discrete without neighbourhoods being reduced to single points). 

A totally disconnected compact Hausdorff space is called a Boolean space. It is easily 

shown that  a Boolean space can also be characterized as a compact Hausdorff space 

with a base of clopen (i. e. simultaneously closed-and -open) sets.   

With each Boolean ring R, Stone associated a Boolean space St(R),  called its Stone space, 

and showed that R is isomorphic to the characteristic ring of St(R). The points of St(R) 

are the prime ideals of R, and the topology on St(R) is defined by taking closed sets to be 

subsets  of St(R) of the form  { ( ) :P R X P St }  for arbitrary  subsets X of R.  



Inversely, each Boolean space X gives rise to a Boolean ring Cl(X)  called the ring of 

clopens of X. The elements of Cl(X) are the clopen subsets of X, with addition and 

multiplication operations given by: 

 ( ) \ ( )U V U V U V     (symmetric difference)        U V U V     

The Stone Representation Theorem states that each Boolean ring is isomorphic to the 

chararacteristic ring of its Stone space and that each Boolean space is homeomorphic to 

the Stone space of its ring of clopens.  

The Stone representation theorem establishes a duality between the category of Boolean 

rings and the category of Boolean spaces.  

It is an immediate consequence of the Stone representation theorem that Boolean spaces 

are completely characterized by their characteristic rings, in the sense that, if the 

characteristic rings of two Boolean spaces are isomorphic, then the spaces themselves 

are homeomorphic.  

In the late 1930s Gelfand and Kolmogorov showed that compact Hausdorff spaces  are 

completely characterized by their rings of real-valued intensive quantities: if the rings of 

real-valued intensive quantities of two compact spaces are isomorrphic, then the spaces 

themselves are homeomorphic. This is the Gelfand-Kolmogorov theorem. 

Essentially, Gelfand and Kolmogorov extended Stone`s procedure of associating a 

topological space with a Boolean ring to rings of the form C(X) for arbitrary compact 

Hausdorff spaces X. They then showed that, given a compact Hausdorff space X, the 

topological space so associated with C(X) is itself homeomorphic to X. The Gelfand-

Kolmogorov theorem is an immediate consequence.  

 

As later became clear, Gelfand, Kolmogorov and Stone's procedure of associating 

topological spaces be applied to arbitrary commutative rings. Given a commutaive ring R, 



the structure space or maximal spectrum Max(R)  of R is defined as follows. The points of 

Max(R) are the maximal ideals of R, and the topology on Max(R) is defined by taking 

closed sets to be subsets of Max(R) of the form  { ( ) :P R X P Max }  for arbitrary  

subsets X of R. We note in passing that, since in an arbitrary commutative ring, every 

maximal ideal is prime, and, in a Boolean ring, conversely, Max(R), for a Boolean ring R  

coincides with St(R). 

Gelfand and Kolmogorov showed that, for points p in a compact Hausdorff space X, the 

set Mp =  {f C(X): f(p) = 0} is a maximal ideal in C(X) (= C*(X)) hence an element of           

Max(C(X)): and that the map p  Mp is a homeororphism of X with Max(C(X, )).  

The Gelfand-Kolmogorov theorem leads to a duality between the categrories of 

compact Hausdorff spaces and the categories of rings of the form C*(X) for arbitrary 

topological spaces X, that is, rings of bounded intensive quantities. This result is less 

satisfactory than the Stone duality between the "clean-cut" categories of Boolean rings 

and Boolean spaces, since it naturally leaves unresolved the problem of providing an 

abstract  characterization of rings of  bounded intensive quantities. It turns out that such 

a characterization cannot be given in purely algebraic terms. It is necessary also to equip 

rings with an order structure and a norm naturally possessed by rings of bounded 

intensive quantities. The appropriate type of ordered normed ring is called a real  C*-

algebra. In 1940 Stone established what amounts to the duality between the category of 

compact Hausdorff spaces and the appropriately defined category of real C*-algebras.  

Gelfand and his collaborators proceeded in another direction, replacing the real field by 

the complex field , so introducing rings (or algebras) of complex-valued intensive 

quantities. The abstract versions of these are called commutative complex C*-algebras. 

Gelfand and Naimark established a duality between the category of commutative 

complex C*-algebras and the category of compact Hausdorff spaces. They also 

investigated noncommutative C*-algebras, proving the important representation theorem 

that every such algebra is isomorphic to an algebra of operators on a (complex) Hilbert 



space. Here noncommutativity is natural, since "multiplication" of operators  

corresponds to composition of functions, rather than to products of numbers.  

To extend the representation of rings as rings of intensive quantities to arbitrary 

commutative rings, some new ideas are needed. The principal new ideas are those of a 

bundle and a sheaf on a topological space. For our purposes here these concepts can be 

introduced in the following way.  

Consider the product space X   and the (continuous) projection map : X X    

given by (( , )) .x r x   Then the map *:f X X   given by *( ) ( , ( ))f x x f x  is a 

continuous section of , that is, *f is the identity map on X . Conversely, it is easily 

shown that each continuous section of  is of the form f* for a unique f  C(X). The set 

S(X) of continuous sections of  is then a ring with sum and product defined pointwise 

as for C(X):  for s, t   S(X) , s  + t and  st  are given by  (s + t)(x)  = (s(x) + t(x)), x) and 

(st)(x) = (s(x)t(x), x)   for x  X. S(X) is called the ring of sections of  . The map f  f* is an 

isomorphism between the rings  C(X) and S(X).  

It follows that every ring of the form C(X), i.e. every ring of intensive quantities in the 

usual sense,  is isomorphic to the ring of sections of a projection map. Thus the rings of 

sections of projection maps can be thought of as "generalized" rings of intensive 

quantities.  

Similarly, if we replace C(X) by the characteristic ring C(X, 2), then the latter is 

isomorphic to the ring of sections of the projection map X  2  X.  

For each x  X, the subset  Px =  
1( )x   of X  is called the fibre or stalk of . Clearly  Px 

= { }x   so that it can turned into a ring isomorphic to  in the obvious way. The ring 

operations on each Px are continuous (with respect to the topology on X  ).  

The projection map : X X   and the rings Px constitute a bundle of rings over X. In 

general, a bundle over X is just a continuous map p from some topological space E  to X. 



The  subsets Px  = p-1(x)  for x  X are called the fibres of p. A section of p is a (continuous) 

map  s: X  E such that  p  s is the identity map on X. A bundle of rings over X is a 

bundle p : E  X such that each fibre Px  is a ring whose operations are continuous with 

respect to the topology on E. If each ring Px  is a ring of a certain fixed type, the bundle is 

called a bundle of rings of that type.  

Given a bundle of rings p : E  X, The set (E, p) of sections of p can be turned into a 

ring as follows: given s, t (E, p), and x  X, we have p(s(x)) = p(t(x)) = x, i.e. s(x), t(x)  

Px, so that s(x) + t(x) and s(x)t(x) are both defined in Px. Accordingly we define s + t and 

st by  

(s + t)(x) = s(x) + t(x)       (st)(x) = s(x)t(x)    for x  X. 

 

The resulting ring is called the ring of sections of the bundle (E, p).  Each section s is a 

map on X taking values in a ring: to be precise, the value s(x) at each x  X lies in the 

ring Px . In the case of the projection bundle associated with the basic ring C(X) of 

intensive quantities on X all the rings Px  are isomorphic (in this case,  to  ), and so the 

sections can be  considered as `quantities`` with values in the `constant`` ring . For a 

general bundle of rings, the rings Px  in which the sections take values varies with the 

point x to which Px  is attached.  Thus rings of sections of bundles of rings can be 

thought of as (still further) generalized rings of intensive quantities, only now in which 

the ring of values of the quantities varies with the point in the space at which the 

quantity is defined.  The ring of sections of a bundle of rings can then, with some 

justice, be called the ring of intensive quantities of the bundle. 

We have noted the (less than profound) facts that any ring of the form C(X), as well as 

any characteristic ring, is isomorphic to the ring of sections of a bundle of rings. In the 

case of characteristic rings, each of the fibres of the associated bundle is a rudimentary 

ring. If we now  bring the  Stone Representation Theorem  into the picture, we get the 



non-trivial result that any Boolean ring is isomorphic to the ring of sections, or intensive 

quantities, of a bundle of rudimentary rings over a Boolean space.  

The bundle associated with the Stone Representation Theorem is the projection bundle 

: X  2  X. In this case it happens that the map  has the special property  - not 

possessed by all projections - of being a local homeomorphism. In general, a continuous 

map p: E  X is a local homeomrphism if each point e  E has an open neighbourhood 

U such that p[U] is open in X and the restriction p|U is a homeomorphism of U onto 

p[U]. It is easily seen that, for any discrete space D (in particular, when D = 2) the 

projection  : X  D  X is a local homeomorphism. (For (x, d)  X  D, X  {d} is an 

open neighbourhood of (x, d) projecting homeomorphically onto  p[X  {d}] = X).   

A bundle  (of rings) p: E  X in which p is a local homeomorphism is called a sheaf (of 

rings) on X. The Stone Representation Theorem can accordingly be stated:  

 

(*) every Boolean ring is the ring of sections, or intensive quantities, of a sheaf of rudimentary 

rings on a Boolean space.  

The objective behind the sheaf representation of commutative rings is to represent each 

commutative ring as a ring of sections, or intensive quantities, of a sheaf of rings of 

some simple type.  

It is a remarkable fact that the Stone Representation Theorem for Boolean rings in the 

form (*) above can be extended to arbitrary commutative rings. Call a ring 

indecomposable if 0 and 1 are its only idempotents. Clearly any field,  and so any 

rudimentary ring, is indecomposable. The only indecomposable Boolean rings are 

rudimentary. C(X) is indecomposable  iff X is connected. The Pierce Representation 

Theorem for commutative rings asserts that  

every commutative ring is the ring of sections, or intensive quantities, of a sheaf of 

indecomposable rings on a Boolean space. 



For a given ring R, the associated Boolean space is the Stone space of the Boolean ring  

of idempotents in R. 

Commutative rings can also be represented as sheaves of local rings. A local ring is a 

(commutative) ring  R with the following equivalent properties: (1) R has exactly one 

maximal ideal; (2) for any x  R, either x or 1 - x is invertible. Any field, and so any 

rudimentary ring, is local.   

Given a (commutative) ring R, we define the spectrum of R, Spec(R), to be the 

topological space whose underlying set is the set of prime ideals of and whose closed 

sets are defined to be all sets of prime ideals  of the form {P:  X  P} for X  R.   

Grothendieck's Representation Theorem for commutative rings asserts that  

any commutative ring R is the ring of sections, or intensive quantities, of a sheaf of local rings 

over Spec(R). 

 

 

 

 

 


