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ON COMPACT CARDINALS

by J. L. BELL in London (Great Britain)

Let » be a cardinal and L a language. x is said to be L-compact if whenever X is a
set of sentences of L such that any subset of 2’ of power < x has a model, so does X, If
Z is a class of languages, we say that » is Z-compact if » is L-compact for each Le .Z.

In Section 1 of this paper we investigate the properties and relative sizes of 2Z-
compact cardinals for certain classes % of infinitary and second-order languages. In
Section 2 we consider a natural extension of the notion of compactness to languages
whose class of formulas is a proper class in the sense of MorsE-KELLEY set theory.
Using a result of KuNEN [4], we show that there are no L-compact cardinals for any
second order language L whose class of individual constants is a proper class.

§ 1. Results on Z-compact cardinals

Notation. We write #1 for the class of all first order languages with equality,
all of which are assumed to include a binary predicate symbol €.

For cardinals %, 1, we write .%Z,,, for the class of all infinitary languages L,,;, where
LeZ.

22 is the class of all second-order languages L? obtained from languages L € #?
by adding a countable sequence X,, X,,... of second-order variables, which are
understood to range over all sets of individuals.

Definition. A cardinal » is said to be

(a) strongly compact if it is Z,,-compact;

(b) supercompact if for each cardinal 4 = x there is a x-complete ultrafilter U over
P,(2) (the family of all subsets of 4 of power < x) such that, for all & < 4,

and, for all f: P,(2) - 4, {xeP,(A): Eea}elU

{xeP,A): f(x)ex}eU— 3E <) {xeP,(l): f(x) = £} e U;

(c) extendable if for all & > x there is f > « and an elementary embedding j of
R,, €) into {(Rg, €) such that x is the first ordinal moved by j.
B e ]

It is known [5] that every extendable cardinal is supercompact and that every
supercompact cardinal is strongly compact. We first show that an extendable cardinal
is a large supercompact cardinal.

Theorem 1. Each extendable cardinal » is a limit supercompact cardinal, i.e. there is
a set of » supercompact cardinals < x.

Proof. Let sc(£) be a formula of the language of set theory expressing that & is
a supercompact cardinal. By the reflection principle, we can find a limit ordinal x >

h that, for all g
such that, for all £ < (R, €) E se[£] < se(£).
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Now, since »# is extendable, there is a f# > « and an elementary embedding j of
(B4, €) into {Ry, €) such that x is the first ordinal moved by 7. By [5], the set

U={zgcx: xej@)

is a normal ultrafilter over ». Now let a = {& < x:s¢(&)}. We claim that ae U,
which will prove the theorem since every member of U is evidently of power x». By

the choice of &, we have gLt <o iR a5k se[E]}.
Hence, since j is elementary, we have
j@) = {& < j(x): (R, €) F se[£]}.

Since o is a limit ordinal and (R, €) is elementarily equivalent to (R4, €), B is also
a limit ordinal. Hence, since x is supercompact we have (R,, €) k se[x]. It follows
that x € j(a), whence a € U, as claimed. This completes the proof.

Corollary. The least £*-compact cardinal is a limit supercompact, hence also a limit
strongly compact, cardinal.

Proof. By a result of [2], the least .#*-compact cardinal is extendable, so the result
follows immediately from Theorem 1.

We now consider L v and &, , -compact cardinals. Our next result is related to
the main theorem of [1] and is proved in a similar way. We leave the reader to supply
the details of the proof, using the techniques of [1].

Theorem 2. Let x be a cardinal. Then the following conditions are equivalent.

(1) x is L, ,-compact;

(i) = s L o, 0,-cOMpact;

(iii) for any transitive set M and any subset X of M with the property that any subset
of X of power < x has non-empty intersection, there is a transitive set N and an element-
ary embedding j of (M, €) into {N, €) such that Nj"X %+ 0.

(iv) for any cardinal A, each x-complete filter over A can be extended to an wy-complete
ultrafilter over . ;

The following result is an immediate consequence of Corollary 2.2 of [3].

Lemma. Let uy be the least (uncountable) measurable cardinal. Then, for any cardi-
nal 7, each w,-complete ultrafilter over } is uq-complete.

Notice that this lemma together with Theorem 2 yields the conclusion that any
& o-compact cardinal is & uouo-cOmpact. For, if » is &, ,-compact, then, by (iv)
of Theorem 2 and the lemma, any x-complete ultrafilter over a cardinal A can be
extended to a uy-complete ultrafilter, and the required conclusion can then be obtained
by a straightforward ultrapower argument.

Now let %, be the least & w-compact cardinal and 2, the least strongly compact
cardinal. It is clear from (iv) of Theorem 2 that Mo = %y and trivially 2, < 2,. It is
still unknown whether p, < 4, is provable in set theory.

Theorem 3. Ho < ;»0 ﬁ‘l,to < ¥p.

Proof. Suppose py = %,. Then by (iv) of Theorem 2 and the lemma, each yuy-com-
plete ultrafilter over a cardinal 2 can be extended to a ug-complete ultrafilter, and it
is well known that this condition is equivalent to the strong compactness of u,. Hence
/4y = %y, and the theorem follows.
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In [6], Vorknka and HrBACEK show that, if there is a cardinal » such that, for any
cardinal 7, each x-complete filter over A can be extended to a x-complete ultrafilter
(i.e. if x is strongly compact), then the universe is not constructible from any set.
Now it is quite easy to verify that the VorENKA-HRBACEK proof only uses the fact
that each x-complete filter over A can be extended to an w;-complete ultrafilter over A.
But this is precisely condition (iv) of Theorem 2. Accordingly we have

Theorem 4. If there is an &£, ,-compact cardinal, then the universe is not con-
structible from any set.

Corollary. Let ZFM be the theory ZE¥ + “‘there exists a measurable cardinal”. Then
if ZFM is consistent, the statement *‘u, 8 L o ,0-cOmpact” cannot be proved in ZFM.

§ 2. Compactness in languages whose class of formulas is a proper class

Suppose £ is a proper class of languages with a common stock of logical symbols.
Consider the language U.# whose class of non-logical symbols is given by the union
of the sets of non-logical symbols of all members of £ and whose logical symbols are
the same as those of each member of %. Evidently the class of non-logical symbols,
and hence of formulas, of U is a proper class in the sense of MorsE-KELLEY set
theory. It is natural to call a cardinal x UZ-compact for sets if

(*) whenever Y is a set of sentences of U% and each subset of X' of power <z has
a model, then 2 has a model.

Clearly, then, if » is U&-compact, it must be Z-compact in the sense of § 1. Moreover,
quite weak conditions on % are sufficient to ensure that the converse obtains, for
example, if whenever £’ is a subset of &, we have UZ' € Z. This condition is met
by all the classes of languages considered in this paper.

We propose to investigate what happens if we extend the condition (*) to all
classes of sentences X of UZ. Clearly, if #-compactness was a stringent condition,
then this new condition is in general still more stringent. We shall see that, in fact,
when & is the class of second-order languages, this condition is so stringent as to
be unsatisfiable.

Let us define a class language to be a language L with one binary predicate symbol €
in addition to the equality symbol =, and a proper class C' of constant symbols. An
L-structure is a triplel) A = (A, E, F) where Aisaclass, E € Ax A and F is a func-
tion from C into A. If ¢ € C, we write ¢¥ for F(c) as usual. The notion of satisfaction
for formulas of L can now be defined in the customary way by interpreting € as E
and ¢ as ¢¥ for each ¢ e C. It is also easy to see that this definition of satisfaction
can be formalized in MoEsE-KELLEY set theory.

If % is a cardinal and L is a class language, we say that is L-compact if whenever 2
is a class of sentences of L such that each subset of X of power < x has a model, then
2 has a model.

Observe that the usual HENKIN-style completeness proof for first-order logic can
be extended in a straightforward way to show that any consistent class of first-
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order sentences has a model. For the usual completeness proof to go through for a
first order class language L it is evident that the following two conditions must be met:

(1) there is a proper class of new constants available for adding to L;
(2) each consistent class of sentences of L can be extended to a consistent complete
class of sentences.

Now (1) is not true in general, because the class C' of constants of L might exhaust
the whole universe. But we can always replace C by a proper class C’ equipollent
with C and such that the complement of C’ is a proper class. The new language L’
obtained in this way is equivalent to L and satisfies (1).

As for (2), the global axiom of choice yields an enumeration {o,: o« € ORD}!) of
all sentences of L. Starting with a consistent class of sentences X, we define by trans-
finite recursion a function f with domain ORD as follows:

oy if not Zo {f(f): B <&} F Tloa
=t T {fB): B < a)F Tla,

Then X' = X o {f(x): « € ORD} is clearly a consistent complete class of sentences
containing X

fo) =

From this discussion we immediately infer
Theorem 5. w s L-compact for any first-order class language L.
By contrast, however, we have

Theorem 6. Let L be a second-order class language. Then there are mo L-compact
cardinals.

Proof. First of all, it is clear that, if » is L-compact for one second-order class
language L, it is L-compact for all second-order class languages L. This is so because
there is—assuming the global axiom of choice—a bijection between the classes of
constants of any pair of second-order class languages.

Thus, without loss of generality, we may assume that L is a second-order class
language whose class C' of constants does not exhaust the whole universe V. By the
global axiom of choice, there is a bijection F' from C onto V. Let B be the L-structure
{V,eF). For each a € V, we write a for F~1(a); thus a is the constant of L. which
denotes @ in .

Now suppose, if possible, that x is an L-compact cardinal. Let A be the least regular
cardinal > %. Then since any cardinal > x is L-compact, so is 4. Let ¢ be a constant
not in € and let L’ be the language obtained by adjoining the constant ¢ to L. Then,
by the above remarks, A is L’-compact.

Let X be the class of sentences of L’ consisting of:

(1) all sentences of L holding in %;
(2) the sentences & € ¢ for all & < 2;
(3) the sentence ¢ € 4.

We claim that each subset X’ of X of power < A has a model. For let # be the supremum
of all ordinals x < 2 such that & occurs in a sentence of type (2) in 2. Then, since

1) Here ORD is the class of all ordinals.
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there are < A such x and 7 is regular, we have p < 4. Accordingly, (V, e, Foide, OB
is a model of 2"

Since 7 is L'-compact, 2 has a model whose universe may be taken to be transitive
since X contains the second-order sentence which asserts that € is a well-founded rela-
tion. Thus let A = {4, €, G) be a transitive class model of X. Clearly the map j: V-4
defined by j(a) = a¥ for a €V is an elementary embedding of (V, €) into (4,€).
Thus j is order-preserving on the ordinals and it follows that, for each ordinal x, we

have & < j(x). Accordingly 4 contains arbitrarily large ordinals, so, since it is transi-
tive, it contains all the ordinals. Now put ¢ for the second-order sentence

VX, [32 Vy[Xo(y) » y €] = 32 Vy[Xo(y) © ¥ e x]].

o says that every subset of an individual is (coextensive with) an individual. Now
certainly ¢ holds in {V, €), so it also holds in (4, €). But it is well-known that the
only transitive class model of ZF + ¢ containing all ordinals is V itself; it follows
that A = V. Therefore j is an elementary embedding of (V, e) into itself. Since
j) = > ¥ > gforall &« < 2 it follows that j(4) > 4, so that j is not the identity.
But this contradicts a result in [4] which asserts that there are no non-trivial ele-
mentary embeddings of (V, € into itself.

This completes the proof.

Remark. Since the sentence characterizing well-foundedness and the sentence o
introduced in the proof of Theorem 6 are both IT%, it is clear that this proof actually
establishes the following ostensibly stronger result: For each cardinal x there is a class X
of IT-sentences whose only non-logical constants are € and individual constants such that
cach subset of X of power <x has a model but X itself has no model.

Added in proof: In the prootf of Theorem 6, to justify the claim that the model
9 may be taken to be transitive, it is also necessary to show that X contains a sen-
tence o' which asserts that each initial segment under € is a set. We may take ¢’ to
be the second-order sentence

Ve 3X,Vy[Xo(y) o yexl;

it is now not hard to see that ¢’ el
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