ON COMPACT CARDINALS

by J. L. Bell in London (Great Britain)

Let \varkappa be a cardinal and L a language. \varkappa is said to be L-compact if whenever Σ is a set of sentences of L such that any subset of Σ of power $< \varkappa$ has a model, so does Σ . If $\mathscr L$ is a class of languages, we say that \varkappa is $\mathscr L$ -compact if \varkappa is L-compact for each $L \in \mathscr L$.

In Section 1 of this paper we investigate the properties and relative sizes of \mathcal{L} -compact cardinals for certain classes \mathcal{L} of infinitary and second-order languages. In Section 2 we consider a natural extension of the notion of compactness to languages whose class of formulas is a proper class in the sense of Morse-Kelley set theory. Using a result of Kunen [4], we show that there are no L-compact cardinals for any second order language L whose class of individual constants is a proper class.

§ 1. Results on L-compact cardinals

Notation. We write \mathcal{L}^1 for the class of all first order languages with equality, all of which are assumed to include a binary predicate symbol \in .

For cardinals \varkappa , λ , we write $\mathscr{L}_{\varkappa\lambda}$ for the class of all infinitary languages $\mathbf{L}_{\varkappa\lambda}$, where $\mathbf{L} \in \mathscr{L}^1$.

 \mathcal{L}^2 is the class of all second-order languages \mathbf{L}^2 obtained from languages $\mathbf{L} \in \mathcal{L}^1$ by adding a countable sequence X_0, X_1, \ldots of second-order variables, which are understood to range over all sets of individuals.

Definition. A cardinal z is said to be

- (a) strongly compact if it is \mathcal{L}_{xx} -compact;
- (b) supercompact if for each cardinal $\lambda \geq \varkappa$ there is a \varkappa -complete ultrafilter U over $P_{\varkappa}(\lambda)$ (the family of all subsets of λ of power $< \varkappa$) such that, for all $\xi < \lambda$,

and, for all
$$f \colon \mathsf{P}_{\varkappa}(\lambda) \to \lambda$$
, $\{x \in \mathsf{P}_{\varkappa}(\lambda) \colon \xi \in x\} \in U$

$$\big\{x\in\mathsf{P}_{\varkappa}(\lambda)\colon f(x)\in x\big\}\in U\to (\exists\,\xi<\lambda)\,\big\{x\in\mathsf{P}_{\varkappa}(\lambda)\colon f(x)=\xi\big\}\in U\,;$$

(c) extendable if for all $\alpha > \varkappa$ there is $\beta > \alpha$ and an elementary embedding j of $\langle R_{\alpha}, \in \rangle$ into $\langle R_{\beta}, \in \rangle$ such that \varkappa is the first ordinal moved by j.

It is known [5] that every extendable cardinal is supercompact and that every supercompact cardinal is strongly compact. We first show that an extendable cardinal is a large supercompact cardinal.

Theorem 1. Each extendable cardinal \varkappa is a limit supercompact cardinal, i.e. there is a set of \varkappa supercompact cardinals $< \varkappa$.

Proof. Let $sc(\xi)$ be a formula of the language of set theory expressing that ξ is a supercompact cardinal. By the reflection principle, we can find a limit ordinal $\alpha > \kappa$ such that, for all $\xi < \alpha$, $\langle R_{\alpha}, \in \rangle \models sc(\xi)$.

Now, since \varkappa is extendable, there is a $\beta > \alpha$ and an elementary embedding j of $\langle R_{\alpha}, \in \rangle$ into $\langle R_{\beta}, \in \rangle$ such that \varkappa is the first ordinal moved by j. By [5], the set

$$U = \{x \subseteq \varkappa \colon \varkappa \in j(x)\}$$

is a normal ultrafilter over \varkappa . Now let $a = \{\xi < \varkappa : \operatorname{sc}(\xi)\}$. We claim that $a \in U$, which will prove the theorem since every member of U is evidently of power \varkappa . By the choice of α , we have $a = \{\xi < \varkappa : \langle R_{\alpha}, \in \rangle \models \operatorname{sc}[\xi]\}.$

Hence, since j is elementary, we have

$$j(a) = \{ \xi < j(\varkappa) \colon \langle R_{\beta}, \in \rangle \models \operatorname{sc}[\xi] \}.$$

Since α is a limit ordinal and $\langle R_{\beta}, \in \rangle$ is elementarily equivalent to $\langle R_{\alpha}, \in \rangle$, β is also a limit ordinal. Hence, since \varkappa is supercompact we have $\langle R_{\alpha}, \in \rangle \models \operatorname{sc}[\varkappa]$. It follows that $\varkappa \in j(a)$, whence $a \in U$, as claimed. This completes the proof.

Corollary. The least \mathcal{L}^2 -compact cardinal is a limit supercompact, hence also a limit strongly compact, cardinal.

Proof. By a result of [2], the least \mathcal{L}^2 -compact cardinal is extendable, so the result follows immediately from Theorem 1.

We now consider $\mathcal{L}_{\omega_1\omega}$ and $\mathcal{L}_{\omega_1\omega_1}$ -compact cardinals. Our next result is related to the main theorem of [1] and is proved in a similar way. We leave the reader to supply the details of the proof, using the techniques of [1].

Theorem 2. Let z be a cardinal. Then the following conditions are equivalent.

- (i) \varkappa is $\mathscr{L}_{\omega,\omega}$ -compact;
- (ii) \varkappa is $\mathscr{L}_{\omega_1\omega_1}$ -compact;
- (iii) for any transitive set M and any subset X of M with the property that any subset of X of power $\langle \varkappa$ has non-empty intersection, there is a transitive set N and an elementary embedding j of $\langle M, \in \rangle$ into $\langle N, \in \rangle$ such that $\bigcap j$ " $X \neq \emptyset$.
- (iv) for any cardinal λ , each \varkappa -complete filter over λ can be extended to an ω_1 -complete ultrafilter over λ .

The following result is an immediate consequence of Corollary 2.2 of [3].

Lemma. Let μ_0 be the least (uncountable) measurable cardinal. Then, for any cardinal λ , each ω_1 -complete ultrafilter over λ is μ_0 -complete.

Notice that this lemma together with Theorem 2 yields the conclusion that any $\mathscr{L}_{\omega_1\omega}$ -compact cardinal is $\mathscr{L}_{\mu_0\mu_0}$ -compact. For, if \varkappa is $\mathscr{L}_{\omega_1\omega}$ -compact, then, by (iv) of Theorem 2 and the lemma, any \varkappa -complete ultrafilter over a cardinal λ can be extended to a μ_0 -complete ultrafilter, and the required conclusion can then be obtained by a straightforward ultrapower argument.

Now let \varkappa_0 be the least $\mathscr{L}_{\omega_1\omega}$ -compact cardinal and λ_0 the least strongly compact cardinal. It is clear from (iv) of Theorem 2 that $\mu_0 \leq \varkappa_0$ and trivially $\varkappa_0 \leq \lambda_0$. It is still unknown whether $\mu_0 < \lambda_0$ is provable in set theory.

Theorem 3. $\mu_0 < \lambda_0 \Rightarrow \mu_0 < \kappa_0$.

Proof. Suppose $\mu_0 = \varkappa_0$. Then by (iv) of Theorem 2 and the lemma, each μ_0 -complete ultrafilter over a cardinal λ can be extended to a μ_0 -complete ultrafilter, and it is well known that this condition is equivalent to the strong compactness of μ_0 . Hence $\mu_0 = \lambda_0$, and the theorem follows.

In [6], Vopěnka and Hrbáček show that, if there is a cardinal \varkappa such that, for any cardinal λ , each \varkappa -complete filter over λ can be extended to a \varkappa -complete ultrafilter (i.e. if \varkappa is strongly compact), then the universe is not constructible from any set. Now it is quite easy to verify that the Vopěnka-Hrbáček proof only uses the fact that each \varkappa -complete filter over λ can be extended to an ω_1 -complete ultrafilter over λ . But this is precisely condition (iv) of Theorem 2. Accordingly we have

Theorem 4. If there is an $\mathcal{L}_{\omega_1\omega}$ -compact cardinal, then the universe is not constructible from any set.

Corollary. Let ZFM be the theory ZF + "there exists a measurable cardinal". Then if ZFM is consistent, the statement " μ_0 is $\mathcal{L}_{\omega_1\omega}$ -compact" cannot be proved in ZFM.

§ 2. Compactness in languages whose class of formulas is a proper class

Suppose $\mathscr L$ is a proper class of languages with a common stock of logical symbols. Consider the language $U\mathscr L$ whose class of non-logical symbols is given by the union of the sets of non-logical symbols of all members of $\mathscr L$ and whose logical symbols are the same as those of each member of $\mathscr L$. Evidently the class of non-logical symbols, and hence of formulas, of $U\mathscr L$ is a proper class in the sense of Morse-Kelley set theory. It is natural to call a cardinal $\mathscr L$ $U\mathscr L$ -compact for sets if

(*) whenever Σ is a set of sentences of $U\mathscr{L}$ and each subset of Σ of power $< \varkappa$ has a model, then Σ has a model.

Clearly, then, if \varkappa is $U\mathscr{L}$ -compact, it must be \mathscr{L} -compact in the sense of § 1. Moreover, quite weak conditions on \mathscr{L} are sufficient to ensure that the converse obtains, for example, if whenever \mathscr{L}' is a subset of \mathscr{L} , we have $U\mathscr{L}' \in \mathscr{L}$. This condition is met by all the classes of languages considered in this paper.

We propose to investigate what happens if we extend the condition (*) to all classes of sentences Σ of U \mathscr{L} . Clearly, if \mathscr{L} -compactness was a stringent condition, then this new condition is in general still more stringent. We shall see that, in fact, when \mathscr{L} is the class of second-order languages, this condition is so stringent as to be unsatisfiable.

Let us define a class language to be a language L with one binary predicate symbol \in in addition to the equality symbol =, and a proper class C of constant symbols. An L-structure is a triple¹) $\mathfrak{A} = \langle A, E, F \rangle$ where A is a class, $E \subseteq A \times A$ and F is a function from C into A. If $c \in C$, we write $c^{\mathfrak{A}}$ for F(c) as usual. The notion of satisfaction for formulas of L can now be defined in the customary way by interpreting \in as E and C as $C^{\mathfrak{A}}$ for each $C \in C$. It is also easy to see that this definition of satisfaction can be formalized in Moese-Kelley set theory.

If \varkappa is a cardinal and **L** is a class language, we say that is **L**-compact if whenever Σ is a class of sentences of **L** such that each subset of Σ of power $< \varkappa$ has a model, then Σ has a model.

Observe that the usual Henkin-style completeness proof for first-order logic can be extended in a straightforward way to show that any consistent class of first-

order sentences has a model. For the usual completeness proof to go through for a first order class language ${\bf L}$ it is evident that the following two conditions must be met:

- (1) there is a proper class of new constants available for adding to L;
- (2) each consistent class of sentences of L can be extended to a consistent complete class of sentences.

Now (1) is not true in general, because the class C of constants of \mathbf{L} might exhaust the whole universe. But we can always replace C by a proper class C' equipollent with C and such that the complement of C' is a proper class. The new language \mathbf{L}' obtained in this way is equivalent to \mathbf{L} and satisfies (1).

As for (2), the global axiom of choice yields an enumeration $\{\sigma_{\alpha} : \alpha \in \mathbf{ORD}\}^{1}$) of all sentences of L. Starting with a consistent class of sentences Σ , we define by transfinite recursion a function f with domain \mathbf{ORD} as follows:

$$f(\alpha) = \begin{cases} \sigma_{\alpha} & \text{if not } \Sigma \cup \{f(\beta) \colon \beta < \alpha\} \vdash \neg \sigma_{\alpha} \\ \neg \sigma_{\alpha} & \text{if } \Sigma \cup \{f(\beta) \colon \beta < \alpha\} \vdash \neg \sigma_{\alpha} \end{cases}$$

Then $\Sigma' = \Sigma \cup \{f(\alpha) : \alpha \in \mathbf{ORD}\}\$ is clearly a consistent complete class of sentences containing Σ .

From this discussion we immediately infer

Theorem 5. ω is L-compact for any first-order class language L.

By contrast, however, we have

Theorem 6. Let L be a second-order class language. Then there are no L-compact cardinals.

Proof. First of all, it is clear that, if \varkappa is L-compact for one second-order class language L, it is L-compact for all second-order class languages L. This is so because there is—assuming the global axiom of choice—a bijection between the classes of constants of any pair of second-order class languages.

Thus, without loss of generality, we may assume that **L** is a second-order class language whose class C of constants does not exhaust the whole universe V. By the global axiom of choice, there is a bijection F from C onto V. Let \mathfrak{B} be the **L**-structure $\langle V, \in F \rangle$. For each $a \in V$, we write \bar{a} for $F^{-1}(a)$; thus \bar{a} is the constant of **L** which denotes a in \mathfrak{B} .

Now suppose, if possible, that \varkappa is an L-compact cardinal. Let λ be the least regular cardinal $\ge \varkappa$. Then since any cardinal $\ge \varkappa$ is L-compact, so is λ . Let c be a constant not in C and let L' be the language obtained by adjoining the constant c to L. Then, by the above remarks, λ is L'-compact.

Let Σ be the class of sentences of L' consisting of:

- (1) all sentences of L holding in B;
- (2) the sentences $\bar{\alpha} \in c$ for all $\alpha < \lambda$;
- (3) the sentence $c \in \lambda$.

We claim that each subset Σ' of Σ of power $< \lambda$ has a model. For let β be the supremum of all ordinals $\alpha < \lambda$ such that $\bar{\alpha}$ occurs in a sentence of type (2) in Σ' . Then, since

¹⁾ Here ORD is the class of all ordinals.

there are $\langle \lambda \text{ such } \alpha \text{ and } \lambda \text{ is regular, we have } \beta \langle \lambda \text{. Accordingly, } \langle V, \in, F \cup \{\langle c, \beta \rangle\} \rangle$ is a model of Σ' .

Since λ is L'-compact, Σ has a model whose universe may be taken to be transitive since Σ contains the second-order sentence which asserts that ϵ is a well-founded relation. Thus let $\mathfrak{A} = \langle A, \epsilon, G \rangle$ be a transitive class model of Σ . Clearly the map $j \colon V \to A$ defined by $j(a) = \bar{a}^{\mathfrak{A}}$ for $a \in V$ is an elementary embedding of $\langle V, \epsilon \rangle$ into $\langle A, \epsilon \rangle$. Thus j is order-preserving on the ordinals and it follows that, for each ordinal α , we have $\alpha \leq j(\alpha)$. Accordingly A contains arbitrarily large ordinals, so, since it is transitive, it contains all the ordinals. Now put σ for the second-order sentence

$$\forall X_0[\exists x\,\forall y[X_0(y)\to y\in x]\to\exists x\,\forall y[X_0(y)\longleftrightarrow y\in x]]\,.$$

 σ says that every subset of an individual is (coextensive with) an individual. Now certainly σ holds in $\langle V, \in \rangle$, so it also holds in $\langle A, \in \rangle$. But it is well-known that the only transitive class model of $\mathbf{ZF} + \sigma$ containing all ordinals is V itself; it follows that A = V. Therefore j is an elementary embedding of $\langle V, \in \rangle$ into itself. Since $j(\lambda) = \bar{\lambda}^{\mathfrak{A}} > c^{\mathfrak{A}} > \bar{\alpha}^{\mathfrak{A}}$ for all $\alpha < \lambda$ it follows that $j(\lambda) > \lambda$, so that j is not the identity. But this contradicts a result in [4] which asserts that there are no non-trivial elementary embeddings of $\langle V, \in \rangle$ into itself.

This completes the proof.

Remark. Since the sentence characterizing well-foundedness and the sentence σ introduced in the proof of Theorem 6 are both Π^1_1 , it is clear that this proof actually establishes the following ostensibly stronger result: For each cardinal \varkappa there is a class Σ of Π^1_1 -sentences whose only non-logical constants are \in and individual constants such that each subset of Σ of power $< \varkappa$ has a model but Σ itself has no model.

Added in proof: In the proof of Theorem 6, to justify the claim that the model $\mathfrak A$ may be taken to be transitive, it is also necessary to show that Σ contains a sentence σ' which asserts that each initial segment under ϵ is a set. We may take σ' to be the second-order sentence

$$\forall x\,\exists X_{\mathbf{0}}\,\forall y\,[X_{\mathbf{0}}(y)\longleftrightarrow y\in x];$$

it is now not hard to see that $\sigma' \in \Sigma$.

References

- [1] Bell, J. L., On the relationship between weak compactness in $L_{\omega_1\omega}$, $L_{\omega_1\omega_1}$, and restricted second order languages. Arch. Math. Logik Grundl. Math. 15 (1972), 74–78.
- [2] Magidor, M., On the role of supercompact and extendible cardinals in logic. Israel J. Math. 10 (1971), 147-157.
- [3] Keisler, H. J., and A. Tarski, From accessible to inaccessible cardinals. Fund. Math. 53 (1964), 225-308.
- [4] Kunen, K., Elementary embeddings and infinitary combinatorics. J. Symb. Log. 36 (1971), 407-413.
- [5] REINHARDT, W. N., Conditions on natural models of set theory. Proc. 1967 U.C.L.A. Summer Institute in Set Theory.
- [6] Vopěnka, P., and K. Hrbáček, On strongly measurable cardinals. Bull. Acad. Polon. Sci., Sér. Sci., Math., Astron., Phys. 14 (1966), 587—591.