UNIVERSAL COMPLETE BOOLEAN ALGEBRAS AND CARDINAL COLLAPSING

by J. L. Bell in London (Great Britain)

Let λ be an infinite cardinal and let A, B be Boolean algebras. A homomorphism $h: A \to B$ is said to be λ -complete if whenever X is a subset of A of cardinality $\leq \lambda$ such that the join $\bigvee X$ of X exists in A, then $\bigvee h[X]$ exists in B and is equal to $h(\bigvee X)$. If \varkappa is an infinite cardinal, B is said to be (\varkappa, λ) -universal if for each Boolean algebra A of cardinality $\leq \varkappa$ there is a λ -complete monomorphism (i.e. one-one homomorphism) of A into B.

Our objective in this paper is to investigate, for *complete* Boolean algebras B, the relationship between (\varkappa, λ) -universality of B and the collapsing of cardinals to countable ordinals in the B-extension of the universe of sets. We assume familiarity with the technique of Boolean-valued models of set theory, as presented, e.g., in Jech [1]. For the theory of Boolean algebras, see Sikorski [2].

For each set X, we write |X| for the cardinality of X. The symbols ξ , η will always denote ordinals, while α , β , κ , λ will be used for cardinals. If A is a Boolean algebra, we write 0_A and 1_A for the least and greatest elements of A, respectively. If $x, y \in A$, then x^* , $x \vee y$, $x \wedge y$ denote the complement of x, and the join and meet of x and y, respectively. A subset X of A is called an *antichain* in A if $0_A \notin X$ and $x \wedge y = 0_A$ for any distinct $x, y \in X$.

Now let B be a fixed infinite complete Boolean algebra. As usual, we write $V^{(B)}$ for the B-extension of the universe V of sets and, for each sentence σ of the language $L^{(B)}$ for $V^{(B)}$ we write $\|\sigma\|$ for the B-value of σ in $V^{(B)}$. We also write $V^{(B)} \models \sigma$ if $\|\sigma\| = 1_B$. We recall that there is a canonical mapping $x \mapsto \hat{x}$ of V into $V^{(B)}$. We shall also need the following two facts (Jech [1], Lemmas 49 and 50):

Lemma 1. Let $\{x_{\xi}: \xi < \lambda\}$ be an antichain in B, and let $\{t_{\xi}: \xi < \lambda\} \subseteq V^{(B)}$. Then there is $t \in V^{(B)}$ such that $x_{\xi} \subseteq ||t = t_{\xi}||$ for all $\xi < \lambda$.

Lemma 2. For each formula $\varphi(v)$ of $L^{(B)}$ containing at most the variable v free, there is $t \in V^{(B)}$ such that $\|\exists v \varphi(v)\| = \|\varphi(t)\|$.

Our first result gives a necessary and sufficient condition for a given cardinal to be collapsed to a countable ordinal in $V^{(B)}$.

Theorem 1. Let $\varkappa \geq \aleph_0$. Then the following conditions are equivalent:

- (i) $V^{(B)} \models (\hat{\varkappa} \text{ is countable});$
- (ii) there is a subset $\{b_{m\xi} : m \in \omega, \xi < \varkappa\} \subseteq B$ such that $\bigvee_{m \in \omega} b_{m\xi} = 1_B$ for all $\xi < \varkappa$ and $\{b_{m\xi} : \xi < \varkappa\}$ is an antichain for each $m \in \omega$.

Proof. (i) \Rightarrow (ii). Suppose (i) is satisfied. Then we have

 $V^{(B)} \models \exists f[f \text{ is a map of } \hat{\omega} \text{ onto } \hat{\varkappa}].$

11 Ztschr. f. math. Logik

J. L. BELL 162

Hence, by Lemma 2, there is $f \in V^{(B)}$ such that

(1)
$$V^{(B)} \models (f \text{ is a map of } \hat{\omega} \text{ onto } \hat{\varkappa}).$$

Put $b_{m\xi} = ||f(\hat{m})| = \hat{\xi}||$ for $m \in \omega$, $\xi < \kappa$. Then if $\xi \neq \eta < \kappa$,

$$b_{m\xi} \wedge b_{m\eta} = \|f(\hat{m}) = \hat{\xi} \wedge f(\hat{m}) = \hat{\eta}\| \leq \|\hat{\xi} = \hat{\eta}\| = O_B,$$

and, for
$$\xi < \varkappa$$
,
$$\bigvee_{\substack{m \in \omega \\ m \in \omega}} b_{m\xi} = \bigvee_{\substack{m \in \omega \\ m \in \omega}} \|f(\hat{m}) = \hat{\xi}\| = \|\exists x \in \hat{\omega}[f(x) = \hat{\xi}]\| = 1_B$$
 by (1). Thus $\{b_{m\xi} \colon m \in \omega, \, \xi < \varkappa\}$ satisfies (ii).

(ii) \Rightarrow (i). Assume (ii), and define $f \in V^{(B)}$ by $\operatorname{dom}(f) = \{\langle \hat{m}, \hat{\xi} \rangle^{(B)} : m \in \omega, \, \xi < \varkappa \}$ (where $\langle \cdot, \cdot \rangle^{(B)}$ is the "ordered pair in $V^{(B)}$ ") and, for $m \in \omega$, $\xi < \varkappa$,

$$f(\langle \hat{m}, \hat{\xi} \rangle^{(B)}) = b_{m\xi}.$$

Using the fact that $\{b_{m\xi}: \xi < \varkappa\}$ is an antichain, it follows easily that

$$V^{(B)} \models (f \text{ is a function such that } Domain(f) \subseteq \hat{\omega} \text{ and } Range(f) \subseteq \hat{\kappa}).$$

Also, for each $\xi < \varkappa$ we have

$$\|\exists x \in \hat{\omega}[f(x) = \hat{\xi}]\| = \bigvee_{m \in m} \|f(\hat{m}) = \hat{\xi}\| = \bigvee_{m \in m} b_{m\xi} = 1_B.$$

It follows that $V^{(B)} \models (\hat{\varkappa} \subseteq \text{Range}(f))$ and so

$$V^{(B)} \models (\hat{\varkappa} \text{ is countable}).$$

This completes the proof.

Our next result relates (\varkappa, λ) -universality of B to the collapsing of \varkappa to a countable ordinal in $V^{(B)}$. In the proof we employ a technique originally introduced by Kripke (cf. Jech [1], Theorem 40) in order to show that the collapsing $(\aleph_0, 2^n)$ -algebra is (\varkappa, \varkappa) -universal.

Theorem 2. Let \varkappa , $\lambda \geq \aleph_0$ satisfy $\varkappa^{\lambda} = \varkappa$ (thus $\lambda < \varkappa$). Then conditions (i) and (ii) of Theorem 1 are each equivalent to

(iii) B is (\varkappa, λ) -universal.

Proof. (i) \Rightarrow (iii). Assume (i); then, by Theorem 1, (ii) also holds. Let A be a Boolean algebra of cardinality $\alpha \leq \kappa$. If α is finite, it is well-known that A is isomorphic to a subalgebra of B, and the isomorphism is obviously a λ -complete monomorphism of A into B. Thus we may assume that α is infinite. Let S be the family of all subsets of A of cardinality $\leq \lambda$. Then we have

$$|S| \leq \sum_{\beta \leq \lambda} \alpha^{\beta} \leq \lambda \cdot \varkappa^{\lambda} = \varkappa.$$

Since $V^{(B)}
otin (\hat{\varkappa} \text{ is countable})$, it follows that

$$V^{(B)} \models (\hat{S} \text{ is countable}).$$

Next, it follows immediately from (ii) that B contains an antichain $\{x_{\xi}: \xi < \alpha\}$ of cardinality α . By adjoining $(\bigvee x_{\ell})^*$, if necessary, we may assume without loss of generality that $\bigvee_{\xi < \alpha} x_{\xi} = 1_B$. Let $\{a_{\xi} : \xi < \alpha\}$ enumerate the non-zero members of A. By

Lemma 1, there is $b \in V^{(B)}$ such that $x_{\xi} \leq ||b| = \hat{a}_{\xi}||$ for all $\xi < \alpha$. Hence

$$\|b \in \hat{A}\| \ge \bigvee_{\xi < \alpha} \|b = \hat{a}_{\xi}\| \ge \bigvee_{\xi < \lambda} x_{\xi} = 1_B.$$

It is easily verified that $V^{(B)} \models (A \text{ is a Boolean algebra})$. Moreover, we have, for each $\xi < \alpha$,

$$x_{\xi} \le \|b = \hat{a}_{\xi}\| = \|b = \hat{a}_{\xi}\| \wedge \|\hat{a}_{\xi} + \hat{0}_{A}\| \le \|b + \hat{0}_{A}\| = \|b + \hat{0}_{A}\|$$

so that $1_B = \bigvee_{\xi < \kappa} x_{\xi} \le \|b + 0_A^*\|$. Since $V^{(B)} \models$ (Axiom of Choice), it follows that $V^{(B)} \models (\text{Rasiowa-Sikorski Lemma}),$

and hence

 $V^{(B)} \models \exists U(U \text{ is an \hat{S}-complete ultrafilter in \hat{A} and $b \in U$)}.$

Therefore, by Lemma 2, there is $U \in V^{(B)}$ such that

 $V^{(B)} \models (U \text{ is an } \hat{S}\text{-complete ultrafilter in } \hat{A} \text{ and } b \in U).$

Now we define $h: A \to B$ by

$$h(a) = \|\hat{a} \in U\|$$

for $a \in A$. It is easy to verify that h is a homomorphism of A into B. To see that h is λ -complete, observe that, if $X \in S$ and $\alpha = \bigvee X$ in A, then $\|\hat{a} = \bigvee \hat{X}\| = 1_B$, so that, using (1),

$$h(a) = \|\hat{a} \in U\| = \|\bigvee \hat{X} \in U\| = \|\exists x \in \hat{X}(x \in U)\| = \bigvee_{x \in X} \|\hat{x} \in U\| = \bigvee_{x \in X} h(x).$$
 finally, h is one-one, because if $0 + a \in A$, then $x \in A$ then $x \in A$.

And finally, h is one-one, because if $0 : \neq a \in A$, then $a = a_{\xi}$ for some $\xi < \kappa$, so that $h(a) \,=\, \|\hat{a}_{\xi} \in U\| \, \geq \, \|b \in U\| \wedge \|\hat{a}_{\xi} = b\| \, = \, \|\hat{a}_{\xi} = b\| \, \geq \, x_{\xi} \, \neq \, \mathcal{O}_B\,.$

This proves (iii).

(iii) \Rightarrow (ii). Assume (iii), and let A be the collapsing (\aleph_0, \varkappa) -algebra, i.e. the regular open algebra of the product space \varkappa^{ω} , where \varkappa has been assigned the discrete topology. Let A' be the countably complete subalgebra of A generated by the elements $a_{m\xi} = \{g \in \varkappa^{\omega} \colon g(m) = \xi\} \text{ for } m \in \omega, \ \xi < \varkappa. \text{ Then } \varkappa \leq |A'| \leq \varkappa^{\aleph_0} \leq \varkappa^{\lambda} = \varkappa. \text{ By (iii)},$ there is a $\hat{\lambda}$ -complete monomorphism h of A' into B. It is easy to verify that, in A', $\bigvee a_{m\xi} = 1_{A'}$ and $\{a_{m\xi} : \xi < \kappa\}$ is an antichain in A' for each $m \in \omega$. Therefore, if we set $b_{m\xi} = h(a_{m\xi})$ for each $m \in \omega$, $\xi < \varkappa$, then $\{b_{m\xi} : m \in \omega, \xi < \varkappa\}$ is a subset of B satisfying (ii).

This completes the proof.

From Theorem 2 we immediately infer:

Corollary k Let $\varkappa \geq \kappa_0$ be such that $\varkappa^{\kappa_0} = \varkappa$. Then, if B is (\varkappa, κ_0) -universal, it is (\varkappa, λ) -universal for any λ such that $\varkappa^{\lambda} = \varkappa$. (In particular, if \varkappa is inaccessible, and B is (\varkappa, κ_0) -universal, then B is (\varkappa, λ) -universal for all $\lambda < \varkappa$.)

Assuming the generalized continuum hypothesis (GCH), Theorem 2 also yields the following characterization of the collapsing of a give successor cardinal to a countable

Corollary 2 (GCH). Let $\lambda \geq \kappa_0$ and let $\kappa = \lambda^+$. The the following conditions are equivalent:

- (i) $V^{(B)} \models (\hat{\varkappa} \text{ is countable});$
- (ii) B is (\varkappa, \aleph_0) -universal.

Proof. Assuming GCH, $\kappa = 2^{\lambda}$ so that $\kappa^{\kappa_0} = 2^{\lambda^{\kappa_0}} = 2^{\lambda} = \kappa$ and Theorem 2 applies.

I do not know whether the GCH is essential for Corollary 2 to hold.

164

References

J. L. BELL

Jech, T., Lecture notes on set theory. Springer Lecture Notes in Mathematics. Berlin 1971.
 Sikorski, R., Boolean Algebras. Berlin 1960.

(Eingegangen am 28. Januar 1975)