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Let A be an infinite cardinal and let 4, B be Boolean algebras. A homomorphism
h: A — B is said to be A-complete if whenever X is a subset of 4 of cardinality < A
guch that the join \V X of X exists in A4, then V k[X] exists in B and is equal to A(\ X).
If x is an infinite cardinal, B is said to be (x, A)-universal if for each Boolean algebra A
of cardinality < x there is a A-complete monomorphism (i.e. one-one homomorphism)
of 4 into B.

Our objective in this paper is to investigate, for complete Boolean algebras B, the
relationship between (x, A)-universality of B and the collapsing of cardinals to count-
able ordinals in the B-extension of the universe of sets. We assume familiarity with
the technique of Boolean-valued models of set theory, as presented, e.g., in JEcH [1].
For the theory of Boolean algebras, see SIKORSKET [2].

For each set X, we write |X| for the cardinality of X. The symbols £, 7 will always
denote ordinals, while «, £, », 4 will be used for cardinals. If 4 is a Boolean algebra,
we write 0, and 1, for the least and greatest elements of A4, respectively. If », y € 4,
then z*, x vy, » A y denote the complement of x, and the join and meet of x and ¥,
respectively. A subset X of A is called an antichain in 4 if 04 ¢ X and z Ay = 04
for any distinct z, y € X.

Now let B be a fized infinite complete Boolean algebra. As usual, we write V(8 for
the B-extension of the universe V of sets and, for each sentence ¢ of the language L(®
for V8 we write |o| for the B-value of ¢ in V(8. We also write V(& k g if [jo]| = 1p.
We recall that there is a canonical mapping * +» £ of V into V&), We shall also need
the following two facts (JECH [1], Lemmas 49 and 50):

Lemma 1. Let {x;: £ < A} be an antichain in B, and let {t;: £ < 2} < V. Then
there is t € V'B) such that z; < ||t = | for all £ < A.

Lemma 2. For each formula o(v) of L'® containing at most the variable v free, there
is t € VB such that |3vp(v)] = @)

Our first result gives a necessary and sufficient condition for a given cardinal to be
collapsed to a countable ordinal in V&,

Theorem 1. Let % = xy. Then the following conditions are equivalent:
(i) VB E (x is countable);

(i) there is a subset {b,;: mew, & <x} S B such that \/ b, = lp for all £ < x
and {b,¢: & < x} i3 an antichain for each m € w. mew

Proof. (i) = (ii). Suppose (i) is satisfied. Then we have

VB E 3f{f is a map of @ onto x].

11  Ztschr. f. math. Logik



162 J. L. BELL

Hence, by Lemma 2, there is f € V'# guch that

(1) V@B E (f is a map of @ onto %).

Put b, = ||f(h) = &l for mew, & < x. Then if & + 7 <%,
Bug A by = IfR) = E A f0R) = A} < 1€ = 7l = Os,

and, for & < x,

V by = V Ifh) = & = |3z e dlf(z) = &l = 1s

by (1). Thus {b,,::eu;n ew, & -2.’ x} satisfies (ii).
(ii) = (i). Assume (ii), and define fe VB by dom(f) = {(h, EYP:mew, & < x}
(where (-, -Y® is the “ordered pair in V®”) and, for m e o, § <,
(i, EYBY) = b
Using the fact that {b,.: £ < %} is an antichain, it follows easily that
V® k (f is a function such that Domain(f) & & and Range(f) < %).
Also, for each & < x we have '

mew

Tt follows that VB k (x = Range(f)) and so
V(B E (% is' countable).
This completes the proof.

Our next result relates (%, 1)-universality of B to the collapsing of % to a countable
ordinal in V(®. In the proof we employ a technique originally introduced by KRIPKE
(cf. JEcH [1], Theorem 40) in order to show that the collapsing (x,, 2%)-algebra is
(2, »)-universal.

Theorem 2. Let %, A = v, salisfy »* = x (thus A < x). Then conditions (i) and (i)
of Theorem 1 are each equivalent to

(iii) B is (%, A)-universal.

Proof. (i) = (iii). Assume (i); then, by Theorem 1, (ii) also holds. Let 4 bz a
Boolean algebra of cardinality « < ». If & is finite, it is well-known that A is iso-
morphic to a subalgebra of B, and the isomorphism is obviously a A-complete mono-
morphism of A into B. Thus we may assume that « is infinite. Let S be the family
of all subsets of A4 of cardinality < A. Then we have

S| 3 af <2+ =x.
B=4
Since V'B) E (% is countable), it follows that

V8 E (§ is countable).

Next, it follows immediately from (ii) that B contains an antichain {z;: § < o} of
cardinality . By adjoining (V z)*, if necessary, we may assume without loss of gen-
erality that V z; = lp. Let {a;: £ < «} enumerate the non-zero members of A. By

f<a

<
Lemma 1, there is b € V(8 such that z; < ||b = a¢|| for all £ < . Hence
lpedlz Vb=al 2z V z =1z
<o E<d
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It is easily verified that V(B k (4 is a Boolean algebra). Moreover, we have, for each £ < «,
% S b = dell = b = el A ldg + Oall < b + Gal = b + 0]
so that 15 = V 2, < [|b + 04]\. Since V® k (Axiom of Choice), it follows that
§<x
VB k (RASTOWA-SIKORSKT Lemma),
and hence

V® E3U(U is an $§-complete ultrafilter in 4 and b el).
Therefore, by Lemma 2, there is U € V® such that
(1) VB E (U is an S-complete ultrafilter in 4 and b e U).

Now we define 2: 4 — B by
hia) = |la e Ul
for a € A. It is easy to verify that 4 is a homomorphism of 4 into B. To see that &
is A-complete, observe that, if X €8 and a = V X in 4, then |ja = V X = 1z, so
that, using (1),
ha)=laelU) = |VXeU| = |reX(ze Oll= V I2eU| = V k).
xreX reX

And finally, % is one-one, because if 0.+ aecAd, thena = a; for some & < %, so that

ha) = llage Ul 2 [be Ul A lla = b)) = Ja; = b)) 2 xg + Op.
This proves (iii).

(iii) = (ii). Assume (iii), and let 4 be the collapsing (x,, x)-algebra, i.e. the regular
open algebra of the product space %“, where x has been assigned the discrete topology.
Let A’ be the countably complete subalgebra of A generated by the elements
amg = {g €x®: g(m) = £} for mew, £ < x Then % = |A'] £ %™ 25 = % By (iii),
there is a A-complete monomorphism /% of A’ into B. It is easy to verify that, in 4°,

V a,: =1, and {@ms: & < %} is an antichain in A’ for each m € w. Therefore, if
mew

we set byg = h(a,,) for each m e w, £ < x, then {brg: mew, & < %} is a subset of
B satisfying (ii).

This completes the proof.
From Theorem 2 we immediately infer:
Corollary § Let x > x, be such that »% —= s, Then, if B is (%, wo)-universal, it is

(%, A)-universal for any A such that x* = x. (In particular, if » is inaccessible, and B is
(%, wo)-universal, then B is (x, A)-universal for all 1 < 2.)

Assuming the generalized continuum hypothesis (GCH), Theorem 2 also yields the
following characterization of the collapsing of a give successor cardinal to a countable
ordinal.

Corollary 2 (GCH). Let 2 > %o and let x = 2*. The the following conditions are
equivalent :

(i) VB E (% is countable);

(i) B is (%, ny)-universal.-

Proof. Assuming GCH, x = 2% so that x% = 2 — 9% _ , and Theorem 2 applies.

I do not know whether the GCH is essential for Corollary 2 to hold.
11* :
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