nitesimals and the Continuum

| The belief that a continuum can be “composed of” or

| “synthesized from” points has been frequently chal-

| lenged, as witness the following quotations:

| Aristotle: “...no continuum can be made up out of

|indivisibles, as for instance a line out of points, granting
that the line is continuous and the point indivisible.” ([1],
Book 6, Chap. 1)

Leibniz: “A point may not be a constituent part of a
line.” ([11], p. 109)

Kant: “Space and time are quanta continua ... points
and instants mere positions...and out of mere posi-
tions viewed as constituents capable of being given prior
to space and time neither space nor time can be con-
structed.” ([6], p. 204)

Weyl: “Exact time- or space-points are not the ultimate,
underlymg, atomic elements of the duration or extension
given to us in experience.” ([12], p. 94)

Brouwer: “The linear continuum is not exhaustible by
the interposition of new units and can therefore never be
thought of as a mere collection of units.” ([4], p. 80)

René Thom: “. . . a true continuum has no points.” ([5],

p- 102)
These views are in striking contrast with the generally
accepted set-theoretical account of mathematics accord-
ing to which all mathematical entities are discrete: on this
account there is, in particular, no “true” continuum.

Closely associated with the concept of continuum is
that of mﬁmlesaml which is, roughly speaking, what re-
mmsafteracontmuumhasbeensubpctedtoamathe—
matically or metaphysically exhaustive analysis. An in-
finitesimal may be regarded as a continuum “viewed in
the small.” On the set-theoretical or discrete account, in-
finitesimals are just points (or singletons); however, if
continua are truly continuous and do not have points as
parts, then an infinitesimal, as a part of the continuum
from which it is extracted, cannot be a point. Let us call
such infinitesimals nonpunctual or continuous.

(Nonpunctual) infinitesimals have a long and fascinat-
ing history. They first show up in the mathematics of the
Greek mathematician-philosopher Democritus (himself
an atomist!), only to be banished by Eudoxus (c. 350 B.C.)
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from what was to become official “Euclidean” mathe-
matics. Taking the spmewhat obscure form of “indivisi-
bles,” they reappear in the mathematics of thelate middle
ages and were systematically exploited during the 16th
and 17th centuries by Kepler, Cavalieri, and others in de-
termining areas and volumes of curvilinear figures. As
“linelets” and “timelets” they play an essential role in
Barrow’s “method for finding tangents by calculation,”
which appears in his Lectiones Geometricae of 1670. As
“evanescent quantities” they were instrumental in New-
ton’s development of the calculus, and, as “inassignable
quantities,” in Leibniz’s. De I'Hospital, the atithor of one
of the first textbeoks on the (infinitesimal!) calculus in
1696, invoked the concept in laying down the principle
that “a curved line may be regarded as an infinite assem-
blage of infinitesimally small straight lines.” Memorably
derided by Berkeley as “ghosts of departed quantities”
and condemned by Bertrand Russell as “unnecessary,
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erroneous, and self-contradictory,” they were believed
to be finally suppressed through the set-theorization of
mathematics achieved in this century.

In fact, the suppression of infinitesimals within “re-
spectable” mathematics did not eliminate them alto-
gether but, instead, drove them underground. Physi-
cists and engineers, for example, never abandoned their
heuristic use for deriving (correct) results in the applica-
tion of the calculus to physical problems. And even dif-
ferential geometers as reputable as Lie and Cartan did
not disdain to use them in formulating concepts which
would later be put on a “rigorous” footing.

One of the greatest champions of the concept of (con-
tinuous) infinitesimal was Charles Sanders Peirce. He
saw the concept of the continuous (as did Brouwer and
Weyl and as does René Thom) as arising from the subjec-
tive grasp of the flow of time, and the subjective “now”
as a continuous infinitesimal. Here are some quotations.

It is difficult to explain the fact of memory and our ap-
parently perceiving the flow of time, unless we suppose im-
mediate consciousness to extend beyond a single instant. Yet
if we make such a supposition we fall into grave difficulties,
unless we suppose the time of which we are immediately
conscious to be strictly infinitesimal. ([9], p. 124)

We are conscious only of the present time, whichis an instant
if there be any such thing as an instant. But in the present
we are conscious of the flow of time. There is no flow in an
instant. Hence the present is not an instant. ([9], p. 127)

...The fact that the continuity of space and time is a
natural belief is perhaps evidence that it is true. Better evi-
dence is that it explains the personal identity of conscious-
ness in time, which is almost if not quite incomprehensible
otherwise ([9], p. 62)

This continuum does not consist of indivisibles, or points,
or instants, and does not contain any except insofar as its
continuity is ruptured. ([9], p. 925)

It is singular that nobody objects to /T as involving any
contradiction, nor, since Cantor, are infinitely great quan-
tities objected to, but still the antique prejudice against in-
finitely small quantities remains. ([9], p. 123)

Recently, thanks to developments in category theory
and mathematical logic, it has become possible to con-
struct a consistent framework within which both “true”
continua and continuous infinitesimals can be accom-
modated. This framework is the so-called synthetic dif-
ferential geometry (SDG).! It is a theory of the smoothly
continuous world: in it all functions or correlations be-
tween mathematical objects are smooth, thus realizing
Leibniz’s doctrine of continuity, natura non facit saltus. It
is interesting to note that the idea of a framework of this
kind was anticipated by Hermann Weyl in 1940:

A natural way to take into account the nature of a continuum
which, following Anaxagoras, defies “chopping off its parts
from one another, as it were, with a hatchet”, would be by
limiting oneself to continuous functions. ([13], p. 294)

The pervasive nature of continuity within SDG forces
a change of logic: from classical to intuitionistic— in which
the law of excluded middle fails and so in which there
must be more than two “truth values” (nonbivalence). How
does this come about?

If excluded middle held in SDG, then each real num-
ber would be either = 0 or # 0, and so the correlation
0~ 0,z — 1for z # 0 would define a map from the
real line to 2, which is clearly discontinuous. To see that
logic cannot be bivalent in SDG, let {2 be its set of “truth
values.” Then as in ordinary set theory, for any object X,
correlations X — € are in bijective correspondence with
parts of X. If X is a connected continuum (e.g., the real
line), it presumably does have proper nonempty parts
but certainly no continuous nonconstant maps to the two
element set {true, false}. It follows that Q # {true, false}
in SDG.

In (many models of) SDG, any classical space X (e.g.,
R, R™) has a counterpart X* which is indecomposable
whenever X is connected. (A space X is indecomposable
if no proper nonempty part U is detachable in the sense
that there is a part V such that UUV = X, UnNV = )
Thus the connected continua of SDG are frue continua in
something like the Anaxagoran sense.

Even more remarkably, perhaps, SDG embodies a
fruitful concept of continuous infinitesimal — that of an
infinitesimal tangent vector. A tangent vector to a curve
C at a point p on it is a short (nondegenerate) straight
line segment A around p pointing along C. In SDG we
may take A to be a part of C: in SDG, therefore, curves
are “composed” of infinitesimally small straight lines in
something like de 'Hospital’s sense. Since a curve is a
continuous map f with domain a part of the real line, it
turns out that we can take A to be the image under f of
the intersection D of a circle with a tangent: in particular,
the intersection of the circle > + (y — 1)2 = 1 with its
tangent, the line z = 0. This choice makes D that part of
the real line consisting of the points z for which 22 = 0
the square-zero infinitesimals. Notice that, in SDG, D must
be nondegenerate, that is, not identical with {0}!

InSDG, D is subject to the principle of infinitesimal linear-
ity. This may be paraphrased by saying that D remains
straight and unbroken under any map or that it is too
small to bend or break (but larger than zero!); that is, D
can be subjected solely to translations and rotations; it is,
in other words, a pure synthesis of location and direction.?

These facts enable differential geometry [8] and the
calculus [2] to be developed within SDG in a direct in-

1 See [7] or [8]. The idea of basing such an approach to differential
geometry on category theory is due originally to F. W. Lawvere.
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2 D may also be regarded as a geometric representation of the specious
present (as opposed to the pointlike instant).



tuitive manner. For example, a tangent vector at a point
z of a space (“manifold”) X is an infinitesimal straight
path on X passing through z, thatis,amap p: D — X
with p(0) = . So the tangent bundle of X is just X2,
the space of all maps® D — X, and a vector field on X any
map X — X P whose composite with the base point map
p— p(0) : XP — X is the identity on X. This is just the
beginning of the remarkable conceptual simplification of
differential geometry made possible by SDG.

Since, as we have observed, the law of excluded mid-
dle fails in models of SDG, it follows that an assertion
is, in general, no longer implied by its double negative.
This fact is exploited [10] in a remarkable way in certain
models of SDG, where infinitesimal real numbers can be
equivalently identified either as nilpotent elements or as
elements not unequal to or indistiguishable from 0. In this
situation, we can say that two points are infinitesimally
close if they are not unequal, or indistinguishable; the
assertion that all maps are continuous then reduces to
the purely logical fact that any map automatically pre-
serves the relation of indistinguishability. Here we have
a remarkable example of a reduction of topology to logic.

The infinitesimals of SDG are to be contrasted with
those of Abraham Robinson’s nonstandard analysis (NSA)
(see, e.g., [3], Chap. 11). In Robinson’s approach, the field
R of (standard) real numbers is “enlarged” to a field R*
containing “infinitely large” elements in such a way as to
preserve the usual algebraic properties of the real num-
ber field. In particular, every nonzero element of R* is
(multiplicatively) invertible; the infinitesimals of NSA
are obtained as the inverses of the infinitely large ele-
ments of R*. By contrast, the nilpotent infinitesimals of
SDG do not (of course) possess multiplicative inverses
and so cannot be obtained in this way.* The infinitesi-
mals and infinities of NSA may be regarded as “ideal”
elements playing much the same role with respect to the
standard real number system as the “ideal” points and
lines “at infinity” of classical projective geometry play
with respect to the standard Euclidean plane. In neither
case does the use of these ideal elements add to the (clas-
sically) provable facts about the standard elements. NSA
is, accordingly, conservative, in that R* possesses no math-
ematical features not already possessed by R. This is to be
contrasted with SDG whose version of the real number
system differs essentially from its standard counterpart,
not being a field.

The enlarged system R* of NSA may be regarded as
just the standard system R viewed through new mathe-
matical “spectacles” whose resolving power is sufficient

3 This implies that, in SDG, the tangent space to any manifold M at
any point on it may be identified with a part of M. In other words, in
SDG, just as every curve is “infinitesimally linear,” so every manifold
is “infinitesimally flat.”

4 It should be noted, however, that models of SDG incorporating
“Robinsonian” infinitesimals in addition to nonpunctual ones have been
constructed: see [8].

to reveal the presence of ideal elements among the stan-
dard ones. (R* is, in particular, still a discrete structure
composed of “distinguishable” elements.) In view of the
conservative nature of the enlargement, these ideal ele-
ments are infinitesimal or infinite not in an absolute sense,
but only in relation to the standard elements; that is,
speaking metaphorically, an “observer” situated within
amodel of NSA would be unable to detect the presence of
infinitesimals or infinities in R*: this is because, within
any such model, R* satisfies the usual axioms for the
real number field which of course excludes infinitesimals
(Archimedean property). By contrast, the nilpotency of
the infinitesimals of SDG is an absolute property which is
perfectly “detectable” within a model of SDG.

I conclude with a final quotation from Peirce which
reveals that, even before Brouwer, he was aware that a
faithful account of the truly continuous will involve jet-
tisoning the law of excluded middle:

Now if we are to accept the common idea of continuity . . . we

must either say that a continuous line contains no points or

we must say that the principle of excluded middle does not
hold of these points. The principle of excluded middle ap-
plies only to an individual . .. but places being mere possi-

bilities without actual existence are not individuals. ([9], p-

xvi: the quotation is from a note written in 1903.)

A remarkable insight, indeed!
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