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Cohesiveness 

John L. Bell 

ABSTRACT: It is characteristic of a continuum that it be “all of one piece”, in the sense 

of being inseparable into two (or more) disjoint nonempty parts. By taking “part” to 

mean open (or closed) subset of the space, one obtains the usual topological concept 

of connectedness. Thus a space S is defined to be connected if it cannot be partitioned 

into two disjoint nonempty open (or closed) subsets – or equivalently, given any 

partition of S into two open (or closed) subsets, one of the members of the partition 

must be empty. This holds, for example, for the space R of real numbers and for all of 

its open or closed intervals. Now a truly radical condition results from taking the idea 

of being “all of one piece” literally, that is, if it is taken to mean inseparability into 

any disjoint nonempty parts, or subsets, whatsoever. A space S satisfying this 

condition is called cohesive or indecomposable. While the law of excluded middle of 

classical logic reduces indecomposable spaces to the trivial empty space and one-

point spaces, the use of intuitionistic logic makes it possible not only for nontrivial 

cohesive spaces to exist, but for every connected space to be cohesive.In this paper I 

describe the philosophical background to cohesiveness as well as some of the ways in 

which the idea is modelled in contemporary mathematics. 

Key Words. Continuum, cohesiveness, connectedness, intuitionistic set theory, topos. 

RÉSUMÉ : Le continu cohésif. Un continuum est « d’une seule pièce », au sens où il 

ne peut être divisé en deux (ou plusieurs) parties non vides disjointes. Si la « partie » 

désigne un ouvert (ou un fermé) de l’espace, on est conduit au concept topologique 

classique de connexité. Ainsi un espace S est-il connexe s’il est impossible de le 

partitionner en deux sous-ensembles ouverts (ou fermés) non vides et disjoints – ou de 

façon équivalente, si, pour toute partition par deux ouverts (ou deux fermés) de S, l’un 

d’eux est vide. Tel est le cas, par exemple, de l’espace R des réels et de tous ses 

intervalles ouverts et fermés. Un tournant radical s’opère si l’on prend l’expression 

« d’une seule pièce » au sens litttéral, c’est-à-dire au sens de l’inséparabilité de 

l’espace en deux parties, ou sous-ensembles, quelconques. Un espace S satisfaisant 

une telle condition est dit cohésif ou indécomposable. En logique classique, en raison 

de la validité du tiers exclu, les espaces cohésifs se réduisent à des espaces vides ou à 

des singletons ; en revanche, la logique intuitioniste, non seulement, garantit 

l’existence d’espaces cohésifs non triviaux, mais, de plus, fait de tout espace connexe 

un espace cohésif. Dans cet article, nous présentons le substrat philosophique de 

l’indécomposabilité ainsi que les diverses modélisations de cette notion dans les 

mathématiques contemporaines. 

Mots clés : Continuum, indécomposabilité, connexité, théorie intuitioniste des 

ensembles, topos  
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1. WHAT IS COHESIVENESS? 

It is characteristic of a continuum
1
 that it is “gapless” or “all of one piece”, 

in the sense of not being actually separated into two or more disjoint proper 

parts. On the other hand it has been taken for granted from antiquity that 

continua are limitlessly divisible, or separable into parts in the sense that any 

part of a continuum can be “divided”, or “separated” into two or more disjoint 

proper parts. Now there is a traditional conceptual difficulty in seeing just how 

the parts of a continuum obtained by separation – assumed disjoint – “fit 

together” exactly so as to reconstitute the original continuum. This difficulty is 

simply illustrated by considering the case in which a straight line X is divided 

into two segments L, R by cutting it at a point p. What happens to p when the 

cut is  

 

   p 
       --------------------------------------------•-----------------------------------------         X 

 

L     ----------------------------------------•  •---------------------------------------       R 
  pL      pR 
 

made? On the face of it, there are four possibilities (not all mutually exclusive): 

(i) p is neither in L nor in R; (ii) p may be identified as the right-hand endpoint 

pL of L: (iii) p may be identified as the left-hand endpoint pR of R; (iv) p may 

be identified as both the right-hand endpoint of L and the left-hand endpoint of 

R. Considerations of symmetry suggest that there is nothing to choose between 

(ii) and (iii), so that if either of the two holds, then so does the other. 

Accordingly we are reduced to possibilities (i) and (iv). In case (i), L and R are 

disjoint, but since neither contains p, they together fail to cover X; while in 

case (iv), L and R together cover X, but since each contains p, they are not 

disjoint. This strongly suggests that a (linear) continuum cannot be separated, 

or decomposed, into two disjoint proper parts which together cover it.
2
 Herein 

lies the germ of the idea of cohesiveness.  

Of course, this analysis is quite at variance with the standard set-theoretic 

(Cantor-Dedekind) account of the linear continuum as a discrete linearly 

ordered set R of real numbers. “Cutting” R (or any interval thereof) at a point p 

amounts to partitioning it into the pairs of subsets ({x : x ≤ p}, {x : p < x}) or 

({x : x < p}, {x : p ≤ x}): the first and second of these correspond, respectively, 

to cases (ii) and (iii) above. Now in the discrete case, one cannot appeal to 

symmetry as before: consider, for instance, the partitions of the set of natural 

numbers into the pairs of subsets ({n : n ≤ 1}, {n : 1 < n}) and ({n : n < 1},  

{n : 1 ≤ n}). The first of these is ({0, 1}, {2, 3, ...}) and the second ({0}, 

                                                 
1 For an extended analysis and account of the development of the continuum concept, see Bell (2005). A 

briefer presentation is given in Bell (online). 
2 That is, in the words of Weyl [1925], “A continuum cannot be put together out of parts”.  
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{1, 2, ...}). Here it is manifest that the symmetry naturally arising in the 

continuous case does not apply: in the first partition 1 is evidently a member of 

its first component and in the second partition, of its second. In sum, when a 

discrete linearly ordered set X is “cut”, no ambiguity arises as to which 

segment of the resulting partition the cut point is to be assigned, so that the 

segments of the partition can be considered disjoint while their union still 

constitutes the whole of X 
3
.  

Acknowledging the fact that the set-theoretic continuum, as a discrete 

entity, can be separated into disjoint parts, set theory proceeds to capture the 

characteristic “gaplessness” of a continuum by restricting the nature of the 

parts into which it can be so separated. In set-theoretic topology this is done by 

confining “parts” to open (or closed) subsets, leading to the standard 

topological concept of connectedness. Thus a space S is defined to be 

connected if it cannot be partitioned into two disjoint nonempty open (or 

closed) subsets
4
 – or equivalently, given any partition of S into two open (or 

closed) subsets, one of the members of the partition must be empty. It is a 

standard topological theorem that the space R of real numbers and all of its 

intervals are connected in this sense.  

But now let us return to our original analysis. This led to the idea that a 

continuum cannot be decomposed into disjoint parts. Let us take the bull by the 

horns and attempt to turn this idea into a definition. We shall call a space S 

cohesive or indecomposable
5
, or a (genuine) continuum if, for any parts, or 

subsets U and V of S, whenever U  V = S and U  V = , then one of U, V 

must be empty, or, equivalently, one of U, V must coincide with S.
 
Put 

succinctly, a space is cohesive if it cannot be partitioned into two nonvoid 

parts. Another form of cohesiveness, slightly weaker than the version just 

stated, is: for any subsets U, V each of which contains at least one point, if 

U  V = S, then U  V cannot be empty.  

Cohesiveness may also be phrased in the following way. Call a subset U of 

S detachable if a “complementary” subset V of S exists satisfying U  V = S 

                                                 
3 Even so, as Michael White remarks (White 1992, p. 20), “if we take a (supposedly continuous) 

physical object and cut it into two pieces, it would seem strange to say that one piece contains its limit 

(at the place of bisection) but that the other piece does not contain such a limit – that the end where it 

has been cut, although obviously limited, does not contain its terminus in the way that the other piece 

does.” While certainly not inconsistent, this violation of intuition is part of the price that must be paid 

for treating the continuous as discrete.  
4 We note that the partitions obtained above by cutting R at p each consist of an open set and a closed 

set. 
5 The term unsplittable is also used. We shall use the term decomposable for “not cohesive”. It should 

be noted that in topos theory the term “indecomposability” sometimes receives the considerably 

stronger meaning of irreducibility (see, e.g. Bell (1988) or Lambek and Scott (1986)). A space S is said 

to be irreducible if, for any subsets U and V of S for which U  V = S, we have U = S or V = S, even 

when U and V are not assumed to be disjoint. (Notice that R can never be irreducible.) Clearly S is 

irreducible if the trivial filter {S} over S is prime. The “logical” condition for irreducibility is :  

x  S [P(x)  Q(x)]  [x  S P(x)  x  S Q(x)]. 

for arbitrary properties P and Q. 
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and U  V = . Then S is cohesive precisely when its only detachable subsets 

are  and S itself. 

Cohesiveness can be furnished with various “logical” formulations. 

Namely, S is cohesive in the first, stronger sense, if and only if, for any 

property P defined on S, the following implication holds: 

(*) x  S [P(x)  P(x)]  [x  S P(x)  x  S P(x)]. 

And S is cohesive in the second, weaker sense if and only if, for any properties 

P, Q defined on S:  

[x  S [P(x)  Q(x)]   x  S P(x)   x  S Q(x)]  

[x  S [P(x)  Q(x)].
6
 

We observe that the law of excluded middle of classical logic confines 

cohesive spaces to the trivial empty space and one-point spaces. For nontrivial 

cohesive spaces to become admissible, therefore, it is necessary to abandon the 

law of excluded middle.
7
 In fact the existence of nontrivial cohesive spaces is 

compatible with intuitionistic logic. Indeed much more can be said: it is 

compatible with intuitionistic logic that every space which is connected in the 

usual topological sense is cohesive. How does this come about? To get a clue, 

let us reformulate our definitions in terms of maps, rather than parts. If we 

denote by 2 the two-element discrete space, then connectedness of a space S is 

equivalent to the condition that any continuous map S  2 is constant, and 

cohesiveness of S to the condition that any map S  2 whatsoever is constant. 

Supposing S to be connected and to possess more than one point, then from the 

law of excluded middle it follows that there exist nonconstant – and hence 

discontinuous – maps S  2. But the situation would be decidedly otherwise if 

all maps defined on S were continuous, for then, clearly, the connectedness of 

S would immediately yield its cohesiveness. So if S could be conceived as 

inhabiting a universe U in which all maps defined on S are continuous, then, 

within U, S would be both nontrivial and cohesive. Such universes U can in 

fact be constructed within category theory as toposes. Their underlying logic is 

intuitionistic, and within them the law of excluded middle fails in just the way 

necessary to allow for the presence of nontrivial cohesive spaces. In certain 

toposes, every connected space is cohesive. We return to this below. 

                                                 
6 Cohesiveness in this sense admits the following homely illustration (see also the remarks on Veronese 

below). Suppose one attempts to paint a board (S) exactly half-black and half-white. For any point x on 

the board write P(x), Q(x) for “x is painted black, or white, respectively”. Then cohesiveness of S entails 

that it cannot be the case that there is no point on the board which is painted both black and white. In 

painting it seems to be difficult, if not impossible in practice to prevent “leakage at the borders”; the 

revelation that this may also be impossible in principle will perhaps prove consoling to those of us who, 

like myself, are constantly frustrated in our efforts to produce neat paint jobs.  
7 It is easy to see that the law of excluded middle in the form x y [x = y  x ≠ y] must fail for any 

cohesive space S with at least two elements. For if that law held in S, then, for a  S, the sets {a}, 

S \ {a} would constitute a partition of S into two nonvoid parts. 



Cohesiveness 5 

2.  TRACING THE IDEA OF COHESIVENESS: ARISTOTLE,  

VERONESE, BRENTANO 

While cohesiveness and connectedness as we have defined the terms are 

modern mathematical concepts, related ideas in regard to continuous entities 

can be traced back to antiquity. Anaxagoras, for example, asserts around 450 

B.C. that 

The things in the one world-order are not separated one from the other nor 

cut off with a hatchet, neither the hot from the cold nor the cold from the 

hot. 

Here the “one world-order” is the homogeneous continuum supposed by 

Anaxagoras to constitute the world.  

It was Aristotle who first undertook the systematic analysis of continuity 

and discreteness. Aristotle’s theory of the continuum rests upon the assumption 

that all change is continuous and that continuous variation of quality, of 

quantity and of position are inherent features of perception and intuition. 

Aristotle considered it self-evident that a continuum cannot consist of points. 

Any pair of unextended points, he observes, are such that they either touch or 

are totally separated: in the first case, they yield just a single unextended point, 

in the second, there is a definite gap between the points. Aristotle held that any 

continuum – a continuous path, say, or a temporal duration, or a motion – may 

be divided ad infinitum into other continua but not into what might be called 

“discreta” – parts that cannot themselves be further subdivided. Accordingly, 

paths may be divided into shorter paths, but not into unextended points; 

durations into briefer durations but not into unextended instants; motions into 

smaller motions but not into unextended “stations”. Nevertheless, this does not 

prevent a continuous line from being divided at a point constituting the 

common border of the line segments it divides. But such points are, according 

to Aristotle, just boundaries, and not to be regarded as actual parts of the 

continuum from which they spring. If two continua have a common boundary, 

that common border unites them into a single continuum. Such boundaries 

exist only potentially, since they come into being when they are, so to speak, 

marked out as connecting parts of a continuum; and the parts in their turn are 

similarly dependent as parts upon the existence of the continuum.  

Aristotle identifies continuity (and discreteness) as attributes applying to 

the category of Quantity
8
. As examples of continuous quantities he offers lines, 

planes, solids (i.e., solid bodies), extensions, movement, time and space; 

among discrete quantities he includes number
9
 and speech

10
. He lays down the 

following definition of continuity: 

                                                 
8 In Book VI of the Categories. Quantity () is introduced by Aristotle as the category associated 

with how much. In addition to exhibiting continuity and discreteness, quantities are, according to 

Aristotle, distinguished by the feature of being equal or unequal. 
9 Here it must be noted that for Aristotle, as for ancient Greek thinkers generally, the term “number” – 

arithmos – means just “plurality”. 
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I mean by one thing being continuous with another that those extremities of 

the two things in virtue of which they are in contact with each other become 

one and the same thing and (as the very name indicates) are “held together”, 

which can only be if the two limits do not remain two but become one and 

the same. 
11

 

In effect, Aristotle here defines continuity as a relation between entities 

rather than as an attribute appertaining to a single entity; that is to say, he does 

not provide an explicit definition of the concept of continuum. He indicates that 

a single continuous whole can be brought into existence by “gluing together” 

two things which have been brought into contact, which suggests that the 

continuity of a whole should derive from the way its parts “join up”. That this 

is indeed the case is revealed by turning to the account of the difference 

between continuous and discrete quantities offered in the Categories: 

Discrete are number and language; continuous are lines, surfaces, bodies, 

and also, besides these, time and space. For the parts of a number have no 

common boundary at which they join together. For example, ten consists of 

two fives, however these do not join together at any common boundary but 

are separate; nor do the constituent parts three and seven join together at 

any common boundary. Nor could you ever in the case of number find a 

common boundary of its parts, but they are always separate. Hence number 

is one of the discrete quantities…. A line, on the other hand, is a continuous 

quantity. For it is possible to find a common boundary at which its parts 

join together – a point. And for a surface – a line; for the parts of a plane 

join together at some common boundary. Similarly in the case of a body one 

would find a common boundary – a line or a surface – at which the parts of 

the body join together. Time also and space are of this kind. For present 

time joins on to both past time and future time. Space again is one of the 

continuous quantities. For the parts of a body occupy some space, and they 

join together at a common boundary. So the parts of the space occupied by 

various parts of the body themselves join together at the same boundary as 

the parts of the body do. Thus space is also a continuous quantity, since its 

parts join together at one common boundary.
12

 

Accordingly for Aristotle quantities such as lines and planes, space and 

time are continuous by virtue of the fact that their constituent parts “join 

together at some common boundary”. 

Let us attempt to turn Aristotle’s idea of continuity into a mathematical 

definition. Suppose then that we are given “quantities” A, B, C,…, U, V, X, Y, 

Z. We suppose also that we have an inclusion relation  between quantities: 

thus U  A is understood to mean that U is a subquantity or part of A, or that U 

is included in A. We assume that for any quantity A there is a void subquantity 

                                                                                                                 
10 Aristotle points out that (spoken) words are analyzable into syllables or phonemes, linguistic “atoms” 

themselves irreducible to simpler linguistic elements.  
11 Physics, V, 3. 
12 Categories, VI. 
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 with the property that   U for all subquantities U of A. Given subquantities 

U, V of a quantity A, we suppose that there are subquantities U  V, U  V of A 

– the join and meet, respectively, of U and V, with the property that, for any 

subquantity X of A, U  V  X if and only if U  X and V  X, and X  U  V if 

and only if X  U and X  V. So U  V is the “least” subquantity including both 

U and V, and U  V is the “greatest” subquantity included in both U and V – 

the boundary of U and V. The assertion U  V ≠  may be understood as “U 

and V have a common (i.e., nonvoid) boundary”. 

For Aristotle, constituent parts of continuous quantities “always join 

together at a common boundary”. This suggests that we call a quantity A 

continuous in the Aristotelian sense or an Aristotelian continuum, if any pair of 

(nonvoid) “constituent parts” of A have a “common boundary”, that is, 

whenever U, V  A are such that U ≠  and V ≠  and U  V = A, then 

U  V ≠ . This corresponds (essentially) to the weaker version of 

cohesiveness formulated above.  

Of particular relevance to our discussion is an observation Aristotle makes 

(in the Metaphysics) in connection with the joining and division of bodies: 

But points, lines and planes, although they exist at one time and at another 

do not, cannot be in the process of being either generated or destroyed; for 

whenever bodies are joined or divided, at one time, when they are joined, 

one surface is instantaneously produced, and at another, when they are 

divided, two. Thus, when the bodies are combined the surface does not 

exist, but has perished; and when they are divided, surfaces exist which did 

not exist before. (The indivisible point is of course never divided into 

two.)
13

  

Aristotle’s view is accordingly that the actual division of a body produces 

bounding surfaces, and so, analogously, in the words of the contemporary 

scholar Michael White, that the “actual bisection of an interval results in two 

distinct points, a limit or terminus of each sub-interval, where there was 

formerly one ‘position’ ”
14

. Moreover, when the subintervals are rejoined, the 

two distinct endpoints “become” one. This brings to mind case (iv) of the 

analysis with which we started and from which the cohesiveness (as we have 

defined it) of a linear continuum was inferred.  

It would of course be grossly anachronistic to infer from all this that 

Aristotle conceived of continua as being cohesive in the exact technical sense 

in which it has been defined here. Nevertheless, the quotations do suggest that 

                                                 
13 Metaphysics, III. Compare also the following passage in Physics, VIII, in which Aristotle comments, 

in connection with Zeno’s paradoxes of motion, on the division of space and movement: “For whoever 

divides the continuous into two halves thereby confers a double function upon the point of division, for 

he makes it both a beginning and an end. And that is just what the counting man, or the dividing man 

whose half-sections he counts, is doing; and by the very act of division both the line and the movement 

cease to be continuous”. 
14 White (1992), 20. In fact, according to White, Aristotle “does not seem to recognize” the “open (or 

half open) intervals of magnitude”, that is, intervals lacking at least one of their end points, generated by 

cutting the set-theoretic linear continuum. 
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Aristotle saw something like cohesiveness as the feature distinguishing 

continuous from discrete quantity
15

.  

We now jump forward a couple of millenia to consider the views on the 

continuum of the geometer Giuseppe Veronese (1854-1917). Of particular 

importance for Veronese’s analysis of the continuum is his account of the 

nature of points. For him points are nothing more than signs indicating 

“positions of the uniting of two parts” of a (linear) continuum. To illustrate this 

Veronese offers two thought experiments. In the first of these it is supposed 

that 

...the part a of the rectilinear object is painted red, the remaining part  

white, and suppose further that there is no other colour between the white 

and the red. That which separates the white from the red can be coloured 

neither white nor red, and therefore cannot be a part of the object, since by 

assumption all its parts are white or red. And this sign of separation of 

uniting can be considered as belonging either to the white or to the red, if 

one considers them independently of one another. If we now abstract from 

the colours, we can assume that the sign of separation between the parts a 

and   belongs to the object itself.
16

 

In the second thought experiment, Veronese proposes to 

cut a very fine thread at the place indicated by X with the blade of an 

extremely sharp knife, [so that] the two parts a and a’ separate (Fig.1) and 

we assume that one can put the thread back together (Fig. 2) without seeing 

where the cut was, in other words, without a particle of the thread being 

lost. One produces this, apparently, if one looks at the thread from a certain 

distance. If one now considers the part a from right to left as the arrow 

above a indicates, then what one sees of the cut is surely not part of the 

thread, just as what one sees from a body is not part of the body itself. It 

happens analogously if one looks at the part a’ from left to right. If the sign 

of separation X of the parts a and a’, which by assumption belongs to the 

thread itself, were part of the thread, then looking at a from right to left, one 

would not see all of this part, since that which separates the part a from a’ is 

only that which one sees in the way indicated above when one supposes the 

thread put back together. 
17

 

 

 

                                                 
15 White’s “principle of non-supervenience of continuity” (ibid., p. 29), which he attributes to Aristotle, 

in fact amounts essentially to cohesiveness. This principle reads:“(*) Each partition of a continuous 

magnitude into proper parts yields parts each of which is pairwise continuous with at least one other 

part”.  

Here the notion of a part being “continuous with” another part is taken in the Aristotelian sense of “the 

limits of both parts at which they touch are the same”, in other words, part of their boundaries coincide. 

In particular if a continuous magnitude is divided into two parts, (*) asserts that these parts cannot be 

disjoint. That is, (*) asserts that a continuous magnitude is cohesive in the weaker sense.  
16 Quoted in Fisher (1994), p. 139 
17 Ibid. pp. 139-40. 
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a                               X              X’                               a’ 
 

Figure 1 
 

X 
------------------------------------|----------------------------------- 

a                                  X’                               a’ 
 

Figure 2 
 

 

The premise of Veronese’s first thought experiment is that a continuum can 

be coloured completely by two different colours, which is tantamount to 

claiming that it is decomposable. He then attempts to get round the difficulty of 

which segment of the resulting partition of the continuum the boundary (“that 

which separates”) is to be assigned by arguing that it is not actually part of the 

continuum – it is, in fact, no more than a “sign of separation” which can be 

considered as belonging to either segment. But he goes on, using an appeal to 

“abstraction”, to assert that the sign of separation, i.e. the boundary between 

the segments, can be regarded as being part of the continuum itself. 

Unfortunately, this move reintroduces precisely the difficulty we noted at the 

beginning, namely, to which segment is the boundary, now conceived as being 

an actual part of the continuum, to be assigned? As long as the “sign of 

separation” remains a potentiality, that is, as long as the continuum is not 

actually separated, this “boundary issue” does not arise. But conceiving of the 

continuum as being actually separated into two segments inevitably rekindles 

the boundary issue
18

.  

Veronese’s second thought experiment postulates that a thread, or more 

generally a linear continuum, can be cut into two segments which, upon being 

rejoined, reconstitute the continuum in its entirety – thus once again making 

the assumption that the continuum is decomposable. From this he infers that 

the point, or sign, of separation cannot be part of the continuum. His argument 

is essentially that since, on intuitive grounds, the “cut” itself cannot be part of 

either segment, it cannot be part of the whole continuum either.  

Veronese’s purpose is to establish that a point cannot be a part of a 

continuum, and to do this he makes what seems to him the natural assumption 

that any continuum is decomposable. He would not, perhaps, have taken very 

seriously the contrapositive version of his argument to the effect that if points 

can be considered parts of continua, then the latter must be cohesive. But 

presumably he would have regarded it as valid – if unsound.  

                                                 
18 In fact, Veronese’s initial assumption that the given rectilinear continuum is coloured in the way he 

specifies already entails that it is actually separated into segments. 
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The Austrian philosopher Franz Brentano (1838-1917) devoted 

considerable attention to the nature of the continuum. Brentano held that the 

idea of the continuous is derived from primitive sensible intuition, and is not 

reducible to anything else. Our grasp of the concept of continuity, according to 

Brentano, emerges in three stages. First, sensation presents us with objects 

having parts that coincide. From such objects the concept of boundary is 

abstracted in turn, and then one grasps that these objects actually contain 

coincident boundaries. Finally one sees that this is all that is required in order 

to have grasped the concept of continuity, and so also of a continuum.  

Like Aristotle, Brentano considered it self-evident that a continuum cannot 

consist of points. Points are just boundaries, and not to be regarded as actual 

parts of the continuum from which they spring. If two continua have a common 

boundary, that common border unites them into a single continuum. Such 

boundaries exist only potentially, since they come into being when they are, so 

to speak, marked out as connecting parts of a continuum; and the parts in their 

turn are similarly dependent as parts upon the existence of the continuum. In 

this connection he writes: 

We must ask those who say that the continuum ultimately consists of points 

what they mean by a point. Many reply that a point is a cut which divides 

the continuum into two parts. The answer to this is that a cut cannot be 

called a thing and therefore cannot be a presentation in the strict and proper 

sense at all. We have, rather, only presentations of contiguous parts. … The 

spatial point cannot exist or be conceived of in isolation. It is just as 

necessary for it to belong to a spatial continuum as for the moment of time 

to belong to a temporal continuum.
19 

For Brentano the essential feature of a continuum is its inherent capacity to 

engender boundaries, and the fact that such boundaries can be grasped as 

coincident. Brentano ascribes particular importance to the fact that points in a 

continuum can coincide. On this matter he writes: 

Various other thorough studies could be made [on the continuum concept] 

such as a study of the impossibility of adjacent points and the possibility of 

coincident points, which have, despite their coincidence, distinctness and 

full relative independence. [This] has been and is misunderstood in many 

ways. It is commonly believed that if four different-coloured quadrants of a 

circular area touch each other at its centre, the centre belongs to only one of 

the coloured surfaces and must be that colour only. Galileo’s judgment on 

the matter was more correct; he expressed his interpretation by saying 

paradoxically that the centre of the circle has as many parts as its periphery. 

Here we will only give some indication of these studies by commenting that 

everything which arises in this connection follows from the point’s 

relativity as involves a continuum and the fact that it is essential for it to 

belong to a continuum. Just as the possibility of the coincidence of different 

                                                 
19 Brentano (1974), p. 354. 



Cohesiveness 11 

points is connected with that fact, so is the existence of a point in diverse or 

more or less perfect plerosis
20.

 All of this is overlooked even today by those 

who understand the continuum to be an actual infinite multiplicity and who 

believe that we get the concept not by abstraction from spatial and temporal 

intuitions but from the combination of fractions between numbers, such as 

between 0 and 1.21 

Brentano took a dim view of the efforts of mathematicians to construct the 

continuum from numbers, or points. His attitude varied from rejecting such 

attempts as inadequate to according them the status of “fictions”
22

. For 

example, in a discussion of Dedekind’s construction of the real numbers we 

read: 

Dedekind believes that either the number 1/2 forms the beginning of the 

series 1/2 to 1, so that the series 0 to 1/2 would thereby be spared a final 

member, i.e. an end point which  would belong to it, or conversely. But this 

is not how things are in the case of a true continuum. Much rather it is the 

case that, when one divides a line, every part has a starting point, but in half 

plerosis.
23 

That one has... postulated something completely absurd is seen immediately 

if one splits the supposedly continuous series of fractions between 0 and 1 

into two parts at some arbitrary position. One of the two parts will then end 

with some fraction f, the second however could now start only if there were 

some fraction in the series which was the immediate neighbour of f, which 

is however not the case .... We should apparently have something that began 

but without having any beginning.
24

 

And again: 

Geometry teaches that a line that is halved is halved in a single point. The 

line a  b  c in the point b. And further, that one is able to lay the one half 

over the other, for example in such a way that cb would come down on ba, 

the point c coinciding with the point b, the other end coinciding with the 

point a. According to the doctrine here considered [i.e., the Cantor-

                                                 
20 The concept of plerosis (from Greek “fullness”) plays an important role in Brentano’s account of the 

continuum. Plerosis is a quality possessed by boundaries and may be regarded as is a measure of the 

number of directions in which a given boundary actually bounds. Thus, for example, within a temporal 

continuum the endpoint of a past episode or the starting point of a future one bounds in a single 

direction, while the point marking the end of one episode and the beginning of another may be said to 

bound doubly. In the case of a spatial continuum there are numerous additional possibilities: here a 

boundary may bound in all the directions of which it is capable of bounding, or it may bound in only 

some of these directions. In the former case, the boundary is said to exist in full plerosis; in the latter, in 

partial plerosis. Brentano believed that the concept of plerosis enabled sense to be made of the idea that 

a boundary possesses “parts”, even when the boundary lacks dimensions altogether, as in the case of a 

point.  
21 Brentano (1974), p. 357. 
22 In a letter to Husserl drafted in 1905, Brentano asserts that “I regard it as absurd to interpret a 

continuum as a set of points.” 
23 Brentano (1988), pp. 40 – 41.  
24 Ibid., p. 4. 
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Dedekind construction of the continuum], the divisions of the line would 

not occur in points, but in some absurd way behind a point and before all 

others, of which none, however, would stand closest to the cut. One of the 

two lines into which the line would be split upon division would therefore 

have an end point, but the other no beginning point. This inference has quite 

correctly been drawn by Bolzano, who was led thereby to his monstrous 

doctrine that there would exist bodies with and without surfaces.
25. 

From these quotations it becomes clear that Brentano rejected the idea of 

“splitting” a continuum into two parts, one of which lacks a boundary. His 

view is that the boundary is common to both parts, but with a difference in 

“plerosis” depending on which part the boundary is considered as bounding. 

Thus, for example, when one divides a closed interval [a, b] at an intermediate 

point c, one necessarily obtains the closed intervals [a, c], [c, b], with the 

common point c. Brentano would maintain that the “plerosis” of the point c is 

different in its two manifestations: as a right-hand endpoint of the first interval, 

it is in half-plerosis to the left; in the second, analogously, in half-plerosis to 

the right. But this does not affect the fact that the point c is common to both 

intervals. That being the case, Brentano would probably have regarded a 

continuous line as indecomposable, into disjoint intervals at least.  

3.  THE COHESIVENESS OF THE INTUITIONISTIC CONTINUUM: 

BROUWER AND WEYL 

While none of the above thinkers can be claimed to have asserted explicitly 

that the continuum is cohesive, cohesiveness was a cornerstone of Brouwer’s 

view of the continuum – the intuitionistic continuum. In his early thinking 

Brouwer held that that the continuum is presented to intuition as a whole, and 

that it is impossible to construct all its points as individuals. But in his mature 

thought, he radically transformed the concept of “point”, endowing points with 

sufficient fluidity to enable them to serve as generators of a “true” continuum. 

This fluidity was achieved by admitting as “points”, not only fully defined 

discrete numbers such as 2, π, e, and the like – which have, so to speak, 

already achieved “being” – but also “numbers” which are in a perpetual state of 

“becoming” in that their the entries in their decimal (or dyadic) expansions are 

the result of free acts of choice by a subject operating throughout an 

indefinitely extended time. The resulting choice sequences cannot be 

conceived as finished, completed objects: at any moment only an initial 

segment is known. Thus Brouwer obtained the mathematical continuum in a 

manner compatible with his belief in the primordial intuition of time – that is, 

as an unfinished, in fact unfinishable entity in a perpetual state of growth, a 

“medium of free development”. In Brouwer’s vision, the mathematical 

continuum is indeed “constructed”, not, however, by initially shattering, as did 

Cantor and Dedekind, an intuitive continuum into isolated points, but rather by 

assembling it from a complex of continually changing overlapping parts.  
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The mathematical continuum as conceived by Brouwer presents a number 

of features rendering it bizarre to the classical eye. For example, in the 

Brouwerian continuum the usual law of comparability, namely that for any real 

numbers a, b either a < b or a = b or a > b, fails. Even more fundamental is the 

failure of the law of excluded middle in the form that for any real numbers a, b, 

either a = b or a ≠ b.  

While the intuitionistic continuum may possess a number of negative 

features from the standpoint of the classical mathematician, it has the merit of 

corresponding more closely to the continuum of intuition than does its classical 

counterpart. Hermann Weyl, who in the early 1920s was closely associated 

with Brouwer, pointed out a number of respects in which this is so: 

In accordance with intuition, Brouwer sees the essential character of the 

continuum, not in the relation between element and set, but in that between 

part and whole. The continuum falls under the notion of the ‘extensive 

whole’, which Husserl characterizes as that “which permits a 

dismemberment of such a kind that the pieces are by their very nature of the 

same lowest species as is determined by the undivided whole. 
26

 

Far from being bizarre, the failure of the law of excluded middle for points in 

the intuitionistic continuum was seen by Weyl as “fitting in well with the 

character of the intuitive continuum”: 

For there the separateness of two places, upon moving them toward each 

other, slowly and in vague gradations passes over into indiscernibility. In a 

continuum, according to Brouwer, there can be only continuous functions. 

The continuum is not composed of parts. 
27

 

For Brouwer had indeed shown, in 1924, that every function defined on a 

closed interval of the continuum as he conceived of it is continuous, in fact 

uniformly continuous
28

. As a consequence, the intuitionistic continuum is 

cohesive, a fact which Weyl found thoroughly agreeable. Here is what Weyl 

had to say on the issue in 1921: 

...if we pick out a specific point, say, x = 0, on the number line C (i.e., on 

the variable range of a real variable x), then one cannot, under any 

circumstance, claim that every point either coincides with it or is disjoint 

from it. The point x = 0 thus does not at all split the continuum C into two 

parts C 
–
: x < 0 and C 

+
: x > 0, in the sense that C would consist of the union 

of C 
–
, C 

+ 
and the one point 0 ... If this appears offensive to present-day 

mathematicians with their atomistic thought habits, it was in earlier times a 

self-evident view held by everyone: Within a continuum, one can very well 

                                                 
26 Weyl (1949), p. 52. 
27 Ibid., p. 54. 
28 One might be inclined to regard this claim as impossible: is not a counterexample provided by, for 

example, the function f given by f (0) = 0, f (x) = |x|/x otherwise? No, because from the intuitionistic 

standpoint this function is not everywhere defined on the interval [–1, 1], being undefined at those 

arguments x for which it is unknown whether x = 0 or x ≠ 0. 
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generate subcontinua by introducing boundaries; yet it is irrational to claim 

that the total continuum is made up of the boundaries and the subcontinua. 

The point is, a genuine continuum is something connected in itself, and it 

cannot be divided into separate fragments; this conflicts with its nature. 
29

 

The uniform continuity of functions defined on a closed interval of the 

intuitionistic continuum – hence the indecomposability of any closed interval, 

as well as the whole continuum itself – was shown by Brouwer to follow from 

certain intuitionistically plausible principles he held choice sequences should 

satisfy. One such principle is the Continuity Principle: given a relation R(, n) 

between choice sequences  and numbers n, if for each  a number n may be 

determined for which R(, n) holds, then n can already be determined on the 

basis of the knowledge of a finite number of terms of 30

shown that every function from R to R is continuous
31

. Another such principle 

is Bar Induction, a certain form of induction for well-founded sets of finite 

sequences
32

. Brouwer used Bar Induction and the Continuity Principle in 

proving that every real-valued function defined on a closed interval is 

uniformly continuous. 

Brouwer gave the intuitionistic conception of mathematics an explicitly 

subjective twist by introducing the creative subject. The creative subject was 

conceived as a kind of idealized mathematician for whom time is divided into 

discrete sequential stages, during each of which he may test various 

propositions, attempt to construct proofs, and so on. In particular, it can always 

be determined whether or not at stage n the creative subject has a proof of a 

particular mathematical proposition p. While the theory of the creative subject 

remains controversial, its purely mathematical consequences can be obtained 

by a simple postulate which is entirely free of subjective and temporal 

elements.  

The creative subject allows us to define, for a given proposition p, a binary 

sequence  an  by 

an = 1 if the creative subject has a proof of p at stage n; an = 0 otherwise. 

Now if the construction of these sequences is the only use made of the creative 

subject, then references to the latter may be avoided by postulating the 

principle known as Kripke’s Scheme: 

For each proposition p there exists an increasing binary sequence  an  such 

that p holds if and only if an = 1 for some n.  

                                                 
29 Weyl 1921, 111.  
30 The plausibility of this assertion emerges when one considers that according to Brouwer the 

construction of a choice sequence is incompletable; at any given moment one can know nothing about it 

outside the identities of a finite number of its entries. Brouwer’s principle amounts to the assertion that 

every function from NN to N is continuous. 
31 Bridges and Richman (1987), p. 109. 
32 For an explicit statement of the principle of Bar Induction, see Ch. 3 of Dummett (1977), or Ch. 5 of 

Bridges and Richman (1987).  
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Taken together, these principles have been shown
33

 to have remarkable 

consequences for the cohesiveness of subsets of the continuum. Not only is the 

intuitionistic continuum cohesive, but, assuming the Continuity Principle and 

Kripke’s Scheme, it remains cohesive even if one pricks it with a pin at a 

point.
34

 So “the [intuitionistic] continuum has, as it were, a syrupy nature, one 

cannot simply take away one point.”
35

 If in addition Bar Induction is assumed, 

then, even more surprisingly, cohesiveness is maintained even when all the 

rational points are removed from the continuum.  

4.  COHESIVENESS OF SPACES IN MODELS OF  

INTUITIONISTIC SET THEORY  

We have observed that in classical set theory the only cohesive spaces are 

trivial. It is a remarkable fact, however, that the existence of a whole range of 

nontrivial cohesive spaces, including the real line and all of its intervals, is 

consistent with intuitionistic set theory IST
36

. This is established by 

constructing models of IST in which the existence of such spaces can be 

demonstrated. These models are category-theoretic in nature: to be precise, 

each is a certain type of category known as a topos. By definition, a topos is a 

category EE which resembles the familiar category SSEETT of sets (whose objects 

are all sets and whose maps are all functions) in that it satisfies the following 

conditions: 

• EE has a terminal object 1 such that, for any object X, there is a unique 

map X  1. (Maps 1  X correspond to elements of X.) 

• Each pair of objects A, B of EE has a product A  B. 

• Each object A of EE has a power object PA whose elements correspond to 

subobjects (subsets) of A. 

It can be shown that any topos EE has the two further properties: 

• Each pair of objects A, B of EE has a coproduct A + B, the categorical 

counterpart of the disjoint union of A and B 

• Each pair of objects A, B of EE has an exponential B 
A
, the categorical 

counterpart of the set of all maps A  B.  

There are several ways of characterizing cohesive objects in a topos in 

terms of coproducts and exponentials. If we write 2 for 1 + 1, and  for “is 

isomorphic to”, then the following equivalent conditions on an object A of a 

topos expresses the cohesiveness of A: 

• 2 
A
  2 

• for any object X, (X + X) 
A
  X 

A
 + X 

A
 

                                                 
33 van Dalen (1997) 
34 More exactly, for any real number a, the complement R \ {a} of {a} is cohesive. 
35 Ibid. There the classical continuum is described as the “frozen intuitionistic continuum”. 
36 By “intuitionistic set theory” we mean the theory in intuitionistic first-order logic whose axioms are 

the “usual” axioms of Zermelo set theory (without the axiom of choice), namely: Extensionality, 

Pairing, Union, Power set, Infinity and Separation. 
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• for any objects X, Y, (X + Y) 
A
  X 

A
 + Y 

A
 

Toposes can arise in a variety of ways, for example
37

:  

(i) as categories of “sets undergoing variation”, with maps respecting the 

particular form of variation; 

(ii) as categories of “sets with a generalized equality relation”, with maps 

preserving that relation in an appropriate sense; 

(iii) as the category-theoretic embodiment of an intuitionistic higher-order 

theory. 

There is a natural interpretation of the usual language of set theory in any 

topos under which all the axioms of IST are satisfied. In this sense toposes 

may be considered a model of IST, and we shall treat them as such. 

There are a number of toposes which contain nontrivial cohesive objects. 

We consider five of these.  

1. The topos TT of sheaves on the site of topological spaces equipped with the 

open cover topology
38

  

This topos is of sort (i). Here the “variation” takes place over a suitable 

small category of topological spaces containing the usual real line R. It can 

shown that, in TT, every map from the space RD of Dedekind real numbers to 

itself is continuous (with respect to the usual open-interval topology). Now 

Stout (1976) has shown that, in IST, RD is connected in the following sense: 

(*) For all subsets U, V of RD open in the usual open-interval topology,  

[RD = U  V &  x. x  U &  x. x  V]  U  V ≠ . 

It follows that, in TT, RD is cohesive in the weaker sense mentioned at the 

beginning. For suppose U, V are (arbitrary) subsets of RD for which RD = 

U  V, U  V ≠ .and  x. x  U &  x. x  V. Define the map f : RD  2 by 

f (x) = 0 if x  U, f (x) = 1 if x  V. Then, in TT, f is continuous, so U and V are 

open. We infer from (*) that U  V ≠ . The weak cohesiveness of RD follows.  

2. The topos SSHHVV(R) of sheaves over the real line R
39

  

This topos is also of sort (i). Here the “variation” takes place over the 

category of open subsets of R. It can be shown that in SSHHVV(R) every map from 

a closed interval of RD to RD is uniformly continuous, and it follows easily 

from this that RD and all of its intervals are cohesive.  

3. The free topos FF  

This topos is of sort (iii). In fact FF is the category-theoretic embodiment of 

the free or minimal higher-order intuitionistic theory F (with an object of 

natural numbers): F is minimal in the sense that it is the common part of all 

such theories. It has been shown by Joyal that, in FF, all maps RD  RD are 

continuous. It follows, as above, that RD is cohesive in the weaker sense.  

                                                 
37 For an extensive list, see Johnstone (2002). 
38 This example receives a detailed discussion in Mac Lane and Moerdijk (1992). 
39 See Scott (1970), Hyland (1979). 
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In FF power objects, or sets, exhibit an exotic property we shall call extreme 

cohesiveness
40

. A space S is extremely cohesive if whenever {Xn : n  N} is a 

(not necessarily disjoint) covering of S indexed by the set N of natural 

numbers, then S = Xn for some n. Obviously an extremely cohesive space is 

cohesive. Notice that the real line, while it can be cohesive, is never extremely 

cohesive because it can be expressed as the union of the family of closed 

intervals [-n, n] for n  N. 

Extreme cohesiveness of S is equivalent to the uniformity rule for S, 

namely,  

(*) x  S  n  N  (x, n)   n  N x  S  (x, n). 

Extreme cohesiveness can also be expressed within infinitary logic: S is 

extremely cohesive if, for any countable collection {Pn : n  N} of properties 

of S, the following implication is valid: 

x  S nN Pn(x)   nN x  S Pn(x). 

Clearly, if S is extremely cohesive, any map S  N is constant.  

Extreme cohesiveness may be construed in a variety of ways: 

(a) As an extreme version of the pigeonhole principle. The pigeonhole 

principle (in a general form) states that, given two sets S and I, if the 

cardinality of M exceeds that of I, then any I-indexed covering of S has a non-

singleton member. The more the cardinality of S exceeds that of I, the larger 

must one of these non-singleton members be: in particular, it might be S itself. 

Let us call S incomparably bigger than I if any I-indexed covering of S always 

contains S as a member. Clearly, if S is incomparably bigger than I, then any 

map S  I is constant. Any set with more than one element is incomparably 

bigger than any singleton. Extreme cohesiveness is the same as being 

incomparably bigger than N. 

(b) As a kind of measurability in the set-theoretic sense
41

. This follows if 

one observes that S is incomparably bigger than I exactly when the trivial filter 

{S} on S is I-complete.
42

 So S is incomparably bigger than N, i.e. S is 

extremely cohesive, if and only if the trivial filter {S} on S is countably 

complete. Compare this with the definition of a measurable cardinal in the set-

theoretic sense: a cardinal K is measurable if it supports a countably complete 

ultrafilter not generated by a singleton.  

(c) As an extreme version of countable compactness with arbitrary 

countable covers replacing open covers.  

(d) As an extreme kind of amorphousness. Let us call a space D discrete if 

it satisfies x  D y  D (x = y  x ≠ y) In any topos the set N of natural 

numbers is discrete. It is natural to call a space which is not discrete 

                                                 
40 See Lambek and Scott (1986). 
41 I owe this observation to Jean Petitot. 
42 Recall that a filter F on a set M is I-complete if whenever the union of any I-indexed family S of 

subsets of M is a member of F, then at least one member of S is also a member of F. 
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amorphous: elements of an amorphous space may be thought of as being only 

partially distinguishable. It is easy to see that a cohesive – and a fortiori an 

extremely cohesive – space is amorphous. Note also that in any non-Boolean 

topos (i.e., one in which the law of excluded middle fails) the power set of a set 

with at least one element is always amorphous. 

Recall now the uniformity rule (*) for S. Its premise may be construed as an 

attempt to coordinate each element of S via  with a natural number, that is, to 

give a function f: S  N for which x  S  (x, fx). If S is sufficiently 

amorphous, there is no way of distinguishing elements x and y of S so as to 

make the elements fx, fy of the discrete set N distinct. This means that f has to 

be constant, and we infer the consequent of (*).  

It can be shown that in FF the power set of any set with at least one element 

is extremely cohesive, hence incomparably bigger than N.  

4. The effective topos EEFFFF  
43

  

This topos is of type (ii). The “generalized equality relation” here on a set X 

is a PN-valued predicate on X  X satisfying formal versions of symmetry and 

transitivity formulated in terms of the notion of recursive realizability. A map 

in EEFFFF between two sets X, Y equipped with generalized equality relations in 

this sense is a PN-valued predicate R on X  Y satisfying the corresponding 

formal version of the condition “R is a single-valued relation with domain X 

and codomain Y ”.  

In EEFFFF maps between objects constructed from the natural numbers 

correspond to recursive functions between them. In particular maps from N to 

N may be considered as being (total) recursive functions on N. Hence, in EEFFFF, 

Church’s thesis holds in the strong sense that every function N  N is 

recursive. It follows from this that in EEFFFF the domain of Cauchy real numbers 

RC corresponds to the recursive reals, that is, the real numbers arising as limits 

of recursive Cauchy sequences of rationals. (This means that “real analysis” in 

EEFFFF coincides with recursive analysis.) Using the fact from classical recursion 

theory that recursive maps on the recursive reals are continuous, it follows that, 

in EEFFFF, every map RC  RC is continuous. So, as above, we infer that RC is 

cohesive in the weaker sense
44.

  

Finally, it has been shown that, in EEFFFF, PN is extremely cohesive.  

5. Smooth toposes  

There are various examples of so-called smooth toposes, each of which may 

be considered to be an enlargement of the category MMAANN of manifolds (or 

spaces) and smooth maps to a topos EE which contains no new maps between 

spaces (so that all such maps in EE are still smooth, and so a fortiori 

continuous), but does contain – unlike MMAANN – certain “infinitesimal” spaces as 

described below. The fact that all maps between spaces are continuous in a 

                                                 
43 See Hyland (1982). 
44 Hence RD is also cohesive since in EEFFFF  RD can be shown to be isomorphic to RC. 
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smooth topos EE guarantees that, in EE every connected space, in particular the 

real line, is cohesive.  

Each smooth topos is a model of a theory extending IST called smooth 

infinitesimal analysis (SIA). Here are the basic axioms of the theory
45

. 

Axioms for the continuum, or smooth real line R. These include the 

usual axioms for a commutative ring with unit expressed in terms of two 

operations + and •, (we usually write xy for x•y) and two distinguished elements 

0 ≠ 1. In addition we stipulate that R is an intuitionistic field, i.e., satisfies the 

following axiom: 

x ≠ 0 implies  y xy = 1. 

Axioms for the strict order relation < on R. These are: 

O1.  a < b and b < c implies a < c. 

O2.   (a < a) 

O3.  a < b implies a + c < b + c for any c. 

O4.  a < b and 0 < c implies ac < bc 

O5.  either 0 < a or a < 1. 

O6   a ≠ b 
46

 implies a < b or b < a. 

O7.  0 < x implies  y x = y
2
. 

We write ∆ for the subset {x : x
2
 = 0} of R consisting of (nilsquare) 

infinitesimals or microquantities; use the letter  as a variable ranging over ∆. 

∆ is subject to the 

Microaffineness Axiom. For any map g : ∆  R there exist unique a, b  

R such that, for all , we have 

g() = a + b. 

R is defined by a b iff ¬ (b < a). The open 

interval (a, b) and closed interval [a, b] are defined as usual, viz. (a, b) =  

{x : a < x < b} and [a, b] = {x : a x b}; similarly for half-open, half-

closed, and unbounded intervals. 

From these axioms the following can be deduced: 

•  ∆ is nondegenerate, i.e. ∆ ≠ {0}.
47

 

                                                 
45 Moerdijk and Reyes (1991) or Bell (2008). Lambek (forthcoming) provides a nice account of 

infinitesimals from an algebraic point of view. 
46 Here a ≠ b stands for ¬ a = b. It should be pointed out that axiom 6 is omitted in some presentations 

of SIA, e.g. those in Kock (1981) and McLarty (1992). 
47 It should be noted that, while ∆ does not reduce to {0}, nevertheless 0 is the sole element of ∆ in the 

(weak) sense that the assertion “there exists an element of ∆ which is ≠ 0” is refutable. Figuratively 

speaking, ∆ is the “atom” 0 encased in an infinitesimal carapace. 
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•  Call x, y  R indiscriminable (resp. indistinguishable) and write x ≈ 
(resp. x ~ y) if x – y  ∆ (resp. ¬x ≠ y). Then x ≈ y implies x ~ y (but not 

vice-versa).  

•  any closed interval is closed under indiscriminability.  

•  Any f : [a, b]  R is indiscriminably continuous in the sense that, for 

x, y  [a, b], x ≈ y implies f x ≈ f y, and hence also f x ~ f y. (Note that it 

follows trivially from x ~ y that f x ~ f y.) 

In SIA one also assumes the 

Constancy Principle. If A is any closed interval on R, or R itself, and f : 

A  R is locally constant in the sense that x ≈ y implies f x = f y for all x, y  A, 

then f is constant. 

Now call a subset D of R discrete if it satisfies 

x  D y  D [x = y  x ≠ y]. 

Notice that if D is discrete, then, for x, y  D, x ~ y implies x = y. 

It follows quickly from the Constancy Principle that, if A is any closed 

interval on R or R itself, then any map on A to a discrete subset of R is 

constant.
48

 (To see this, let f be a map of A to a discrete set D. Then from x ≈ y 

in A we deduce f x ~ f y, and hence f x =f y, in D. So f is locally constant, and 

hence constant.) And from this it follows in turn that R and all of its closed 

intervals are cohesive. To see this, let A be R or any closed interval, and 

suppose that A = U  V with U  V = . Let 2 be the discrete subset {0, 1} of 

R, and define f : A  2 by f (x) = 1 if x  U, f (x) = 0 if x  V. Then f is 

constant, that is, constantly 1 or 0. In the first case V = , and in the second 

U = .  

From the cohesiveness of closed intervals it can be inferred
49

 that in SIA all 

intervals in R are cohesive.  

In SIA cohesive subsets of R correspond, grosso modo, to connected 

subsets of R in classical analysis, that is, to intervals. This is borne out by the 

fact that any puncturing of R is decomposable, for it follows immediately from 

Axiom O6 that 

R \ {a} = {x : x > a}  {x : x < a}. 

The set Q of rational numbers is defined as usual to be the set of all 

fractions of the form m/n with m, n  N, n ≠ 0. The fact that N is cofinal in R 

ensures that Q is dense in R.  

The set R \ Q of irrational numbers is decomposable as 

R \ Q = [{x : x > 0} \ Q]  [{x : x < 0} \ Q}. 

This is in sharp contrast with the situation in intuitionistic analysis (augmented 

by Kripke’s scheme, the continuity principle, and bar induction). For we have 

observed that in intuitionistic analysis not only is any puncturing of R 

                                                 
48 This property may be considered another strong form of cohesiveness. 
49 Bell (2001). 
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cohesive, but that this is even the case for the irrational numbers. This would 

seem to indicate that in some sense the continuum in smooth infinitesimal 

analysis is considerably less “syrupy” 
50

 than its counterpart in intuitionistic 

analysis. 

Finally, consider the set of infinitesimals: 

I = {x : ¬ x ≠ 0}. 

I is an ideal, in fact a maximal ideal in the ring R. That being the case, we may 

construct the quotient ring R/I. In certain smooth toposes R/I can be shown to 

be isomorphic to the ring RD of Dedekind real numbers, from which the 

cohesiveness of RD follows immediately from that of R. 

5.  CONCLUDING REMARKS 

There is an old philosophical argument, going back to the pre-Socratics, to 

the effect that, if continuous extended magnitudes are limitlessly divisible, then 

they must be composed of indivisible atoms. For suppose one starts with such a 

magnitude, a line, say, then proceeds to divide it in two, then divides each half 

in two, indefinitely. Imagine this process to be carried out completely. The 

result is a multitude of parts that cannot be further divided, that is, atoms. But 

now, the argument continues, since at no stage in the process of division is any 

part of the original line “lost”, that is, at any stage the original line remains the 

sum of the parts obtained by division, it follows that this must still be the case 

when the process of division is completed and the parts into which the line has 

been divided have become atoms. Conclusion: any line is the sum of atoms. 

Hermann Weyl put the matter thus: 

The old principle that “one cannot separate that which is not already 

separated (Gassendi) here again comes into its own. Indeed, Democritus 

argues with good reason that if I can break a stick, then it was from the 

outset not a whole. Strictest atomism is the inescapable conclusion of this.
51

 

Now let us grant for the purposes of argument that the process of division 

can be “completed”. Then drawing the conclusion depends crucially on the 

assumption – call it “A” – that at no stage in the process of division is any part 

“lost”. (Without A one is left at the completion of the division with a multitude 

of atoms whose sum does not necessarily coincide with the given line.) Now to 

posit A is tantamount to asserting that lines (or continua generally) are 

decomposable. Consequently (granting the completability of the division 

process), if continua are decomposable, they are sums of atoms, hence discrete. 

This conclusion is, of course, the central claim of atomism. Those who (like 

myself) grant the limitless divisibility of continua, are happy to accept the 

imaginative possibility of “completing” the infinite process of dividing them, 

and grant as well that atoms are the result – but who nevertheless find 

                                                 
50 It should be emphasized that this phenomenon is a consequence of axiom O6: it cannot necessarily be 

affirmed in versions of SIA not including this axiom.  
51 Weyl (1925), 135 
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unpalatable the conclusion that continua are the sums of atoms, and so 

ultimately discrete – can avoid that conclusion by the simple expedient of 

denying that continua are decomposable, that is, by asserting that continua are 

cohesive. Cohesiveness forces us to recognize that, in separating a continuum 

into parts, something is lost thereby – call it the “glue” uniting the parts into 

the original whole. Before the whole is separated into parts, those parts are 

implicit, and so the potential existence of the “glue” uniting them lies 

unrecognized. The loss of that “glue”, indeed its very presence within the 

whole, only becomes apparent once the whole is separated. When the process 

of dividing a continuum is “completed”, one is left with a multitude of 

separated atoms, but the “glue” uniting them within the whole has vanished 

without trace. Without that “glue” to hold them together, the atoms fail to sum 

to the original whole. 

It has to be admitted that, even if one accepts the argument just presented, 

cohesiveness, as defined here, may still seem a bizarre notion. For of course a 

stick can be cut into two pieces, and of course a board can be painted half black 

and half white. But if such objects were truly cohesive, wouldn’t it then 

become impossible to carry out such routine procedures? Perhaps only those 

few (necessarily philosophers) bent on avoiding atomism would be forced to 

countenance such a curious idea! But it is not really necessary to invoke the 

spectre of atomism, or even to be a philosopher, to acknowledge the concept of 

cohesiveness. For a moment’s thought shows that cohesiveness is not such an 

unreasonable notion after all. In fact the cohesiveness principle does not make 

the cutting of a stick in two or the painting of a board half black and half white 

impossible per se; it asserts nothing more than that it is impossible to do such 

things with complete exactitude. In the first case, the two half sticks cannot 

exactly reconstitute the original stick, and in the second the board cannot be 

painted with sufficient precision so as to cover it and at the same time avoid an 

overlapping, however small, of the painted areas. From an empirical 

standpoint, these facts are quite commonplace. The concept of cohesiveness 

may thus be seen as the result of elevating certain limitations in practice in the 

handling of continuous objects into a limitation in principle. These practical 

limitations not only make the idea of cohesiveness less offensive to intuition, 

they actually serve to distinguish continuous from discrete objects in their 

everyday handling. Thus, while dividing a stick leads to subtleties, none arise 

in separating a dozen eggs into two half-dozens! 

Given universal discreteness, or classical logic, as in classical set theory, 

cohesiveness collapses into the trivial property of having no nonvoid proper 

parts. Consequently the counterpart of cohesiveness in set-theoretic topology –

connectedness – is not and cannot be an intrinsic property of a space; it is 

rather a property of the topology imposed on the space: with a different 

topology, e.g. the discrete topology, a connected space can become highly 

disconnected. The property of cohesiveness, on the other hand, is intrinsic to a 

space, marking it as a genuine continuum in itself. A space is guaranteed to be 

cohesive if all maps on it are continuous. It is remarkable that the use of 
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intuitionistic logic is compatible with the pervasive continuity of maps, hence 

also with the existence of cohesive spaces and genuine continua, so allowing 

the latter to assume their rightful place in mathematics and philosophy. 
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