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ISOMORPHISM OF STRUCTURES IN S-TOPOSES

J. L. BELL

It is a well-known fact that two structures are ww-equivalent if and only if they
are isomorphic in some Boolean extension of the universe of sets (cf. [4]; an early
allusion to this result appears in [8]). My principal object here is to show that
arbitrary toposes defined over the category of sets may be used instead. Thus
cow-equivalence means isomorphism in the extremely general context of some
universe of ‘“‘variable” sets in which not only is much of the usual set-theoretic
machinery unavailable but the underlying logic is not even classical. This provides
further support for the view that cow-equivalence is a relation between structures
of fundamental importance.

§1. We recall that a topos is a category E satisfying the following conditions
(for notation, see [6] or [7]):

e E has a terminal object 1.

e E has finite products.

e There is an object Q in E, the subobject classifier or truth-value object, and
an arrow 1 t¢ O such that for each monic A %, B there is a unique B *=, Q, the
characteristic arrow of m (or A) such that

A—1

true

v

- Q

is a pullback, and conversely every arrow to arises in this way. Where there is
no possibility of confusion, we write y 4 for .

e For each object A there is an object 04, the exponential of A, and an arrow
A x QA< Q such that, for each arrow A x Bf Q there is a unique arrow
B & Q4 such that

phts

A x B
|
A
idg % g
l

A XQA__S"__AQ

commutes. (Here id 4 is the identity arrow on A.)
It is well known that any topos has an initial object 0, arbitrary finite coproducts.
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and pullbacks. We shall always assume that a topos has small hom-sets, and that
it is nondegenerate, i.e. 0 % 1.

Let S be the category of sets. A topos E'is said to be defined over S or to be
simply an S-topos if it has arbitrary set-indexed copowers of its objects. It is easy
to see that for this to be the case it is enough to be able to form arbitrary set-
indexed copowers of 1 in E. Moreover, it is well known (see [6, Chapter 4]) that
in any S-topos one can form arbitrary coproducts of subobjects of any given
fixed object, in particular, of subobjects of 1. If {X;: ie I} is any family of objects,
we write I1;.; X; or ILX, for the coproduct, assuming it exists.

We shall continually use the standard fact that, in a topos, if for each i € J the
diagram

X;— Y;
A B
is a pullback, then so is the diagram
1LX; 1y;
A B

with the natural arrows.

Given an S-topos E, there is a natural functor 7 : S - E (left adjoint to the
hom-functor £(1, -): E — S) defined as follows: for each set 4 we put 4 = 41
and for f: 4 - B we define f: A - B to be the unique arrow in E making the
diagrams

N

| ——

m\ !

B

commute for all a € A, where 4, b are the canonical injections of 1 into A, B re-
spectively. It is easy to verify that ~ is faithful and preserves products (in fact,
all finite limits).

If B< Aandae 4, it is not hard to see that!

aeBax,;d = true;
a¢ B<> ypa = false,

where | false, 0 s the characteristic arrow of 0 » 1.
Let Sub(E) be the set of all subobjects of | in an S-topos £, where we agree to

'Cotﬁposition orzlrrows is denoted, as usual, in the “set-theoretic™ manner, i.e. by juxtaposition
in the order opposite to that in which they appear in a diagram.
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identify isomorphic subobjects. The relation < on Sub(E) defined by U < Viff
there is a (necessarily unique) monic U » ¥ is then a partial ordering on Sub(E)
and, as is well known, (Sub(E), <) is a complete Heyting algebra in which the
meet U A V of two elements U, V coincides with their product U x V and, for
any set {U,:ie I}, thejoin \/,. 1 U; is the unique member of Sub(E) such that

11U 1

€]
x /
VU;

commutes with & epic and m monic. (We recall that in a topos any arrow has a
“unique” epic-monic factorization.)

For each object 4 € E we define a (partial) section of A to be an arrow of the
form dom(u) %, A, where dom(u) is a subobject of 1. Let 4 be the set of sections
of 4, and let u, ve A. We define [u = v] € Sub(E) to be the subobject of 1 such
that

[u = v]>»———dom(u)

|

dom(y) »—— 4

is a pullback. Notice that we have, for a, a’'€ 4, [¢ = 4] = 1 and [a=ad]=0
whenever a # a'.

Let H be a complete Heyting algebra. Following [5], we define an H-set to be a
pair (X, §) consisting of a set X and a function 0: X x X - H satisfying

o(x, y) = o(y, x), o(x, ) A 0y, 2) < d(x, 2).

(0 may be thought of as an “H-valued equality relation” on X.) The category Sy
of H-sets is defined as follows. Its objects are all H-sets; an arrow between two
objects (X, §) and (Y, ¢) is a function f: X x Y — H such that, for all x, x'e X,
»nyey,

o(x, x') A fx, y) < fix, y),

Jx, 9) A ey, ) < fix, ),

S, 0) A (X, ) < e(y, ),
\)_/f(x, ») = a(x, x).

(Such a function may be thought of as an H-valued relation which is functional
and defined on X.) Given two arrows X, )L (Y, &) and (Y, e) &, Z, p,
the composition (X, §) ¢/,{Z, ) is defined by gf)(x, z) = Vyey f(x, ¥) A
&(», z); the identity arrow on (X, 0y is just . It is well known that Sy is an
S-topos in which Sub(S,) ~ H and, for any set A, A is the H-set (A, ) where §
is defined by 6(a, @) = 1, d(a, a’) = 0 for anya,a’ € Asuchthata # a'.
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We observe that, for any S-topos E, and any object 4 € E, the pair A4, =1
is a Sub(E)-set.

If B is a complete Boolean algebra, the Boolean extension v® of the universe
of sets may be regarded as a category in the following way. First, we identify
elements of V® which are equal with probability 1. The objects of the category
VB are then the (thus identified) elements of V® and the arrows are those elements
of V® which are functions with probability 1. It is easy to see that the resulting
category is a topos, and indeed an S-topos in which the natural functor S yv®
defined above is just the usual injection of V¥ into V® (see [1]). It is known [5]
that ¥® and S, are equivalent as categories.

Let E be a topos. A (binary) E-structure? is a pair A = {4, R) consisting of an
object 4 of E and a subobject R of 4 x A. If 9 = {4, R) and B = (B, S are
two E-structures, an arrow f: A - Bissaid to be compatible with R and S if

xR = xs(f x f).

An E-isomorphism between A and B is an isomorphism / (in the usual categorical

sense in E) which is compatible with R and S. Under these conditions we write

A and B are E-isomorphic.

IfA =<4, R)isa (binary) structure in the usual sense, and £ is an S-topos,
we denote by 9 the E-structure’ {4, R). If B is a structure in the usual sense,
we say that 9 and B are E-equivalent, written 9[ =9, if A =, B. We shall call
A and B lopos-equivalent, and write 9( =73, if A =, B for some S-topos E.

Given two (usual) structures 9 — {4, R)and B = (B, S), a partial isomorphism
between 9 and B is a nonempty family P of functions such that:

e for each fe P, we have dom(f) < 4, ran(f) < B, and f'is an isomorphism of
At dom(f)to B | ran(f);

o if feP, ac A, be B, then there exist g, he P both extending f such that
a € dom(g), b € ran(h) (“back and forth™ property).

If these conditions are satisfied we write P: 9( =, B; if there is such a P we
write ¥ =, B and say that 9 and B are partially isomorphic.

It is well known (see [3]) that two structures are O w-equivalent if and only if
they are partially isomophic; it is this latter relation we shall employ in the sequel.

§2. We first want to formulate necessary and sufficient conditions on an S-topos
E for two given structures to be E-equivalent. Since we are ultimately going to
show that E-equivalent structures are partially isomorphic, our strategy will be to
start with two partially isomorphic structures, use the partial isomorphism to
construct an S-topos in which they turn out to be equivalent, and then ‘read off®
the appropriate conditions on the topos from the corresponding properties of
the partial isomorphism.

*There is really no necessity to confine attention to binary structures; we do so solely for the
sake of notational simplicity. By complicating the symbolism the results given here go through for
structures with any number of finitary relations.

*In order for (A, R) to be an E-structure in the sense of the above definition we must identify
the naturally isomorphic objects (4 x A)”and 4 x A. We shall continue to do this in the sequel,
usually without comment.
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So let % and B be two partially isomorphic structures and let P: 9 ~ » 3.
We partially order the set P by inclusion and assign it the associated order topology
in which the basic open sets are of the form {feP:pc S} for pe P. Now let C
be the complete Boolean algebra of regular open subsets of P; for each g e A,
beBletV,, = {fe P:f(a) = b} and

U = {q€ P: Vp 2 g3fe v,,[p < f1}.

Then U, is the interior of the closure of ¥, in P, and so Uqs € C. The fact that P is
a partial isomorphism now readily yields the following facts about the Uy: in C,

(@) Vsep Uy = 1 foreacha e A;

(6) Voes U,y = 1 foreachd e B;

© Uy AUyy=0 whenever a # 4';

(d) Usy A U,y = 0 whenever b#b,;

(e) if either (a, a') € R and (b, b'>¢s
or{a,a’y ¢ Rand <b,b") € S, then U A Uyy = 0.

Properties (a) and (b) derive from the “back and forth™ condition on P, (¢
and (d) from the bijectiveness of the members of P, and (e) from the compatibility
of each member of P with R and S.

Now consider the topos S¢ of C-valued sets. Conditions (a) and (d) mean that
the U,, define an arrow f:4 — B in S¢, and the remaining conditions ensure that
this arrow is an isomorphism in S¢ compatible with R and § (this will follow from
our general result below but can in fact be easily verified in the special case at hand).
Thus, in this case, the existence of a subfamily of C ~ Sub(S) satisfying conditions
(a)—(e) above is sufficient for % and B to be Sc-equivalent. We are actually going
to establish the much stronger result that, for any S-topos E, the existence of such
a subset of Sub(E) is not only sufficient but also necessary for % and B to be E-
equivalent. To do this, however, we require a

LEMMA. Let E be an S-topos and let f- A — B be an arrow in E. Then

(1) fis monic flfa=rfa]=0 whenever a # q' in A;

(ii) fis epic iff \/ye [ fd = B] = | Jorallb e B,

PROOF. Suppose f'is monic. For a, a’ € A, consider the pullback

[fa=faj 1

Il

Taking coproducts over a’, we get the pullback
la=fay—— |

ST

A f A
A—m— B

Since [ is monic, so is the top line of (I). But clearly [fa = fa] = 1, so
He'#e[fd = f@'] = 0and hence [ fa = fa'] = 0 when q #* a’.
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Conversely. suppose that [ fa = fa'] = 0 when a # a’. Then the pullback (1)
becomes

[
f

~

B

1 = [fd = fa]l—1
|

A
Taking coproducts over a € 4 yields the pullback

A—=_ 4
1 |s
A .
A B

from which it immediately follows that f'is monic. This proves (i).
(ii) Suppose fis epic. For fixed b € B we get by taking coproducts a pullback

Hifa =61 —1
a=A ¥
@ j ;
4 f A
A B

Since f'is epic, so is the top line of (2), giving \/,-4[ féd = 5]] =il
Conversely, suppose this last condition is satisfied. Then the top line in (2) is
epic and so we get, by taking coproducts over b € B, a pullback:

Il ltfa = é1—B
id

beB aCAl

-

ok
A B

But the top line of this diagram'is clearly epic, and so therefore is f. This proves
(i). W

We are now in a position to prove the promised

THEOREM. Let E be an S-topos, and let % = {A, R), B = (B, S) be structures.
Then the following are equivalent.

() A =3

(ii) There is a family {U,;: {a, b) € A x B} < Sub(E) such that conditions (a)-(e)
above hold.

PROOF. (i) = (ii) Assume (i), and let f: 9 2. B. Then f: 4 =~ B and

(D xe = xs(/ x /).

For each {(a,b)e A x Bput U,, = [fa = 5]]; then U,, € Sub(E).
(a) By taking coproducts over b € B, we obtain for each a € A the pullback

U Uab B
b=B

[k st

1 B
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But B i, B is epic, and so therefore is [Icp Uar — 1, giving (a).
(b) follows immediately from (ii) of the lemma. :
(c) Ifa # a' € A, then

Up A Uy < [fda=fd1=0
by (i) of the lemma.
(d) If b # b’ € B then
Uy A Uy < [h=51=0.

(¢) Before proving this we again remark that for any set X we have agreed to
identify (X x X)”~ and X x X.Thus, for any {x, x'> € X x X we shall also agree
to identify 1 %32 X x X with 1 %% (X x X).

Now suppose {a, a’> € Rand b, b") ¢ S. It is easy to see that, from the definition
of U,;, we have the commutative diagram

Uab X Ua’b'—_—'l
@ l fa, fa'> \d’%
1 BxB

Since <b, b’) ¢ S, we have xg(l;, B’) = false, and so, putting V = U, x Uyy, We
get, using (1) and (2)
174 1 false 0

- P JEL $ i B0

— V145 § 2.0

= V——»IM,&X /i‘—fif;B XBLQ

S 7 ]@’&I)/ix./i xR

e a1 0
since <a, a') € R. But then clearly V' = 0, whence U, A U,y = 0 as required. A
similar argument shows that if (a, ') ¢ R and <b, b") € S, then Uy, A Uyy = 0.
This proves (e).

(ii) = (i) Let {U,,: <a, by € A x B} be a subset of Sub(E) satisfying (a)-(e). We
first claim that, forany a € 4,

) Hi sl

beB

Since by (a) we have [[;<3U, — 1 epic, it suffices to show that this arrow is monic.
We consider the pullback

Uy % Uy— U
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Then

]_[ Uap X U= Uwy

beB l

]__[ Uab

beB

1

is a pullback. But by (d), U,, x U,y = 0if b # b, so the above pullback diagram
becomes

Uab’ = Uab’ X Uab’ Ua fi

]_[ Uab

b<B

Hence, taking coproducts over b’ € B, we get the pullback

H Uab" “ U Uab’
v'eB

bV'eB

e

l__[ Uab

b<B

g

It follows easily from this that the bottom line of this diagram is monic, and so we

get (3).
Given a € A4, we let [I,c5U,; “2. B be the unique arrow making the diagrams
Uab e 1
(O] b
Ta o
HUy~—— 8
beB

commute for each b € B. Using (3), we let i, be the composition of the arrows 1 =
18U 72 B. We now define A £, B to be the unique arrow making the dia-
grams

commute for allae 4.
We claim that f: 9 =~ B. To establish this we first observe that

(5 Uy = [fd = b]
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forae A, b e B. For it follows immediately from (4) and the definition of i, that the
diagrams
1

Ua b

fa =

1 B

commute for all a€ A4, b e B. Hence U, < [fd = b] = V,,, say. Clearly we have
Vae A Vay = 0 whenever b # b’, so V,, A Uy = 0 when b # b'. Now, by (a),
we have

Vae=Var A 1 Vas AN Uy
b'eB

= \/ Vab A Uab' =Va AN Uab-
b'eB
So Vg < U, and (5) follows.
Now we can show:
fis monic. This follows from (5), (c) and (i) of the lemma.

[ is epic. This follows from (5), (b) and (ii) of the lemma.
(%) xp = xs(f x f). Using (a), it is easy to show that

\/ \/ Uab A Ua'b’ 51 1’

b=B b'EB
so that the arrow

H I Uss X Upyr — 1
B b'€B

is epic. In order to prove () it suffices to show that, for any a, @’ € 4,

(6) x#€d, @) = ys(f % f)<a4, &') = ye(fa, fad').

To establish (6) we treat separately the cases (@, @’y € Rand {a, a') ¢ R.
Suppose then that {a, a’) € R. Using (5) we get a commutative diagram

Uab X Ua'b' v ¥

[ <b,b"»
{fa, fa>

I———fxd = 0

If (b, b') € S then x_e(I;, b'> = true, while if b, b'> ¢ S then U,y x U,y =0
by (e). Hence for any b, b’ € B we have

l true Q
& $4y & - ¥
Tk LIy oy M

Uab X Ua’b'

= Ug X Ua'b'

and hence, putting X = [, g 115 Usy X Uy,

Xi=Znrli=td 0
3 gy x8<¢fa, fa'> 0.
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Thus, since X - 1 is epic,
xs{fa, fa@'y = true.
But since {a, a’) € R we have

r<d, @'y = true

and so (6) follows in the case where (a, @’ € R.

An argument similar to the one just given establishes (6) in the case where {a,a’)
¢ R. Thus (6) holds for all a, a’ € A. This gives (%), and completes the proof. W

Now we can prove the main result of the paper.

COROLLARY 1. A =, 9 if and only if A =, B, and hence A =., B if and only if
A = T B.

PROOF. If 9 =, 9, let P be a partial isomorphism between 9 and 8 and let C be
the complete boolean algebra of regular open subsets of P. At the beginning of this
section we remarked that we can find a subfamily {U,,: {a, b€ 4 x B} of C
satisfying conditions (a)-(e) above, so it follows from the theorem that 9 and
are Sc-equivalent, whence 9 =, 9.

Conversely, suppose that 9 =, 9. Then there is an S-topos E such that % =, 9B,
as guaranteed by the theorem, let {U,;: {a, b> e A4 x B} be a subset of Sub(E)
satisfying conditions (a)-(e). For each 0 # Ue Sub(E) put

U={<a,bye A x B:U < U,}.
We claim that
P = {U:0 # Ue Sub(E)}

is a partial isomorphism between % and 3.

(1) Each Ue P is a one-one function. For if {a, by € U and <a, b'> € U, then
U< Uy AUy =0ifb # b by (d); so since U # 0 we must have b = &’. Thus
Uis a function. In a similar way, now using (c), we can show that U is one-one.

(2) Each U e P is an isomorphism of its domain onto its range. Suppose {a, b) €
U, <a, by € Uand <a, a') e R. Then, if (b, b') ¢ S it follows from (e) that U <
Uau A Upyy = 0, so since U # 0 we must have (b, b'> € S. Similarly, if (b, b’y €
S, we obtain {a, a’) e R.

(3) Suppose Ue P and ac A. By (a), we have 1 = \/,.5 U,; hence

U=UAV Uy=\VUAU,.
b=B beB

Since U # 0, for some b€ Bwe musthave ¥V = U A U,, # 0. Then Ve P, U < V
and {a, b) € V, whence a € dom(¥).

Similarly, now using (b), for each b€ B we get ¥ € Psuchthat U < V and b e
ran(V).

Thus P is a partial isomorphism between 9 and 8, and the proof is complete. W

REMARK. The definition of U in the preceding proof was suggested by consider-
ing the special case in which E is a Boolean extension V) containing an element f
which is an isomorphism of 9 and B with probability 1. In this case we take Uy, =
[<a, by € f1, so for each U € Sub(V©) =~ C, U is the set of pairs <a, by e A x B
(whose canonical images are) “forced” by U to be a member of /.
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Finally, we observe that, for certain familiar kinds of topos E, E-equivalence is
the same as isomorphism. Let us call a topos E normal if Sub(E) is (isomorphic to)
a topology on a set. This condition is satisfied, for example, when E is a presheaf
category S where D is any small category, or when E is the category of sheaves
over any topological space. We then have:

COROLLARY 2. Let E be a normal S-topos. Then A =g B if and only if A = B.

PROOF. One way round is trivial. Conversely, suppose that 2 = ;B and let Sub(E)
be a topology  on a set I. Let {U,;: {a, by € A x B} be a subfamily of 7 satis-
fying conditions (a)-(e) as guaranteed by the theorem. Since E is nondegenerate, /
is nonempty and so we can choose a member iy € /. Define a function f: 4 - B
by putting f(a) = b iff iy € U,,. It is now easy to verify, using conditions (a)-(e),
that this defines an isomorphism between A and 8. W
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