Basic Model Theory

John L. Bell

1. Structures and First-Order Languages

A structure is a triple

$$
\mathfrak{A}=\left(A,\left\{R_{i}: i \in I\right\},\left\{e_{j}: j \in J\right\}\right),
$$

where A, the domain or universe of \mathfrak{A}, is a nonempty set, $\left\{R_{i}: i \in I\right\}$ is an indexed family of relations on A and $\left\{e_{j}: j \in J\right\}$) is an indexed set of elements - the designated elements of A. For each $i \in I$ there is then a natural number $\lambda(i)$-the degree of R_{i}-such that R_{i} is a $\lambda(i)$-place relation on A, i.e., $R_{i} \subseteq A^{\lambda(i)}$. This λ may be regarded as a function from I to the set ω of natural numbers; the pair (λ, J) is called the type of \mathbf{A}. Structures of the same type are said to be similar.

Note that since an n-place operation $f: A^{n} \rightarrow A$ can be regarded as an ($n+1$)-place relation on A, algebraic structures containing operations such as groups, rings, vector spaces, etc. may be construed as structures in the above sense.

The cardinality $\|\mathfrak{A}\|$ of a structure \mathfrak{A} is defined to be the cardinality $|A|$ of its domain A.

The first-order language \mathscr{L} of type (λ, J) has the following categories of basic symbols:
(i) individual variables: a denumerable sequence v_{0}, v_{l}, \ldots;
(ii) predicate symbols: for each $i \in I$, a predicate symbol P_{i} of degree $\lambda(i)$;
(iii) individual constants: for each $j \in J$ an individual constant c_{j};
(iv) equality symbol: the symbol =;
(v) logical operators: \neg (negation), \wedge (conjunction);
(vi) existential quantifier symbol: \exists ("there exists");
(vii) punctuation symbols: e.g. () , [].

Predicate and constant symbols are often called extralogical symbols; variables and constants are collectively known as terms: we shall use symbols t, u, possibly with subscripts, to denote arbitrary terms.

Atomic formulas of \mathscr{L} are finite strings of basic symbols of either of the forms $P_{i} t_{1} \ldots t_{\lambda(i)}$ or $t=u$, where $t_{1}, \ldots, t_{\lambda(i)}, t, u$ are terms. Formulas of \mathscr{L} (or \mathscr{L}-formulas) are finite strings of basic symbols defined in the following recursive manner:
(a) any atomic formula is a formula;
(b) if φ, ψ are formulas, so also are $\neg \varphi, \varphi \wedge \psi$, and $\exists x \varphi$, where x is any variable v_{n};
(c) a finite string of symbols is a formula exactly when it follows from finitely many applications of (a) and (b) that it is one.

We write $\operatorname{Form}(\mathscr{L})$ for the set of all formulas of \mathscr{L}. The degree (of complexity) of a formula is
defined to be the number of occurrences of logical operators and quantifiers in it.
The symbols \vee (disjunction), \rightarrow (implication) and \forall (universal quantifier) are introduced as abbreviations:

$$
\begin{gathered}
\varphi \vee \psi \text { for } \neg(\neg \varphi \wedge \neg \psi) \\
\varphi \rightarrow \psi \text { for } \neg \varphi \vee \psi \\
\varphi \leftrightarrow \psi \text { for }(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi) \\
\forall x \varphi \text { for } \neg \exists x \neg \varphi .
\end{gathered}
$$

We also write $\bigwedge_{i=1}^{n} \varphi_{i}$ for $\varphi_{1} \wedge \ldots \wedge \varphi_{n}$.
It will be assumed that the notions of free and bound occurrence of a variable in a formula are understood. We write $\varphi\left(v_{0}, \ldots, v_{n}\right)$ to indicate that the free variables of φ are among v_{0}, \ldots, v_{n}. We also write $\varphi(x / t)$, or simply $\varphi(t)$, for the result of substituting t at each free occurrence of x in φ. More generally, we write $\varphi\left(t_{0}, \ldots, t_{n}\right)$ for the result of substituting t_{i} at each occurrence of v_{i}, for $i=0, \ldots, n$, in $\varphi\left(v_{0}, \ldots, v_{n}\right)$. An \mathscr{L}-sentence is an \mathscr{L}-formula without free variables. We write $\operatorname{Sent}(\mathscr{L})$ for the set of all \mathscr{L}-sentences.

The cardinality $\|\mathscr{L}\|$ of \mathscr{L} is defined to be the cardinality of its set of basic symbols.

Lemma. $\|\mathscr{L}\|=|\operatorname{Form}(\mathscr{L})|$.
Proof. Let $\|\mathscr{L}\|=\kappa$. Since κ is infinite and each formula is a finite string of symbols, $\mid \operatorname{Form}(\mathscr{L}) \leq \kappa$. The fact that κ is infinite also implies that either the set of terms or the set of predicate symbols of \mathscr{L} (or both) must have cardinality κ. In either case the set of atomic formulas of the form $P_{i} t \ldots t$ has cardinality κ, so that $|\operatorname{Form}(\mathscr{D})| \geq \kappa$. The Lemma follows.

For $\Sigma \subseteq \operatorname{Sent}(\mathscr{D})$ we define \mathscr{E} to be the language whose extralogical symbols are precisely those occurring in at least one sentence of Σ.

Lemma. $\left\|\mathscr{L}_{\Sigma}\right\|=\max \left(\aleph_{0},|\Sigma|\right)$.
Proof. If Σ is finite, evidently $\left\|\mathscr{L}_{\Sigma}\right\|=\aleph_{0}$. Now suppose that $|\Sigma|=\kappa \geq \aleph_{0}$. We have $|\Sigma| \leq$ $\operatorname{Form}\left(\mathscr{L}_{\Sigma}\right) \mid=\left\|\mathscr{L}_{\Sigma}\right\|$ by the previous lemma. For each $\sigma \in \Sigma$ let $S(\sigma)$ be the set of ($\mathscr{L}_{\Sigma-}$) symbols occurring in σ : then $S(\sigma)$ is finite. Also the set K of terms of \mathscr{L}_{Σ} is included in the union of the sets $S(\sigma)$ for $\sigma \in \Sigma$, so that

$$
|K| \leq \|\{S(\sigma): \sigma \in \Sigma\}\left|\leq \sum_{\sigma \in \Sigma}\right| S(\sigma)\left|\leq|\Sigma| \cdot \aleph_{0}=|\Sigma| .\right.
$$

Thus $\left\|\mathscr{L}_{\Sigma}\right\| \leq|K|+\aleph_{0}+\aleph_{0} \leq|\Sigma|$, and hence $\left\|\mathscr{L}_{\Sigma}\right\|=|\Sigma|$ as required.

2. Satisfaction, validity, and models.

If \mathscr{L} is a first-order language, a structure having the same type as that of \mathscr{L} is called an \mathscr{L} -
structure. Let $\mathfrak{A}=\left(A,\left\{R_{i}: i \in I\right\},\left\{e_{j}: j \in J\right\}\right)$ be an \mathscr{L}-structure, where \mathscr{L} has type (λ, J), and let $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots\right)$ be a countable sequence of elements of A (such a sequence will be referred to henceforth as an A-sequence). For any predicate symbol or term of \mathscr{L}, we define its interpretation under ($\mathfrak{A}, \mathbf{a})$ as follows:

$$
P_{i}^{(2, a)}=R_{i} \quad c_{j}^{(22, a)}=e_{j} \quad v_{n}^{(2, a)}=a_{n} .
$$

Since $P_{i}^{(\mathscr{2}, a)}$ and $c_{j}^{(\mathfrak{2}, a)}$ depend only on \mathfrak{A}, we usually just write $P_{i}^{\mathfrak{A}}$ and $c_{j}^{\mathfrak{A}}$ for these and call them the interpretations of P_{i} and c_{j}, respectively, in \mathfrak{A}.

For $n \in \omega, b \in A$ we define

$$
[n \mid b] \boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}, b, a_{n+1}, \ldots\right) .
$$

For $\varphi \in \operatorname{Form}(\mathscr{L})$ we define the relation \boldsymbol{a} satisfies φ in \mathfrak{Q}, written

$$
\mathfrak{U} \vDash_{a} \varphi,
$$

recursively on the degree of φ as follows:

1) for terms t, u,

$$
\mathfrak{A} \vDash_{a} t=u \Leftrightarrow t^{(2, a)}=u^{(\mathscr{2}, a)} ;
$$

2) for terms $t_{1}, \ldots, t_{\lambda(i)}$,

$$
\mathfrak{A} \vDash_{a} P_{i} t_{1} \ldots t_{\lambda(i)} \Leftrightarrow R_{i}\left(t_{1}^{(2,2, a)}, \ldots, t \lambda_{\lambda(i)}^{(2, a)}\right) ;
$$

3) $\mathfrak{A} \vDash_{a} \neg \varphi \Leftrightarrow \operatorname{not} \mathfrak{A} \vDash_{a} \varphi$;
4) $\mathfrak{A} \vDash_{a} \varphi \wedge \psi \Leftrightarrow \mathfrak{A} \vDash_{a} \varphi$ and $\mathfrak{A} \vDash_{a} \psi$,
5) $\mathfrak{A} \vDash_{a} \exists v_{n} \varphi \Leftrightarrow$ for some $b \in A, \mathcal{A} \vDash_{[n \mid b] \boldsymbol{a}} \varphi$.

The following facts are then easily established:
(a) $\mathfrak{Z} \vDash_{\boldsymbol{a}} \forall v_{n} \varphi \Leftrightarrow$ for all $b \in A, \mathcal{U} \vDash_{[n \mid b] \boldsymbol{a}} \varphi$;
(b) suppose that $\boldsymbol{a}, \boldsymbol{b}$ are A-sequences such that $a_{n}=b_{n}$ whenever v_{n} occurs free in φ.

Then

$$
\mathfrak{U} \vDash_{a} \varphi \Leftrightarrow \mathfrak{U} \vDash_{b} \varphi,
$$

In view of fact (b), the truth of $\mathfrak{A} \vDash_{a} \varphi$ depends only on the interpretations under (\mathcal{U}, a) of the free variables of φ, that is, if these are among v_{0}, \ldots, v_{n}, only on a_{0}, \ldots, a_{n}. Accordingly, under these conditions we shall often write

$$
\mathfrak{A} \vDash_{a} \varphi\left[a_{0}, \ldots, a_{n}\right] \text { for } \mathscr{A} \vDash_{a} \varphi .
$$

We say that a formula φ is valid in \mathfrak{A} if $\mathfrak{A} \vDash_{\boldsymbol{a}} \varphi$ for every A-sequence \boldsymbol{a} and satisfiable in \mathfrak{A} if $\mathfrak{Z} \vDash_{\boldsymbol{a}} \varphi$ for some A-sequence \boldsymbol{a}. It follows from (b) above that a sentence σ is satisfiable in a given structure iff it is valid there. If σ is valid in \mathfrak{A} we write

$$
\mathfrak{A} \vDash_{a} \varphi
$$

and say that \mathfrak{A} is a model of σ, or that σ holds in \mathfrak{A}. If $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$, we say that \mathfrak{A} is a model of Σ, and write

$$
\mathfrak{A} \vDash \Sigma,
$$

if \mathfrak{A} is a model of each member of Σ. If $\varphi \in \operatorname{Form}(\mathscr{L})$, we say that Σ logically entails φ, and write

$$
\Sigma \vDash \varphi,
$$

if φ is valid in every model of Σ. In particular, we write

$$
\vDash \varphi
$$

for $\varnothing \vDash \varphi$; a formula φ satisfying this condition is then valid in every (\mathscr{L}) structure and is called universally valid.

Let \mathscr{L} * be a language which is an extension of \mathscr{L}, i.e. obtained from \mathscr{L} by adding a set $\left\{P_{i}: i \in I^{*}\right\}$ of new predicate symbols and a set $\left\{c_{j}: j \in J^{*}\right\}$ of new constant symbols. Given an \mathscr{L}^{*}-structure

$$
\mathfrak{A}^{*}=\left(A,\left\{R_{i}: i \in I \cup I^{*}\right\},\left\{e_{j}: j \in J \cup J^{*}\right\}\right),
$$

the \mathscr{L}-structure

$$
\mathfrak{A}=\left(A,\left\{R_{i}: i \in I\right\},\left\{e_{j}: j \in J\right\}\right)
$$

is called the \mathscr{L}-reduction of \mathfrak{U}^{*}. Analogously, \mathfrak{Z}^{*} is called an \mathscr{L}^{*}-expansion of \mathfrak{A}. Notice that, while an \mathscr{L}^{*}-structure always has a unique \mathscr{L}-reduction, an \mathscr{L}-structure has in general more than one \mathscr{L}^{*}-expansion. We write $\mathfrak{I}^{*} \mid \mathscr{L}$ for the \mathscr{L}-reduction of \mathfrak{Q}^{*}. It is important to keep in mind the fact that expanding or reducing has no effect on the domain of a structure; these operations merely add or subtract relations and designated elements.

The following lemmas are routine. The first is proved by a straightforward induction on the degree of complexity of formulas, the second follows from the definition of \vDash.

Expansion lemma. Let $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$, let \mathscr{L}^{*} be any extension of \mathscr{L}, let \mathfrak{A} be any \mathscr{L} structure, and let \mathfrak{A}^{*} be any \mathscr{L}^{*}-expansion of \mathscr{A}. Then

$$
\mathfrak{A} \vDash \Sigma \Leftrightarrow \mathfrak{A}^{*} \vDash \Sigma .
$$

Constants lemma. Let \mathfrak{A} be an \mathscr{L}-structure, let $\varphi\left(v_{0}, \ldots, v_{n}\right) \in \operatorname{Form}(\mathscr{L})$, and let $\quad c_{0}, \ldots$, c_{n} be constant symbols of \mathscr{L}. Then

$$
\mathfrak{A} \vDash \varphi\left(c_{0}, \ldots, c_{n}\right) \Leftrightarrow \mathfrak{A} \vDash \varphi\left[c_{0}^{\mathfrak{A}}, \ldots, c_{n}^{\mathfrak{\mathscr { L }}}\right] .
$$

3. Review of first-order predicate logic.

Let \mathscr{L} be a first-order language of type (λ, J). We specify axioms and rules of inference for \mathscr{L} as follows. As axioms we take

1) all instances of propositional tautologies;
2) equality axioms:

$$
\begin{aligned}
& t=t \quad t=u \rightarrow u=t \quad t=u \wedge u=v \rightarrow t=v \\
& \left(t_{1}=u_{1} \wedge \ldots \wedge t_{\lambda(i)}=u \lambda(i)\right) \rightarrow\left[P_{i} t_{1} \ldots t_{\lambda(i)} \rightarrow P_{i} u_{1 \ldots} \ldots \lambda_{\lambda(i)}\right]
\end{aligned}
$$

3) all formulas of the form

$$
\forall x \varphi(x) \rightarrow \varphi(t) \quad \varphi(t) \rightarrow \exists x \varphi(x)
$$

where, if t is a variable, it does not occur bound in φ.
The rules of inference of \mathscr{L} are:

1) modus ponens:

$$
\underbrace{\varphi \quad \varphi \rightarrow \psi}_{w}
$$

2) quantifier rules: if x is not free in φ,

$$
\begin{array}{cc}
\varphi \rightarrow \psi(x) \\
\varphi \rightarrow \forall x \varphi(x) & \Psi(x) \rightarrow \varphi \\
\exists x \psi(x) \rightarrow \varphi
\end{array}
$$

A proof in \mathscr{L} of φ from a set $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$ is a finite sequence $\psi_{1}, \ldots, \psi_{n}$ of \mathscr{L}-formulas, with $\psi_{n}=\varphi$, each member of which is either an axiom, a member of Σ, or else follows from previous ψ_{i} by one of the rules of inference. We say that φ is provable from Σ, and write

$$
\Sigma \vdash \varphi
$$

if there is a proof of φ from $\Sigma . \Sigma$ is said to be consistent (in \mathscr{L}) if for no \mathscr{L}-formula φ do we have $\Sigma \vdash \varphi \wedge \neg \varphi$. If $\varnothing \vdash \varphi$, we write $\vdash \varphi$ and say that φ is a theorem of \mathscr{L}.

We now list a number of basic results concerning these notions. Throughout, Σ denotes an arbitrary set of \mathscr{L}-sentences.

Quantifier lemma. If x does not occur free in φ, then

$$
\Sigma \vdash \exists x(\varphi \wedge \psi) \leftrightarrow(\varphi \wedge \exists x \psi) \quad \Sigma \vdash \exists x(\varphi \rightarrow \psi) \leftrightarrow(\varphi \rightarrow \exists x \psi) .
$$

Deduction theorem. If $\sigma \in \operatorname{Sent}(\mathscr{L})$, then for any formula φ,

$$
\Sigma \cup\{\sigma\} \vdash \varphi \Leftrightarrow \Sigma \vdash \sigma \rightarrow \varphi .
$$

Finiteness theorem. If $\Sigma \vdash \varphi$, then $\Sigma_{0} \vdash \varphi$ for some finite subset Σ_{0} of Σ.

Soundness theorem. If $\Sigma \vdash \varphi$, then $\Sigma \vDash \varphi$.

Consistency lemma. (i) Σ is consistent iff $\Sigma \nvdash \varphi$ not for some \mathscr{L}-formula φ. (ii) Σ is consistent iff every finite subset of Σ is so. (iii) If $\sigma \in \operatorname{Sent}(\mathscr{D}), \Sigma \cup\{\sigma\}$ is consistent iff $\Sigma \nvdash \neg \sigma$.

Generalization lemma. If $\varphi\left(v_{0}, \ldots, v_{n}\right) \in \operatorname{Form}(\mathscr{L})$, then

$$
\Sigma \vdash \varphi \Rightarrow \Sigma \vdash \forall v_{0} \ldots \forall v_{n} \varphi .
$$

4. The completeness and model existence theorems and some of their consequences.

Let \mathscr{L} be a first-order language of type (λ, J). We make the following definitions.

1. An extension \mathscr{L}^{*} of \mathscr{L} is called a simple extension of \mathscr{L} if it is obtained by adding just new constant symbols.
2. Let $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$ and let \mathscr{L}^{*} be a simple extension of \mathscr{L}. A set $\Sigma^{*} \subseteq \operatorname{Sent}\left(\mathscr{L}^{*}\right)$ is called an \mathscr{L}-saturated extension of Σ in \mathscr{L}^{*} if $\Sigma \subseteq \Sigma^{*}$ and, for any \mathscr{L}-formula φ with at most one free variable x, there is a constant symbol c of \mathscr{L}^{*} such that $\Sigma^{*} \vdash \exists x \varphi(x) \rightarrow \varphi(c)$.
3. A set $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$ is saturated if for any \mathscr{L}-formula φ with at most one free variable x, there is a constant c of \mathscr{L} for which

$$
\Sigma \vdash \exists x \varphi(x) \rightarrow \varphi(c)
$$

If Σ is saturated, then clearly:

$$
\Sigma \vdash \exists x \varphi(x) \Leftrightarrow \Sigma \vdash \varphi(c) \text { for some constant } c \text { of } \mathscr{L} \text {. }
$$

Notice also that if some set of \mathscr{L}-sentences is saturated, then \mathscr{L} contains at least one constant symbol.

Lemma 1. Suppose that $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$ is consistent. Then there is a consistent \mathscr{L}-saturated extension Σ^{*} in a simple extension \mathscr{L}^{*} of \mathscr{L} for which $\|\mathscr{L} *\|=\|\mathscr{L}\|$.

Proof. Let F be the set of \mathscr{L}-formulas with at most one free variable (which we shall denote by x). For each $\varphi \in F$ introduce a new constant symbol c_{φ} in such a way that, if φ and ψ are distinct formulas, then c_{φ} and c_{ψ} are distinct constants. In this way we obtain a simple extension \mathscr{L}^{*} of \mathscr{L}. clearly $\left\|\mathscr{L}^{*}\right\|=\|\mathscr{L}\|$.

Now define

$$
\Sigma^{*}=\Sigma \cup\left\{\exists x \varphi(x) \rightarrow \varphi\left(c_{\varphi}\right): \varphi \in F\right\} .
$$

Clearly Σ^{*} is an \mathscr{L}-saturated extension of Σ in \mathscr{L}^{*}. It remains to show that Σ^{*} is consistent.
Suppose, on the contrary, that Σ^{*} is inconsistent. Then by the consistency lemma there is a finite subset $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ of F such that, writing c_{i} for $c_{\varphi_{i}}, \Sigma \cup\left\{\exists x \varphi_{i} \rightarrow \varphi_{i}\left(c_{i}\right): i=1, \ldots, n\right\}$ is inconsistent. It follows from the consistency lemma that

$$
\begin{equation*}
\Sigma \vdash \neg \bigwedge_{i=1}^{n}\left[\exists x \varphi_{i} \rightarrow \varphi_{i}\left(c_{i}\right)\right] \tag{*}
\end{equation*}
$$

Now choose n distinct variables x_{1}, \ldots, x_{n} which do not occur in the proof from Σ of the sentence on the right hand side of the turnstile in $\left({ }^{*}\right)$ - and so in particular are different from x. If in this proof we change c_{i} at each of its occurrences to x_{i} for $i=1, \ldots, n$, we obtain a proof of the formula $\neg \bigwedge_{i=1}^{n}\left[\exists x \varphi_{i} \rightarrow \varphi_{i}\left(x_{i}\right)\right]$ from Σ, whence

$$
\Sigma \vdash \neg \bigwedge_{i=1}^{n}\left[\exists x \varphi_{i} \rightarrow \varphi_{i}\left(x_{i}\right)\right] .
$$

By the generalization lemma,

$$
\Sigma \vdash \forall v_{1} \ldots \forall v_{n} \neg \bigwedge_{i=1}^{n}\left[\exists x \varphi_{i} \rightarrow \varphi_{i}\left(x_{i}\right)\right]
$$

so that
(**)

$$
\Sigma \vdash \neg \exists v_{1} \ldots \exists v_{n} \bigwedge_{i=1}^{n}\left[\exists x \varphi_{i} \rightarrow \varphi_{i}\left(x_{i}\right)\right] .
$$

Now the x_{i} have been chosen in such a way that, if $i \neq j$, then x_{i} does not occur in $\varphi_{j}\left(x_{i}\right)$. So it follows from the quantifier lemma that the existential quantifiers on the right hand side of the turnstile in $\left({ }^{* *}\right)$ may be moved across the conjunctions and implications to yield

$$
\Sigma \vdash \neg \bigwedge_{i=1}^{n}\left[\exists x \varphi_{i} \rightarrow \exists x_{i} \varphi_{i}\left(x_{i}\right)\right]
$$

But since, clearly, $\vdash \exists x \varphi_{i} \rightarrow \exists x_{i} \varphi_{i}\left(x_{i}\right)$ for each i, it follows that Σ is inconsistent, contradicting assumption. Accordingly Σ^{*} is consistent and the lemma is proved.

A set $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$ is said to be complete if, for any $\sigma \in \operatorname{Sent}(\mathscr{L})$, we have $\Sigma \vdash \sigma$ or $\Sigma \vdash \neg \sigma$.

Lemma 2. Suppose that $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$ is consistent. Then there is a complete consistent set $\Sigma^{\prime} \subseteq \operatorname{Sent}(\mathscr{D})$ such that $\Sigma \subseteq \Sigma^{\prime}$.

Proof. The family of consistent sets of sentences of \mathscr{L} containing Σ, ordered by inclusion, is easily seen to be closed under unions of chains, and so by Zorn's lemma has a maximal member Σ^{\prime}. If $\sigma \in \operatorname{Sent}(\mathscr{L})$ and $\Sigma^{\prime} \nvdash \sigma$, then $\Sigma^{\prime} \cup\{\neg \sigma\}$ is consistent by the consistency lemma. Since Σ^{\prime} is maximal consistent, we must have $\Sigma^{\prime} \cup\{\neg \sigma\}=\Sigma^{\prime}$, so a fortiori $\Sigma^{\prime} \vdash \neg \sigma$. Thus Σ^{\prime} is complete and meets the requirements of the lemma.

Theorem 1. Suppose that $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$ is consistent. Then there is a simple extension \mathscr{L}^{+} of \mathscr{L} such that $\left\|\mathscr{L}^{+}\right\|=\|\mathscr{L}\|$ and a complete saturated consistent set $\Sigma^{+} \subseteq \operatorname{Sent}\left(\mathscr{L}^{+}\right)$such that $\Sigma \subseteq$ Σ^{+}.

Proof. We construct a sequence $\mathscr{L}_{0}, \mathscr{L}_{1}, \ldots$ of simple extensions of \mathscr{L} and a sequence Σ_{0}, Σ_{1}, \ldots of consistent sets of sentences as follows. We begin by putting $\mathscr{L}=\mathscr{L}$ and $\Sigma_{0}=\Sigma$. Suppose now that the consistent set $\Sigma_{n} \subseteq \operatorname{Sent}\left(\mathscr{L}_{n}\right)$ has been defined. By Lemma 1 there is a simple extension $\mathscr{L}_{n}{ }^{*}$ such that $\left\|\mathscr{L}_{n} *\right\|=\left\|\mathscr{L}_{n}\right\|$ and a consistent \mathscr{L}_{n}-saturated extension $\Sigma_{n} *$ of Σ_{n} in $\mathscr{L}_{n}{ }^{*}$ And by Lemma 2, there is a complete consistent extension $\Sigma_{n}{ }^{* \prime}$ of Σ_{n} in $\mathscr{L}_{n}{ }^{*}$: clearly $\Sigma_{n}{ }^{* \prime}$ is $\mathscr{L}_{n^{-}}$ saturated also. We set $\mathscr{L}_{n+1}=\mathscr{L}_{n}^{*}, \Sigma_{n+1}=\Sigma_{n}{ }^{* \prime}$. Then Σ_{n+1} is a complete, consistent \mathscr{L}_{n}-saturated extension of Σ_{n} in \mathscr{L}_{n+1}.

Now we define \mathscr{L}^{+}to be the union of all the languages \mathscr{L}_{n} and Σ^{+}to be the union of all the sets Σ_{n}. Since $\left\|\mathscr{L}_{n}\right\|=\left\|\mathscr{L}_{0}\right\|=\|\mathscr{L}\|$ for all n, it follows that $\left\|\mathscr{L}^{+}\right\|=\|\mathscr{L}\|$. Also, $\Sigma^{+} \subseteq \operatorname{Sent}\left(\mathscr{L}^{+}\right), \Sigma \subseteq \Sigma^{+}$and Σ^{+}, as the union of the chain $\Sigma_{0} \subseteq \Sigma_{1} \subseteq \ldots$ of consistent sets, is itself consistent. For if Σ^{+}is inconsistent, let Φ be the finite set of formulas of \mathscr{L}^{+}in a proof \mathscr{P} of a formula of the form $\varphi \wedge \neg \varphi$ from Σ^{+}. Then $\Phi \subseteq \operatorname{Form}\left(\mathscr{L}_{m}\right)$ for some m, and $\Sigma^{+} \cap \Phi \subseteq \Sigma_{n}$ for some n. Writing q for the larger of m, n, \mathscr{P} is then a proof of $\varphi \wedge \neg \varphi$ from Σ_{q} in \mathscr{L}_{q}, contradicting the consistency of Σ_{q}.

Moreover, Σ^{+}is complete. for, if $\sigma \in \operatorname{Sent}\left(\mathscr{L}^{+}\right)$, then $\sigma \in \operatorname{Sent}\left(\mathscr{L}_{n}\right)$, for some n, and so, since Σ_{n} is complete, either $\Sigma_{n} \vdash \sigma$ or $\Sigma_{n} \vdash \neg \sigma$ Since $\Sigma_{n} \subseteq \Sigma^{+}$, it follows that $\Sigma^{+} \vdash \sigma$ or $\Sigma^{+} \vdash \neg \sigma$, proving the claim.

Finally, Σ^{+}is saturated. For let $\varphi(x)$ be a formula of \mathscr{L}^{+}with one free variable x. Then $\varphi(x) \in \operatorname{Form}\left(\mathscr{L}_{n}\right)$ for some n. Since Σ_{n+1} is an \mathscr{L}_{n}-saturated extension of Σ_{n} in \mathscr{L}_{n+1}, there is a
constant symbol c of \mathscr{L}_{n+1} for which the sentence $\exists x \varphi(x) \rightarrow \varphi(c)$ is provable from Σ_{n+1}, and hence also, since $\Sigma_{n+1} \subseteq \Sigma^{+}$, from Σ^{+}. Therefore the latter is saturated as claimed.

Now let Σ be a fixed consistent set of sentences of \mathscr{L}. Let C be the set of constant symbols of \mathscr{L}. we shall assume that this set is nonempty. We define the relation \approx on C by

$$
c \approx d \Leftrightarrow \Sigma \vdash c=d .
$$

It is easy to verify, using the equality axioms in \mathscr{L}, that \approx is an equivalence relation. For each c $\in C$ write \tilde{c} for the equivalence class of c with respect to \approx; thus

$$
\tilde{c}=\{d \in C: \Sigma \vdash c=d\} .
$$

Let

$$
C=\{\tilde{c}: c \in C\}
$$

be the set of all such equivalence classes. Corresponding to each predicate symbol P_{i} of \mathscr{L} define the $\lambda(i)$ - ary relation R_{i} on C by

$$
R_{i}\left(c_{1}, \ldots, c_{\lambda(i)}\right) \Leftrightarrow \Sigma \vdash P_{i} c_{1} \ldots c_{\lambda(i)} .
$$

We can now frame the
Definition. The canonical structure determined by Σ is the \mathscr{L}-structure

$$
\mathcal{N}_{\Sigma}=\left(C,\left\{R_{i}: i \in I\right\},\left\{c_{j}: j \in J\right\}\right) .
$$

Observe that $\left\|\mathfrak{U}_{\Sigma}\right\| \leq|C|$.
Theorem 2. Suppose that Σ is complete, consistent and saturated. Then \mathcal{V}_{Σ} is a model of Σ.

Proof. We show that, for any \mathscr{L}-sentence σ,

$$
\begin{equation*}
\mathfrak{A}_{\Sigma} \vDash \sigma \Leftrightarrow \Sigma \vdash \sigma . \tag{*}
\end{equation*}
$$

That this holds for atomic sentences is an immediate consequence of the definition of \mathfrak{Q}_{Σ}. We now argue by induction on the degree of complexity of the sentence σ.

Suppose then that $n>0$ and that $(*)$ holds for all sentences of degree $<n$. Let σ have degree n; then σ is either a conjunction or a negation of sentences of degree $<n$, or an existentialization of a formula of degree $<n$. Verifying $\left({ }^{*}\right)$ in the first two cases is routine (using the completeness of Σ in the negation case) and we omit the details. In the last case, σ is of the form $\exists x \varphi(x)$, where φ has degree $<n$. We then have

$$
\begin{aligned}
\mathfrak{A}_{\Sigma} \vDash \sigma & \Leftrightarrow \mathfrak{A}_{\Sigma} \vDash \exists x \varphi(x) \\
& \Leftrightarrow \mathfrak{A}_{\Sigma} \vDash \varphi[\tilde{c}] \text { for some } c \in C \\
& \Leftrightarrow \mathfrak{A}_{\Sigma} \vDash \varphi(c) \text { for some } c \in C \\
& \Leftrightarrow \Sigma \vdash \varphi(c) \text { for some } c \in C \\
& \Leftrightarrow \Sigma \vdash \exists x \varphi(x) \\
& \Leftrightarrow \Sigma \vdash \sigma .
\end{aligned}
$$

Therefore σ satisfies $\left(^{*}\right)$ and the proof is complete.

These results have the following important corollaries.
Model Existence Theorem (Gödel-Henkin). Any consistent set Σ of first-order sentences has a model of cardinality at most $\max \left(\aleph_{0},|\Sigma|\right)$.

Proof. Let $\kappa=\max \left(\aleph_{0},|\Sigma|\right)$; then $\kappa=\left\|\mathscr{L}_{\Sigma}\right\|$ by the lemma on p. 3. By Theorem 1 we can extend Σ to a complete consistent saturated set of sentences Φ in a simple extension \mathscr{L}^{\prime} of \mathscr{L}_{Σ} such that $\left\|\mathscr{L}^{\prime}\right\|=\|\mathscr{L} \Sigma\|=\kappa$. By Theorem 2, the canonical structure \mathcal{U}_{Φ} is a model of Φ and hence also of Σ. The expansion theorem implies that the $\mathscr{L}_{\Sigma \text {-reduction }} \mathscr{Z}^{\prime}$ of \mathfrak{U}_{Φ} is a model of Σ, and that any \mathscr{L}-expansion \mathfrak{A} of $\mathfrak{\mathscr { }}$ is likewise. Moreover, if C is the set of constant symbols of \mathscr{L}^{\prime}, then $\|\mathfrak{U}\|=\left\|\mathfrak{U}_{\Phi}\right\| \leq|C| \leq\left\|\mathscr{L}_{\Sigma}\right\|=\kappa$. The proof is complete.

Completeness Theorem. If $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$ and $\sigma \in \operatorname{Sent}(\mathscr{L})$, then

$$
\Sigma \vdash \sigma \Rightarrow \Sigma \vDash \sigma .
$$

Proof. If $\Sigma \nvdash \sigma$, then, by the consistency theorem, $\Sigma \cup\{\neg \sigma\}$ is consistent and so, by the model existence theorem, has a model \mathfrak{A}. Since $\mathfrak{\mathscr { A }}$ is a model of Σ but not of σ, it follows that $\Sigma \nvdash \sigma$.

Compactness Theorem. A set of first-order sentences Σ has a model iff every finite subset of Σ has a model.

Proof. One way round is trivial. If, conversely, every finite subset of Σ has a model, then every finite subset of Σ is consistent and so Σ itself is consistent by the consistency lemma. Therefore Σ has a model by the model existence theorem.

Invariance Theorem. Provability and consistency are invariant with respect to language. That is, if $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$ and $\sigma \in \operatorname{Sent}(\mathscr{L})$, and \mathscr{L}^{*} is an extension of \mathscr{L}, then
(a) $\Sigma \vdash \sigma$ in $\mathscr{L} \Leftrightarrow \Sigma \vdash \sigma$ in \mathscr{L}^{*}
(b) Σ is consistent in $\mathscr{L} \Leftrightarrow \Sigma$ is consistent in \mathscr{L}^{*}.

Proof. We prove (a); (b) is an immediate consequence. Clearly $\Sigma \vdash \sigma$ in $\mathscr{L} \Leftrightarrow \Sigma \vdash \sigma$ in \mathscr{L}^{*}.Conversely, if $\Sigma \vdash \sigma$ in \mathscr{L}^{*}, then $\Sigma \vDash \sigma$ by the completeness theorem, that is, every \mathscr{L}^{*}-structure which is a model of Σ is also a model of σ. If \mathfrak{A} is any \mathscr{L}-structure which is a model of Σ, it can be expanded to an \mathscr{L}^{*}-structure \mathfrak{A}^{*} which, by the expansion lemma, is also a model of \mathscr{L}. Then \mathscr{A}^{*} is a model of σ, and so, applying the expansion lemma again, \mathfrak{U}, as the \mathscr{L} reduction of \mathscr{A}^{*}, is a model of σ. Therefore, by the completeness theorem, $\Sigma \vdash \sigma$ in \mathscr{L}.

Löwenheim-Skolem Theorem. If a set Σ of first-order sentences has an infinite model, it has a model of any cardinality $\kappa \geq \max \left(\aleph_{0},|\Sigma|\right)$.

Proof. For simplicity write \mathscr{L} for \mathscr{L}. Let \mathscr{L}^{*} be the simple extension of \mathscr{L} obtained by adding a set $\left\{d_{j}: j \in J\right\}$ of new constant symbols, where $|J|=\kappa$. Let

$$
\Sigma^{*}=\Sigma \cup\left\{\neg\left(d_{j}=d_{k}\right): j, k \in J \& j \neq k\right\}
$$

If Σ_{0} is any finite subset of Σ^{*}, only finitely many sentences of the form $\neg\left(d_{j}=d_{k}\right)$ occur in Σ_{0}; let $d_{j 1}, \ldots, d_{j n}$ be a list of all constant symbols occurring in such sentences in Σ_{0}. If now \mathfrak{A} is an infinite model of Σ (which we may take to be an \mathscr{L}-structure), choose n distinct elements a_{1}, \ldots, a_{n} of its domain A. Let \mathfrak{Z}^{*} be the \mathscr{L}^{*}-expansion of \mathfrak{A} in which the interpretation of $d_{j p}$ is a_{p} for $p=1, \ldots, n$ and that of d_{j} is an arbitrary element of A for $j \notin\left\{j_{1}, \ldots, j_{n}\right\}$. Clearly \mathfrak{A}^{*} is then a model of Σ_{0}.

It follows that every finite subset of Σ^{*} has a model. Thus every finite subset of Σ^{*} is consistent and so Σ^{*} is itself consistent. Clearly $\left|\Sigma^{*}\right|=\kappa$, so the model existence theorem implies that Σ^{*} has a model of cardinality $\leq \kappa$. Since the interpretations of the d_{j} in any model of Σ^{*} must be distinct, any such model must have cardinality $\geq \kappa$. So Σ^{*} has a model of cardinality κ; its \mathscr{L}-reduction is a model of Σ of cardinality κ.

Overspill Theorem. If a set of first-order sentences has arbitrarily large finite models, it has an infinite model.

Proof. For each $n \in \omega$ let σ_{n} be a sentence (formulable in any first-order language with equality) asserting that there at least n individuals. Given a set Σ of first-order sentences, let $\Sigma^{*}=$ $\Sigma \cup\left\{\sigma_{n}: n \in \omega\right\}$. If Σ has arbitrarily large finite models, then each finite subset of Σ^{*} has a model, so by the compactness theorem Σ^{*} has a model, which must evidently be an infinite model of Σ.

5. Relations between structures.

Let $\mathfrak{A}=\left(A,\left\{R_{i}: i \in I\right\},\left\{e_{j}: j \in J\right\}\right)$ and $\mathfrak{B}=\left(B,\left\{S_{i}: i \in I\right\},\left\{d_{j}: j \in J\right\}\right)$ be structures of the same type (λ, J). We say that \mathfrak{A} is a substructure of \mathfrak{B}, written $\mathfrak{A} \subseteq \mathfrak{B}$, if $A \subseteq B, e_{j}=d_{j}$ for all $j \in J$, and $R_{i}=S_{i} \cap A^{\lambda(i)}$ for all $i \in I$. If C is a nonempty subset of B containing all the designated elements of \mathfrak{B}, we define the substructure $\mathfrak{B} \mid C$ of \mathfrak{B} by

$$
\mathfrak{B} \mid C=\left(C,\left\{S_{i} \cap C^{\lambda(i)}: i \in I\right\},\left\{d_{j}: j \in J\right\}\right) .
$$

An embedding of a structure \mathfrak{A} into a structure \mathfrak{B} is an injective map $f: A \rightarrow B$ such that $f\left(e_{j}\right)=d_{j}$ for all $j \in J$, and for all $i \in I$ and $a_{l}, \ldots, a_{\lambda(i)} \in A$, we have

$$
R_{i}\left(a_{1}, \ldots, a_{\lambda(i)}\right) \Leftrightarrow S_{i}\left(f a_{1}, \ldots, f a_{\lambda(i)}\right)
$$

If there exists an embedding of \mathfrak{A} into \mathfrak{B}, we say that \mathfrak{A} is embeddable into \mathfrak{B} and write $\mathfrak{A} \sqsubseteq \mathfrak{B}$. If f is an embedding of \mathfrak{A} into \mathfrak{B}, we write $f[\mathfrak{U}]$ for the structure $\mathfrak{B} \mid f[A]$. A surjective embedding is called an isomorphism. If there exists an isomorphism between \mathfrak{A} and \mathfrak{B}, they are said to be isomorphic and we write $\mathfrak{Z} \cong \mathfrak{F}$.

Let \mathscr{L} be the first-order language of type (λ, J). We say that the \mathscr{L} structures \mathfrak{A} and \mathfrak{B} are elementarily equivalent, and write $\mathfrak{A} \equiv \mathfrak{B}$, if $\mathfrak{A} \vDash \sigma \Leftrightarrow \mathfrak{B} \vDash \sigma$ for any \mathscr{L}-sentence σ. It is easily shown that isomorphic structures are elementarily equivalent, but the Löwenheim-Skolem theorem implies that the converse fails.

The \mathscr{L}-structure \mathfrak{A} is said to be an elementary substructure of the \mathscr{L}-structure \mathfrak{B}, and \mathfrak{B} an elementary extension of \mathfrak{A}, if $\mathfrak{A} \subseteq \mathfrak{B}$ and, for any \mathscr{L}-formula $\varphi\left(v_{0}, \ldots, v_{n}\right)$ and any $a_{0}, \ldots, a_{n} \in A$,
we have

$$
\mathfrak{A} \vDash \varphi\left[a_{0}, \ldots, a_{n}\right] \Leftrightarrow \mathscr{B} \vDash \varphi\left[a_{0}, \ldots, a_{n}\right] .
$$

In this situation we write $\mathfrak{A} \prec \mathfrak{B}$. Evidently $\mathfrak{A} \prec \mathfrak{O} \Rightarrow \mathfrak{A} \equiv \mathfrak{B}$, but the converse is easily seen to be false.

An embedding f of \mathfrak{A} into \mathfrak{B} is called an elementary embedding if for any \mathscr{L}-formula $\varphi\left(v_{0}, \ldots, v_{n}\right)$ and any $a_{0}, \ldots, a_{n} \in A$ we have

$$
\mathfrak{A} \vDash \varphi\left[a_{0}, \ldots, a_{n}\right] \Leftrightarrow \mathfrak{B} \vDash\left[f a_{0}, \ldots, f a_{n}\right] .
$$

In this situation we write f : $\mathfrak{A} \prec \mathfrak{B}$. If such an f exists, we write $\mathfrak{A} \precsim \mathfrak{B}$. Clearly $\mathfrak{A} \precsim \mathfrak{B} \Rightarrow$ $\mathfrak{U} \equiv \mathfrak{B}$. It is also easily shown that any isomorphism is an elementary embedding.

Tarski-Vaught Lemma. If \mathfrak{A} and \mathfrak{B} are \mathscr{L}-structures, then $\mathfrak{A} \prec \mathfrak{B}$ iff $\mathfrak{A} \subseteq \mathfrak{B}$ and, for any \mathscr{L}-formula $\varphi\left(v_{0}, \ldots, v_{n}\right)$ and any $a_{0}, \ldots, a_{n-1} \in A$,
(*) if $\mathfrak{Z} \vDash \exists v_{n} \varphi\left[a_{0}, \ldots, a_{n-1}\right]$, then, for some $a \in A, \mathfrak{Z} \vDash \varphi\left[a_{0}, \ldots, a_{n-1}, a\right]$.

Proof. One direction is trivial. Conversely, suppose that $\left({ }^{*}\right)$ holds. We prove by induction on the degree of φ that, for any n, any \mathscr{L}-formula $\varphi\left(v_{0}, \ldots, v_{n}\right)$ and any $a_{0}, \ldots, a_{n} \in A$,

$$
\begin{equation*}
\mathfrak{A} \vDash \varphi\left[a_{0}, \ldots, a_{n}\right] \Leftrightarrow \mathfrak{B} \vDash \varphi\left[a_{0}, \ldots, a_{n}\right] . \tag{**}
\end{equation*}
$$

That $\left({ }^{* *}\right)$ holds for atomic formulas is obvious, as are the induction steps for \neg and \wedge. It remains to show that, if it holds for φ, it also holds for $\exists v_{k} \varphi$. Without loss of generality we may assume that n is greater than the index of every variable (free or bound) occurring in φ, and then, by making a suitable change of variable in φ (i.e., by substituting v_{n} for v_{k}), that $k=n$.

If $\mathfrak{A} \vDash \exists v_{n} \varphi\left[a_{0}, \ldots, a_{n-1}\right]$, then $\mathfrak{A} \vDash \varphi\left[a_{0}, \ldots, a_{n-1}, a\right]$ for some $a \in A$, and it follows from $\left(^{* *}\right.$) for φ that $\mathfrak{B} \vDash \varphi\left[a_{0}, \ldots, a_{n-1}, a\right]$, whence $\mathfrak{B} \vDash \exists v_{n} \varphi\left[a_{0}, \ldots, a_{n-1}\right]$. Conversely, if $\mathfrak{B} \vDash \exists v_{n} \varphi\left[a_{0}, \ldots, a_{n-1}\right]$, then, by $(*), \mathfrak{Z} \vDash \varphi\left[a_{0}, \ldots, a_{n-1}, a\right]$ for some $a \in A$, so that $\mathfrak{A} \vDash \exists v_{n} \varphi\left[a_{0}, \ldots, a_{n-1}\right]$. This completes the induction step and the proof.

Corollary. Write \mathbf{Q} and \mathbb{R} for the sets of rational and real numbers. Then

$$
(\mathbf{Q}, \leq) \prec(\mathbb{R}, \leq) .
$$

Proof. We show that the Tarski-Vaught lemma applies. Suppose that, for a formula $\varphi\left(v_{0}, \ldots, v_{n}\right)$ of the appropriate language, and $a_{0}<\ldots<a_{n-1} \in \mathbf{Q}$, we have $(\mathbb{R}, \leq) \vDash \exists v_{n} \varphi\left[a_{0}, \ldots, a_{n-1}\right]$. Then there is $b \in \mathbb{R}$ such that $(\mathbb{R}, \leq) \vDash \varphi\left[a_{0}, \ldots, a_{n-1}, b\right]$. Say $a_{i}<b<a_{i+1}$ (the cases $b<$ or $>$ all a_{i} being similar). Choose a to be any rational such that $a_{i}<a<a_{i+1}$. It is easy to construct an isomorphism $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f\left(a_{j}\right)=a_{j}$ for $0 \leq j \leq n-1$ and $f(b)=a$. This f is also an elementary embedding. Hence $(\mathbb{R}, \leq) \vDash$ $\varphi\left[f a_{0}, \ldots, f a_{n-1}, b\right]$, i.e. $(\mathbb{R}, \leq) \vDash \varphi\left[a_{0}, \ldots, a_{n-1}, a\right]$. Since $a \in \mathbf{Q}$, the Tarski-Vaught lemma applies to yield the required conclusion.

Given a set X, let \mathscr{L}_{x} be the simple extension of \mathscr{L} obtained by adding a set $\left\{c_{x}: x \in X\right\}$ of
distinct new constant symbols indexed by X. If \mathfrak{A} is an \mathscr{L}-structure and X is a subset of its domain A, we write (\mathfrak{A}, X) for the \mathscr{L}_{X}-expansion of \mathfrak{A} in which the interpretation of each c_{x} is x. If f is a mapping of X into the domain B of an \mathscr{L}-structure \mathfrak{B}, we write $(\mathfrak{B}, f[X])$ for the \mathscr{L}^{-}expansion of \mathfrak{F} in which the interpretation of each c_{x} is $f(x)$.

The diagram of $\mathfrak{A}, \Delta(\mathfrak{A})$, is the set of atomic and negated atomic sentences that hold in (\mathfrak{A}, A). The complete diagram of $\mathfrak{A}, \Gamma(\mathfrak{\vartheta})$, is the set of all sentences of \mathscr{L}_{A} that hold in (\mathfrak{U}, A). The proof of the following lemma is then straightforward.

Diagram lemma. Let \mathfrak{A} and \mathfrak{F} be \mathscr{L}-structures. Then:
(i) $\mathfrak{U} \sqsubseteq \mathfrak{B}$ iff \mathfrak{B} can be expanded to a model of $\Delta(\mathfrak{A})$;
(ii) $\mathfrak{U} \precsim \mathfrak{B}$ iff \mathfrak{B} can be expanded to a model of $\Gamma(\mathfrak{U})$;
(iii) if $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \prec \mathfrak{B}$ iff $(\mathfrak{B}, A) \vDash \Gamma(\mathfrak{\Re})$;
(iv) an embedding f of \mathfrak{A} into \mathfrak{B} is an elementary embedding iff $(\mathfrak{Z}, A) \equiv(\mathfrak{K}, f[A])$.

We now show that infinite structures have elementary substructures and extensions of most cardinalities.

Theorem. Let \mathfrak{A} be an infinite \mathscr{L}-structure.
(i) If $X \subseteq A$, then for any cardinal satisfying $\max (|X|,\|\mathscr{L}\|) \leq \kappa \leq|A|$, there is an elementary substructure \mathfrak{B} of \mathfrak{A} such that $|B|=\kappa$ and $X \subseteq B$.
(ii) \mathscr{U} has an elementary extension of any cardinality $\geq \max (|X|,\|\mathscr{L}\|)$.

Proof. (i) Let < be some fixed well-ordering of A. We define a sequence B_{0}, B_{1}, \ldots of subsets of A recursively as follows. Choose B_{0} to be any subset of A such that $\left|B_{0}\right|=\kappa$ and X $\subseteq B_{0}$. If B_{n} has been defined, put
$B_{n+1}=\left\{b\right.$: for some \mathscr{L}-formula $\varphi\left(v_{0}, \ldots, v_{m}\right)$ and some $b_{0}, \ldots, b_{m-1} \in B_{n}, b$ is the <-least element of A such that $\left.\mathfrak{A} \vDash \varphi\left[b_{0}, \ldots, b_{m-1}, b\right]\right\}$.

It is easy to check that $B_{n} \subseteq B_{n+1}$ and that $\left|B_{n+1}\right|=\kappa$. Now define B to be the union of the B_{n} and $\mathfrak{Z}=\mathfrak{A} \mid B$. Then \mathfrak{Z} is a substructure of \mathfrak{A} of cardinality κ and it is easy to apply the TarskiVaught lemma to conclude that $\mathfrak{B} \prec \mathfrak{U}$.
(ii) Let Γ be the complete diagram of \mathfrak{A}. Then $|\Gamma|=\max (|X|,\|\mathscr{L}\|)$. Since Γ is evidently consistent, the model existence theorem implies that it has a model of any cardinality $\kappa \geq|\Gamma|=$ $\max (|A|,\|\mathscr{L}\|)$. The result now follows from the diagram lemma.

6. Ultraproducts

A filter over a set I is a family \mathscr{F} of subsets of I such that (i) $X, Y \in \mathscr{F} \Leftrightarrow X \cap Y \in \mathscr{F}$, (ii) $\varnothing \notin \mathscr{F}$. It follows immediately from (i) that any filter \mathscr{F} over I satisfies; $X \in \mathscr{F}$ and $X \subseteq Y \in \mathscr{F} \Rightarrow Y \in \mathscr{F}$. An ultrafilter over I is a filter \mathscr{U} over I satisfying the condition: for any $X \in \mathscr{U}$, either $X \in \mathscr{U}$ or $I-X \in \mathscr{U}$. In particular, for any $i \in I, \mathscr{U}_{i}=\{X \subseteq I: i \in X\}$ is an ultrafilter over I called the principal ultrafilter generated by i. It is easily shown that an ultrafilter is precisely a filter that is maximal in the sense that it is included in no filter apart from itself. A straightforward application of Zorn's Lemma shows that a family \mathscr{A} of subsets of I is included in an ultrafilter over I if and only if it has the finite intersection property: that is, for any finite subfamily \mathscr{B} of \mathscr{A} we have $\cap \mathscr{B} \neq \varnothing$.

For ease of exposition we confine our attention throughout this section to structures consisting of a nonempty set and a single binary relation on that set. The appropriate language \mathscr{L} for such structures thus has a single predicate symbol of degree 2 , say P_{0}. The type of these structures, a nd of \mathscr{L}, is then $((0,2), \varnothing)$. It should be clear that everything we do can be extended to arbitrary structures merely by complicating the notation.

Now let I be some arbitrary fixed index set, and for each $i \in I$ let $\mathfrak{\mathscr { A }}_{i}=\left(A_{i}, R_{i}\right)$ be an \mathscr{L} structure. Let ΠA_{i} be the Cartesian product of the sets A_{i} : we use letters $f, g, h, f^{\prime}, g^{\prime}, h^{\prime}$ to denote elements of ΠA_{i}.

Given a family \mathscr{F} of subsets of I, we define the relation $\sim_{\mathscr{F}}$ on ΠA_{i} by

$$
f \sim_{\mathscr{F}} g \Leftrightarrow\{i \in I: f(i)=g(i)\} \in \mathscr{F} .
$$

It is easily shown that, if \mathscr{F} is a filter over I, then $\sim_{\mathscr{F}}$ is an equivalence relation on ΠA_{i}. From here on we shall suppose that \mathscr{F} is a filter over I. For each $f \in \Pi A_{i}$ we write f / \mathscr{F} for the $\sim_{\mathscr{F}}$-equivalence class of f, and we define

$$
\Pi A_{i} / \mathscr{F}=\left\{f / \mathscr{F}: f \in \Pi A_{i}\right\} .
$$

We define the relation R on ΠA_{i} by:

$$
(f, g) \in R \Leftrightarrow\left\{i \in I:(f(i), g(i)) \in R_{i}\right\} \in \mathscr{H} .
$$

It is not difficult to show that R is compatible with $\sim_{\mathscr{F}}$ in the sense that, if $f \sim_{\mathscr{F}} f^{\prime}$ and $g \sim_{\mathscr{F}} g^{\prime}$, then $f R g \Rightarrow f^{\prime} R g^{\prime}$. That being the case, the relation R on ΠA_{i} induces the relation $R_{\mathscr{F}}$ on $\Pi A_{i} / \mathscr{F}$ given by

$$
(f / \mathscr{F}, g / \mathscr{F}) \in R_{\mathscr{F}} \Leftrightarrow f R g .
$$

The \mathscr{L}-structure $\Pi \mathscr{\varkappa}_{i} / \mathscr{F}=\left(\Pi A_{i} / \mathscr{F}, R_{\mathscr{F}}\right)$ is called the reduced product of the family $\left\{\mathscr{\mathscr { H }}_{i}: i \in I\right\}$ over the filter \mathscr{F} if \mathscr{F} is an ultrafilter, the reduced product over \mathscr{F} is called an ultraproduct. If, for each $i \in I, \mathfrak{A}_{i}$ is a fixed structure \mathfrak{A}, the reduced product is denoted by $\mathfrak{A}^{I} / \mathscr{F}$ and is called the reduced power of \mathfrak{A} over \mathscr{F}. When \mathscr{F} is an ultrafilter the reduced power is called an ultrapower.

Observe that if \mathscr{F} is the filter $\{I\}$, the reduced power $\Pi \mathscr{Z}_{i} / \mathscr{F}$ is isomorphic to $\left(\Pi A_{i}, R\right)$, and that, for $k \in I$, the ultraproduct $\Pi \mathscr{A}_{i} / \mathscr{U}_{k}$ is isomorphic to \mathscr{U}_{k}.

If $\boldsymbol{f}=\left(f_{0}, f_{1}, \ldots\right)$ is a sequence of elements of ΠA_{i}, that is, if $\boldsymbol{f} \in\left(\Pi A_{i}\right)^{\omega}$, we write $\boldsymbol{f}(i)$ for the sequence $\left(f_{0}(i), f_{1}(i), \ldots\right) \in A_{i}{ }^{\omega}$ and, if \mathscr{U} is an ultrafilter over $I, \boldsymbol{f} / \mathscr{U}$ for the sequence
$\left(f_{0} / \mathscr{U}, f_{1} / \mathscr{U}, \ldots\right) \in\left(\Pi A_{i} / \mathscr{U}\right)^{\omega}$.
We now prove the fundamental theorem on ultraproducts, viz.,
Los's Theorem. If \mathscr{U} is an ultrafilter over I, φ a formula of \mathscr{L} and f a sequence of elements of ΠA_{i}, then

$$
\begin{equation*}
\Pi \mathfrak{Z}_{i} / \mathscr{U} \vDash_{f / \nmid l} \varphi \Leftrightarrow\left\{i \in I: \mathfrak{\mathscr { A }}_{i} \vDash_{f(i)} \varphi\right\} \in \mathscr{U} . \tag{*}
\end{equation*}
$$

Proof. The proof goes by induction on the complexity of φ. That $\left(^{*}\right)$ holds for atomic φ is a straightforward consequence of the definitions of $\sim_{Q_{U}}$ and $R_{\mathscr{Q}}$. The induction steps for \wedge and \neg follow easily from the defining properties of ultrafilters. Now suppose that $\left(^{*}\right.$) holds for φ (and arbitrary f); we show that it holds for $\exists v_{n} \varphi$.

Define

$$
D=\left\{i \in I: \mathfrak{A}_{i} \models_{f(i)} \exists v_{n} \varphi\right\} .
$$

We have to show that

$$
\Pi \mathfrak{A}_{i} / \mathscr{U} \vDash_{f / थ \ell} \exists v_{n} \varphi \Leftrightarrow D \in \mathscr{U} .
$$

Suppose that $\Pi \mathscr{\varkappa}_{i} / \mathscr{\varkappa} \vDash_{f / \not / \ell} \exists v_{n} \varphi$. Then there is some $b \in \Pi A_{i}$ for which $\Pi \mathfrak{Z}_{i} / \mathscr{U} \vDash_{[n \mid b] f / \iota \iota} \varphi$. Let E $=\left\{i \in I: \mathscr{\mathcal { A }}_{i} \vDash_{([n|b| f)(i)} \varphi\right\}$. Then by the induction hypothesis $E \in \mathscr{U}$. And since $([n \mid b] f)(i)=$ $[n \mid b(i)] f(i)$, it follows that $E \subseteq D$, and so because \mathscr{U} is a filter, $D \in \mathscr{U}$.

Conversely suppose that $D \in \mathscr{U}$. If $i \in D$, then there is some $b_{i} \in A_{i}$ such that $\mathscr{U}_{i} \models_{\left[n / b_{i}\right] f(i)} \varphi$. By the axiom of choice there is $c \in \Pi A_{i}$ for which $c(i)=b_{i}$ for every $i \in D$, and is an arbitrary element of A_{i} otherwise. Defining

$$
C=\left\{i \in I: \mathfrak{\vartheta}_{i} \models_{([n \mid c] f)(i)} \varphi\right\},
$$

we have $D \subseteq C$ so that $C \in \mathscr{U}$. It now follows from the induction hypothesis that

$$
\Pi \mathscr{\varkappa}_{i} / \mathscr{U} \vDash_{([n \mid c] f) / थ \iota} \varphi,
$$

i.e., since $([n \mid c] f) / \mathscr{U}=[n \mid c / थ] f / \mathscr{U}$,

$$
\Pi \mathscr{Z}_{i} / \mathscr{U} \vDash_{[n \mid c / \imath u] f / \imath \iota} \varphi .
$$

Therefore

$$
\Pi \mathfrak{Z}_{i} / \mathscr{U} \vDash_{f / थ \iota} \exists v_{n} \varphi,
$$

completing the proof of the theorem.
As an immediate consequence we have the
Corollary. For any \mathscr{L} - sentence σ we have

$$
\Pi_{i} / \mathscr{U} \vDash \sigma \Leftrightarrow\left\{i \in I: \mathfrak{\mathscr { Z }}_{i} \vDash \sigma\right\} \in \mathscr{U} .
$$

Let \mathfrak{U} be a structure and let \mathscr{U} be an ultrafilter on the set I. For each $a \in A$ let $a \in A^{I}$ be the function given by $a(i)=a$ for all $i \in I$. The canonical embedding of \mathfrak{Z} into $\mathfrak{Z}^{I} / \mathscr{U}$ is the map $d: A \rightarrow A^{I} / \mathscr{U}$ defined by $d(a)=a / \mathscr{U}$. It is a straightforward consequence of Łos's theorem that d is an elementary embedding.

Łos's theorem may also be used to provide a simple direct proof of the compactness
theorem, avoiding the use of the completeness theorem. To wit, suppose that each finite subset Δ of a given set Σ of sentences has a model \mathfrak{A}_{Δ}; for simplicity write I for the family of all finite subsets of Σ. For each $\Delta \in I$ let $\Delta=\{\Phi \in I: \Delta \subseteq \Phi\}$. For any members $\Delta_{1}, \ldots, \Delta_{n}$ of I, we have

$$
\Delta_{1} \cup \ldots \cup \Delta_{n} \in \Delta_{1} \cap \ldots \cap \Delta_{n}
$$

and so the collection $\{\Delta: \Delta \in I\}$ has the finite intersection property. It can therefore be extended to an ultrafilter \mathscr{U} over I. The ultraproduct $\prod_{\Delta \in I} \mathfrak{A}_{\Delta} / \mathscr{U}$ is then a model of Σ. For if $\sigma \in \Sigma$, then $\{\sigma\} \in \Delta$, and $\mathfrak{\mathcal { A }}_{\{\sigma\}} \vDash \sigma$; moreover, $\mathfrak{\mathscr { A }}_{\Delta} \vDash \sigma$ whenever $\sigma \in \Delta$. Hence

$$
\{\sigma\}=\{\Delta \in I: \sigma \in \Delta\} \subseteq\left\{\Delta \in I: \mathfrak{A}_{\Delta} \vDash \sigma\right\} .
$$

Since $\{\sigma\} \in \mathscr{U},\left\{\Delta \in I: \mathfrak{A}_{\Delta} \vDash \sigma\right\} \in \mathscr{U}$ and therefore, by Loś's theorem, $\prod_{\Delta \in I} \mathfrak{A}_{\Delta} / \mathscr{U} \vDash \sigma$. The proof is complete.

7. Completeness and categoricity

For simplicity, throughout this section we let \mathscr{L} be a countable first-order language. By a theory in \mathscr{L} we shall mean a set Σ of \mathscr{L}-sentences which is closed under provability, i.e such that, for each \mathscr{L}-sentence σ, if $\Sigma \vdash \sigma$, then $\sigma \in \Sigma$. A subset Γ of a theory Σ is called a set of postulates for Σ if $\Gamma \vdash \sigma$ for every $\sigma \in \Sigma$. Clearly each set Γ of \mathscr{L}-sentences is a set of postulates for a unique theory Σ, namely $\Sigma=\{\sigma \in \operatorname{Sent}(\mathscr{L})$: $\Gamma \vdash \sigma\}$. For each \mathscr{L}-structure $\mathfrak{\mathscr { L }}$ let $\Theta(\mathfrak{A})$, the theory of \mathfrak{Z}, be the set of all \mathscr{L}-sentences holding in \mathfrak{A}. Clearly $\Theta(\mathfrak{A})$ is a complete theory.

The following lemma is a straightforward consequence of the completeness theorem.
Lemma. The following conditions on a consistent theory Σ in \mathscr{L} are equivalent:
(i) Σ is complete;
(ii) any pair of models of Σ are elementarily equivalent;
(iii) $\Sigma=\Theta(\mathfrak{U})$ for some \mathscr{L}-structure \mathfrak{Q}.

Let κ be an infinite cardinal. A theory Σ is said to be κ-categorical if any pair of models of Σ of cardinality κ are isomorphic.

Examples. (i) Let \mathscr{L} have no extralogical symbols and let Σ be the set of all \mathscr{L}-sentences which hold in every \mathscr{L}-structure. Then Σ is κ-categorical for every infinite κ.
(ii) Let \mathscr{L} have just one unary predicate symbol P and let Σ be the set of \mathscr{L}-sentences which hold in every \mathscr{L}-structure. Then Σ is not κ-categorical for any infinite κ.
(iii) Let \mathscr{L} be as in (ii) and for each matural number m let σ_{m} be the first-order sentence which asserts that there are at least m individuals having the property P and at least m individuals not having P. Let Σ be the theory with the set of all σ_{m} as postulates. Then Σ is \aleph_{0}-categorical
but not κ-categorical for any $\kappa>\aleph_{0}$.
(iv) Let \mathscr{L} be the language whose sole extralogical symbols are countably many constants c_{0}, c_{1}, \ldots and let Σ be the theory with postulates $\left\{\neg\left(c_{m}=c_{n}\right): m \neq n\right\}$. Then Σ is κ-categorical for every $\kappa>\aleph_{0}$ but not \aleph_{0}-categorical.

One of the deepest results in model theory is Morley's theorem (whose proof is too difficult to be included here) which asserts that the four possibilities above are exhaustive, that is, if a theory in a countable language is κ-categorical for some $\kappa>\aleph_{0}$, it is κ-categorical for all $\kappa>\aleph_{0}$.

The next result provides a simple, but useful, sufficient condition for completeness.
Theorem. (Vaught's test.) Let Σ be a consistent theory with no finite models and which is κ-categorical for some infinite κ. Then Σ is complete.

Proof. If Σ is not complete, then there is a sentence σ such that neither σ nor $\neg \sigma$ are provable from Σ. So both $\Sigma \cup\{\sigma\}$ and $\Sigma \cup\{\neg \sigma\}$ are consistent and hence have models, which must be infinite since Σ was assumed to have no finite models. Therefore, by LöwenheimSkolem, both $\Sigma \cup\{\sigma\}$ and $\Sigma \cup\{\neg \sigma\}$ have models of cardinality κ. Since σ holds in one of these models but not in the other, Σ is not κ-categorical.

This theorem may be applied to establish the completeness of various theories.
UDO - the theory of unbounded dense linear orderings - is formulated in a language with just one binary predicate symbol R and has the following postulates (where we write $x \neq y$ for $\neg(x=y)$):
(i) $\forall x R x x \wedge \forall x \forall y[R x y \wedge R y x \rightarrow x=y] \wedge \forall x \forall y \forall z[R x y \wedge R y z \rightarrow R x z]$
$\wedge \forall x \forall y[R x y \vee R y x]$
(ii) $\forall x \forall y[R x y \wedge x \neq y \rightarrow \exists x[x \neq z \wedge y \wedge z \wedge R x z \wedge R z y]]$
(iii) $\forall x \exists y \exists z[x \neq y \wedge x \neq z \wedge R y x \wedge R x z]$

Postulate (i) asserts that R is a linear ordering, (ii) that it is dense, and (iii) that it is unbounded below and above. Natural examples of models of UDO are (\mathbf{Q}, \leq) and (\mathbb{R}, \leq).

Theorem. UDO is \aleph_{0}-categorical and so, by Vaught's test, complete.
Proof. Let (A, \leq) and (B, \leq) be denumerable models of UDO. Thus each is an unbounded dense linearly ordered set. Let $A=\left\{a_{n}: n \in \omega\right\}$ and $B=\left\{b_{n}: n \in \omega\right\}$. We define two new sequences $\left\{a_{n}{ }^{*}: n \in \omega\right\}$ and $\left\{b_{n}{ }^{*}: n \in \omega\right\}$ as follows. First, put $a_{0}{ }^{*}=a_{0}$ and $b_{0}{ }^{*}=b_{0}$. Now suppose $k>0$; we consider two cases.
(i) $k=2 m$ is even. In this case we put $a_{k}{ }^{*}=a_{m}$. If, for some $j<k, a_{k}{ }^{*}=a_{j}{ }^{*}$, we put $b_{k}{ }^{*}=b_{j}{ }^{*}$. Otherwise we let $b_{k}{ }^{*}$ be some element of B bearing the same order relations to $b_{0}{ }^{*}, \ldots, b_{k-1}^{*}$ as does $a_{k}{ }^{*}$ to $a_{0}{ }^{*}, \ldots, a_{k-1} *$; that is, for each $j<k$, if $a_{k}{ }^{*}>$ or $\left\langle a_{j}{ }^{*}\right.$, then $b_{k}{ }^{*}>$ or $<b_{j}{ }^{*}$. Since (B, \leq) is a dense unbounded linearly ordered set, it is clear that such an element can always be found.
(ii) $k=2 m+1$ is odd. In this case we put $b_{k}{ }^{*}=b_{m}$. If $b_{k}{ }^{*}=b_{j}$ for some $j<k$, put $a_{k}{ }^{*}=a_{j}{ }^{*}$. Otherwise we choose $a_{k} *$ to be some element of A bearing the same order relations to $a_{0} *, \ldots, a_{k-1} *$ as does $b_{k} *$ to $b_{0} *, \ldots, b_{k-1} *$. Again such an element can always be found.

This completes our recursive definition. We now define $h: A \rightarrow B$ by putting $h\left(a_{n}{ }^{*}\right)=b_{n}{ }^{*}$ for each $n \in \omega$. Clearly h is an isomorphism between (A, \leq) and (B, \leq).

The theory we consider next is most naturally formulated in a language with operation symbols: all our previous results extend naturally to theories in such languages.

The language \mathscr{F} for fields is a first-order language with constant symbols 0,1 and binary operation symbols,$+ \cdot$. The theory $\mathbf{F T}$ of fields has the following postulates (where we write $x y$ for $x \cdot y$):

$$
\begin{aligned}
& \forall x \forall y[(x+y)+z=x+(y+z)] \\
& \forall x[x+0=x] \\
& \forall x \forall y[x+y=y+x] \\
& \forall x \exists y[x+y=0] \\
& \forall x \forall y \forall z[(x y) z=x(y z)] \\
& \forall x[1 x=x] \\
& \forall x \forall y[x y=y x] \\
& \forall x \forall y \forall x[(y+z)=x y+x z] \\
& -(0=1) .
\end{aligned}
$$

For $p \in \omega$, write $p 1$ for $1+1+\ldots+1$ with p summands. If to the postulates of $\mathbf{F T}$ we add the infinite set of sentences

$$
\{\neg(p 1=0): p \in \omega\}
$$

we get the theory $\mathbf{F T}_{\mathbf{0}}$ of fields of characteristic 0 . (Natural examples are the fields of rationals and reals.)

We now write x^{n} for the expression $x \cdot(x \cdot(\ldots \cdot(x \cdot x) \ldots)$ with n factors. The infinite list of sentences, for $n \geq 1$,

$$
\forall x_{0} \ldots \forall x_{n}\left[\neg\left(x_{n}=0\right) \rightarrow \exists y\left(x_{n} y^{n}+x_{n-1} y^{n-1}+\ldots+x_{1} y+x_{0}=0\right)\right]
$$

when added to the postulates of $\mathbf{F T} \mathbf{0}$, yields the theory $\mathbf{A C F}_{\mathbf{0}}$ of algebraically closed fields of characteristic 0 . Each new postulate asserts that all polynomials of a given degree n has a zero.

We observe that $\mathbf{A C F}_{\mathbf{0}}$ is not \aleph_{0}-categorical. For the field \mathbf{F} of algebraic numbers and the algebraic closure of the field $\mathbf{F}[\pi]$ obtained by adjoining the transcendental π to \mathbf{F} are countable nonisomorphic models of $\mathbf{A C F}_{\mathbf{0}}$. On the other hand, a classical theorem of Steinitz asserts that $\mathbf{A C F}_{0}$ is κ-categorical for any uncountable κ, so we conclude from Vaught's test that $\mathbf{A C F}_{0}$ is complete Since the field \mathbb{C} of complex numbers is a model of $\mathbf{A C F}_{0}$, it follows that $\mathbf{A C F}_{\mathbf{0}}$ is a set of postulates for the theory of \mathbb{C}.

8. The elementary chain theorem and some of its consequences.

Let $\mathfrak{A}_{0} \subseteq \mathfrak{A}_{1} \subseteq \ldots$ be a chain of \mathscr{L}-structures: in particular the \mathfrak{A}_{i} all have the same designated elements. The union of the chain is the structure $\mathfrak{A}=\bigcup_{n \in \omega} \mathfrak{A}_{n}$ defined as follows. The
domain of \mathfrak{A} is the set $A=\bigcup_{n \in \omega} A_{n}$. For $i \in I$, the $i^{\text {th }}$ relation R_{i} of \mathfrak{A} is the union of the corresponding $i^{\text {th }}$ relations of the A_{n}. The designated elements of $\mathfrak{\mathscr { }}$ are the designated elements of the \mathfrak{Z}_{n}. Clearly each \mathfrak{Z}_{n} is a substructure of \mathfrak{Z}.

A chain of structures $\mathfrak{A}_{0} \subseteq \mathfrak{A}_{1} \subseteq \ldots$ in which each \mathfrak{U}_{n} is an elementary substructure of \mathfrak{A}_{n+1} is called an elementary chain. In this case we write $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \ldots$.

Elementary Chain Theorem. Each member of an elementary chain of structures is an elementary substructure of the union of the chain.

Proof. Let $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \ldots$ be an elementary chain, and let \mathfrak{A} be its union. We prove the following assertion by induction on the degree of a formula: for any \mathscr{L}-formula $\varphi\left(v_{0}, \ldots, v_{n}\right)$, any $n \in \omega$ and any $a_{0}, \ldots, a_{m} \in A_{n}$,

$$
\begin{equation*}
\mathfrak{A}_{n} \vDash \varphi\left[a_{0}, \ldots, a_{m}\right] \Leftrightarrow \mathfrak{A} \vDash \varphi\left[a_{0}, \ldots, a_{m}\right] . \tag{*}
\end{equation*}
$$

The proof is routine for atomic formulas, and the induction steps for \neg and \wedge are easy. Now suppose that φ is existential; without loss of generality we may assume that φ is $\exists v_{n} \psi$, and that ψ satisfies (*).

If $a_{0}, \ldots, a_{m-1} \in A_{n}$ and $\mathfrak{Q}_{n} \vDash \varphi\left[a_{0}, \ldots, a_{m-1}\right]$, then for some $a \in A_{n}$ we have $\mathfrak{U}_{n} \vDash \psi\left[a_{0}, \ldots, a_{m-1}, a\right]$. So by $(*) \mathfrak{Z} \vDash \psi\left[a_{0}, \ldots, a_{m-1}, a\right]$ whence $\mathfrak{Z} \vDash \varphi\left[a_{0}, \ldots, a_{m-1}\right]$.

Conversely, suppose that $\mathfrak{A} \vDash \varphi\left[a_{0}, \ldots, a_{m-1}\right]$. Then $\mathfrak{A} \vDash \psi\left[a_{0}, \ldots, a_{m-1}, a\right]$ for some $a \in$ A. For some $k, a \in A_{k}$. Let ℓ be the larger of k and n. Then $a_{0}, \ldots, a_{m-1}, a \in A_{\iota}$ and so, by (*), $\mathfrak{Z}_{\iota} \vDash$ $\psi\left[a_{0}, \ldots, a_{m-1}, a\right]$, whence $\mathfrak{U}_{\iota} \vDash \varphi\left[a_{0}, \ldots, a_{m-1}\right]$. But $n \leq \ell$ and so, since $\mathfrak{\vartheta}_{n} \prec \mathfrak{\vartheta}_{\iota}$, we conclude that $\mathfrak{\vartheta}_{n} \vDash \varphi\left[a_{0}, \ldots, a_{m-1}\right]$.

We use this in the proof of the
Joint Consistency Theorem. Let Σ and Π be theories in \mathscr{L}, and let \mathscr{E} be the language whose extralogical symbols are those common to \mathscr{E} and \mathscr{R}. Then the following are equivalent:
(i) $\Sigma \cup \Pi$ is consistent.;
(ii) for no \mathscr{E}-sentence σ do we have $\Sigma \vdash \sigma$ and $\Pi \vdash \neg \sigma$;
(iii) for some complete (consistent) theory Δ in \mathscr{E}, both $\Sigma \cup \Delta$ and $\Pi \cup \Delta$ are consistent;
(iv) there is an \mathscr{E}-structure which can be expanded both to a model of Σ and to a model of П.

Proof. (i) \Rightarrow (ii) is obvious.
(ii) \Rightarrow (iii). Assume (ii) and let $\Sigma^{*}=\{\sigma \in \operatorname{Sent}(\mathscr{E}): \Sigma \vdash \sigma\}$. It follows easily from (ii) that $\Pi \cup \Sigma^{*}$ is consistent and so has a model \mathfrak{A}. Let Δ be the theory of the \mathscr{E}-structure $\mathfrak{A} \mid \mathscr{E}$. Since $\mathfrak{A} \vDash \Pi \cup \Delta$, $\Pi \cup \Delta$ is consistent. If $\Sigma \cup \Delta$ is inconsistent, there is $\sigma \in \Delta$ such that $\Sigma \vdash \neg \sigma$, i.e. $\neg \sigma \in \Sigma^{*}$. But then $\mathfrak{\{} \vDash \neg \sigma$, whence $\neg \sigma \in \Delta$, a contradiction. Hence $\Sigma \cup \Delta$ is consistent.
(iii) \Rightarrow (iv). Assume (iii), and let $\mathfrak{\mathscr { H }}_{0}$ and \mathfrak{B}_{0} be models of $\Sigma \cup \Delta$ and $\Pi \cup \Delta$, respectively. Then since $\mathfrak{U}_{0} \mid \mathscr{E}$ and $\mathfrak{Z}_{0} \mid \mathscr{E}$ are both models of the complete theory Δ, they are elementarily equivalent. It follows easily from this that the union Γ of the complete diagram Γ^{*} of $\mathfrak{A}_{0} \mid \mathscr{E}$ with
the complete diagram $\Gamma^{* *}$ of \mathfrak{Z}_{0} is consistent. (Observe that each finite subset of Γ^{*} is interpretable in \mathfrak{B}_{0}.) Let \mathfrak{Z}^{*} be a model of Γ and let \mathfrak{B}_{1} be its \mathscr{L}-reduction. Then since \mathfrak{B}^{*} is a model of both Γ^{*} and $\Gamma^{* *}$ it follows from the diagram lemma that $\mathfrak{A}_{0}\left|\mathscr{E} \precsim \mathfrak{B}_{1}\right| \mathscr{E}$ and $\mathfrak{B}_{0} \precsim \mathfrak{B}_{1}$. Identifying \mathfrak{Z}_{0} with its image in \mathfrak{F}_{1} makes the former an elementary substructure of the latter. Let f_{1} be an elementary embedding of $\mathfrak{Z}_{0} \mid \mathscr{E}$ into $\mathfrak{Z}_{1} \mid \mathscr{E}$.

Passing to the extended language $\mathscr{E}_{A_{0}}$, the diagram lemma implies that the structures $\left(\mathfrak{\vartheta}_{0} \mid \mathscr{E}, A_{0}\right)=\left(\mathfrak{A}_{0}, A_{0}\right) \mid \mathscr{E}_{A_{0}}$ and $\left(\mathfrak{B}_{1} \mid \mathscr{E}, f_{1}\left[A_{0}\right]\right)=\left(\mathfrak{Z}_{1}, f_{1}\left[A_{0}\right]\right)$ are elementarily equivalent. Repeating the above construction in the other direction, this time with the $\mathscr{L}_{A_{0}}$-structures $\left(\mathscr{A}_{0}, A_{0}\right)$ and $\left(\mathfrak{Z}_{1}, f_{1}\left[A_{0}\right]\right)$ in place of $\mathfrak{Z}_{0}, \mathfrak{B}_{0}$, respectively, we obtain an elementary extension $\mathfrak{\Re}_{1}$ of \mathfrak{Z}_{0} and an elementary embedding g_{1} of $\left(\mathfrak{F}_{1}, f_{1}\left[A_{0}\right]\right) \mid \mathscr{E}_{A_{0}}$ into $\left(\mathfrak{H}_{1}, A_{0}\right) \mid \mathscr{E}_{A_{0}}$ Then $g \circ f_{1}$ is the identity on A_{0}, so that $f_{1} \subseteq g_{1}{ }^{-1}$.

Iterating this construction yields a diagram

such that, for each m, f_{m} is an elementary embedding of $\mathfrak{U}_{m-1} \mid \mathscr{E}$ into $\mathfrak{B}_{m} \mid \mathscr{E}, g_{m}$ is an elementary embedding of $\mathfrak{B}_{m} \mid \mathscr{E}$ into $\mathfrak{A}_{m} \mid \mathscr{E}$, and $f_{m} \subseteq g_{m}^{-1} \subseteq f_{m+1}$. Let \mathfrak{A} and \mathfrak{B} be the unions of the elementary chains $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \ldots$ and $\mathfrak{B}_{0} \prec \mathfrak{B}_{1} \prec \ldots$ respectively. Then, by the elementary chain theorem, \mathfrak{A} is a model of Σ and \mathfrak{B} is a model of Π. Moreover, $\bigcup_{m \in \varpi} f_{m}$ is an isomorphism of $\mathfrak{A} \mid \mathscr{E}$ and $\mathfrak{B} \mid \mathscr{E}$ (since, by construction, it has inverse $\bigcup_{m \in \mathbb{\top}} g_{m}$. It follows that \mathfrak{B} is isomorphic to a structure \mathfrak{V}^{\prime} such that $\mathfrak{Z}\left|\mathscr{E}=\mathfrak{B}^{\prime}\right| \mathscr{E}$. Accordingly the \mathscr{E}-structure $\mathfrak{Z} \mid \mathscr{E}$ can be expanded both to the model \mathfrak{A} of Σ and to the model \mathfrak{B}^{\prime} of Π.
(iv) \Rightarrow (i). Let \mathfrak{A} be an \mathscr{E}-structure expandable both to a model \mathfrak{F} of Σ and to a model \mathbb{C} of Π. Define the \mathscr{L}-structure \mathfrak{D} as follows: the domain of \mathfrak{D} is that of \mathfrak{A}; if s is any extralogical symbol of \mathscr{L}, then

$$
s^{\mathfrak{D}}=\left[\begin{array}{l}
s^{\mathfrak{A}} \text { if } s \in \mathscr{E} \\
s^{\mathfrak{B}} \text { if } s \in \mathscr{L}-\mathscr{A} \\
-s^{\mathbb{E}} \quad \text { if } s \in \mathscr{H}
\end{array}\right.
$$

Clearly $\mathfrak{D} \mid \mathscr{R}=\mathfrak{B}$, so $\mathfrak{D} \vDash \Sigma$. Also, $\mathfrak{D} \mid \mathscr{H}=\mathfrak{C}$, so $\mathfrak{D} \vDash \Pi$. Therefore \mathfrak{D} is a model of $\Sigma \cup \Pi$, so the latter is consistent.

From this we deduce

Craig's Interpolation Theorem. Suppose σ, τ are \mathscr{L}-sentences and $\vdash \sigma \rightarrow \tau$. Then there is a sentence θ such that $\vdash \sigma \rightarrow \theta, \vdash \theta \rightarrow \tau$, and every extralogical symbol occurring in θ occurs in both σ and τ.

Proof. Let \mathscr{E} be the language whose extralogical symbols are exactly those occurring in both σ and τ. If $\vdash \sigma \rightarrow \tau$, then $\{\sigma, \neg \tau\}$ is inconsistent, so by (ii) of the joint consistency theorem there is an \mathscr{E}-sentence θ such that $\sigma \vdash \theta$ and $\neg \tau \vdash \neg \theta$. The result now follows immediately.

Suppose that $\Sigma \subseteq \operatorname{Sent}(\mathscr{L})$ contains the n-ary predicate symbol P. P is said to be explicitly definable from Σ if there is an \mathscr{L}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$, in which P does not occur, such that

$$
\Sigma \vdash \forall x_{1} \ldots \forall x_{n}\left[P x_{1} \ldots x_{n} \leftrightarrow \varphi\right] .
$$

Now let P^{*} be an n-ary predicate symbol not belonging to \mathscr{L}, and let Σ^{*} be the set of sentences obtained from Σ by replacing all occurrences of P by P^{*}. Then P is said to be implicitly definable from Σ if

$$
\Sigma \cup \Sigma^{*} \vdash \forall x_{1 \ldots} \forall x_{n}\left[P x_{1} \ldots x_{n} \leftrightarrow P^{*} x_{1} \ldots x_{n}\right] .
$$

Semantically speaking, this means that any pair of \mathscr{L}-structures which are both models of Σ, have the same domain and agree on the interpretation of all extralogical symbols apart possibly from P, must also agree on the interpretation of P.

Clearly, if P is explicitly definable from Σ, it is implicitly definable from Σ. Conversely, we have

Beth's Definability Theorem. If P is implicitly definable from Σ, it is explicitly definable from Σ.

Proof. Suppose P is implicitly definable from Σ. Without loss of generality we may assume Σ to be finite, and we can then replace Σ by the conjunction of all its sentences. So we may assume that Σ consists of a single sentence σ. Let σ^{*} be the result of replacing each occurrence of P in σ by P^{*}. Then we have

$$
\begin{equation*}
\left\{\sigma, \sigma^{*}\right\} \vdash \forall x_{1} \ldots \forall x_{n}\left[P x_{1 \ldots} x_{n} \rightarrow P^{*} x_{1} \ldots x_{n}\right] . \tag{1}
\end{equation*}
$$

Now add new constant symbols c_{1}, \ldots, c_{n} to \mathscr{L}. Then, by (1),

$$
\left\{\sigma, \sigma^{*}\right\} \vdash P c_{1} \ldots c_{n} \rightarrow P^{*} c_{1} \ldots c_{n} .
$$

So

$$
\vdash \sigma \wedge P c_{1 \ldots} c_{n} \rightarrow\left(\sigma^{*} \rightarrow P^{*} c_{1} \ldots c_{n}\right) .
$$

By Craig's theorem, there is a sentence θ whose extralogical symbols are common to both $\sigma \wedge P c_{1} \ldots c_{n}$ and $\sigma^{*} \rightarrow P^{*} c_{1} \ldots c_{n}$, hence, in particular, not containing P or P^{*} such that $\vdash \sigma \wedge P c_{1} \ldots c_{n} \rightarrow \theta$ and $\vdash \theta \rightarrow\left(\sigma^{*} \rightarrow P^{*} c_{1} \ldots c_{n}\right)$.
Therefore

$$
\begin{equation*}
\sigma \vdash P c_{1 \ldots} c_{n} \rightarrow \theta \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{*} \vdash \theta \rightarrow P^{*} c_{1} \ldots c_{n} . \tag{3}
\end{equation*}
$$

If we replace P^{*} by P in (3), σ^{*} becomes σ and θ is unchanged. So

$$
\begin{equation*}
\sigma \vdash \theta \rightarrow P c_{1 \ldots} . . c_{n} . \tag{4}
\end{equation*}
$$

(2) and (4) now give

$$
\begin{equation*}
\Sigma \vdash \theta \leftrightarrow P c_{1} \ldots c_{n} . \tag{5}
\end{equation*}
$$

But θ is $\varphi\left(c_{1}, \ldots c_{n}\right)$ for some \mathscr{L}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ in which P does not occur. Since c_{1}, \ldots, c_{n}
are not in \mathscr{L}, the result of replacing c_{i} by $x_{i}(i=1, \ldots, n)$ in the proof from Σ of $\theta \leftrightarrow P c_{1} \ldots c_{n}$ yields a proof from Σ of $\varphi \leftrightarrow P x_{1} \ldots x_{n}$. Applying the generalization lemma gives

$$
\Sigma \vdash \forall x_{1} \ldots \forall x_{n}\left[\varphi \leftrightarrow P x_{1} \ldots x_{n}\right]
$$

and so P is explicitly definable from Σ.

