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dn this paper we construct the ortholattices arising in quantum logic starting from
the phenomenologically plausible idea of a collection of ensembles subject to pass-
ing or failing various “tests” A collection of ensembles forms a certain kind of
preordered set with extra siructure called an orthospace; we show that complete
ortholattices arise as canonical completions of orthospac = in much the same way
as arbitrary complete lattices arise as canonical completions of partially ordered
sets. We also show that the canonical completion of an orthospa-e of ensembles is
naturally identifiable as the complete lattice of properties of the. ensembles,
thereby revealing exactly why ortholattices arise in the anolysis of “tests™ or
experimental propositions. Finally, we axiomatize the hitherto ivonlicit concept of
“text” and show how they may be correlated with properties of easembles.

1. INTRODUCTION

The idea of a “logic of quantum mechanics™ or quantum logic was, as is
well known, originally suggested by Birkhofl and von Neumann in their
pioncering paper.®’ Pursuing an analogy with classical logic, they
proposed identifying the logic of “cxperimental propositions™ pertaining to
a quantum-mechanical system % with the complete nondistributive lattice
(a complete ortholattice: for a definition sce Section 2 below) of subspaces
of the infinite-dimensional Hilbert space associated with .. The intriguing
but somewhat ad hoe character of this proposal (should something as fun-
damental and general as a logical system be ticd to something as specific as
a Hilbert space?) led many later investigators to attempt (o derive quan-
tum logic from simpler foundations (for a survey, sce Ref. 10). In par-
ticular, it has been suggested by Putnam, VFinkelstein, and others (see
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especially Refs. 7 and 12) that quantum logic should be obtained as a
general logic of cxperimental propositions or “lests.” But this suggestion
still appears somewhat ad hoe, sincé one must apparently assume that the
“tests” or propositions alrcady form an ortholatticc (for a critique, scc
Ref. 3), an assumption not really justificd phenomenologically.

In this paper, we attempt to cradicate this deficiency by constructing
the ortholattices associated with quantum logic in a canonical manner
starting from the simple and phenomenologically plausible idea of a collcc-
tion of ensembles (of objects, “particles,” or the like) subject to passing or
failing various “fests.” More preciscly, we assume given an abstract sct P
(the sct of “cnscmbles™) together with relations <, L on P: p<q is con-
strued to mean that the ensemble p passes cvery “(est” that the ensemble ¢
passes, i.c., that p is included in g or is a subensemble of ¢ while p L g is
contrued to mean that p and ¢ arc mutually exclusive, ic., cither there is a
“test” which p passes but ¢ and all its (nonempty) subenscmbics fail or vice
persa. We also assumc the presence of an empty cnsemble 0 which s
deemed to pass every “test,” and is accordingly a subensemble of every
ensemble. 1 is thus natural to require that < be a preordering on P, ic., a
reflexive transitive relation on P, such that 0.< p for all pe P, and that 1
be an orthogonality relation on P, i.c., irreflexive and symmeltric on I’ — {0}
and such that? 0 L p for all pe P. Moreover, it is clear that L and <
should be related by the condition

p<q&qlr—oplr

In our analysis of the concepl ol a “lestable™ enscmble, we arc thus
naturally led to consider structurcs P=(Pr, <, L1,0) satislying the above
conditions: we call such structures preordered orthogonality spaces ot
simply orthospaces. 1n our mathematical investigation ol thesc structures
we show that the complete ortholattices of quantum logic may be obtained
as canonical completions of orthospacces in much the same way as arbitrary
complete lattices arc obtainable as canonical complctions ol partially
ordered sets (sce, c.g., Ref. 1). We also show that the canonical complction
of an orthospace I’ is naturally identifiable as the complete lattice of
propertics of the cnsembles in P, thereby revealing exactly why ortholat-
tices arise in the analysis of “tests™ or cxperimental propositions. Finally,
we axiomatize the hitherto implicit concepl of “test” and show how they
may be corrclated with propertics of cnscmbles.

We begin with an analysis of the concept ofl orthospuce.

* For this o be the case, we must, strictly speaking, assume that there is i test passed ond
by 0.
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2. THE THEORY OF ORTHOSPACES

A preordering on a sct P is a reflexive transitive relation < on P ifin
addition < is antispmmetric, ic., il p< q & q < p always imply p = g for any
P q€ P, then < is a partial ordering on P. A least element of a preordered
sct (P, <) is an element pe P such that p< g forall ge P. A preordered sct
may in general have more than onc least clement, but we shall always
assume that any preordered sct we consider has a unique least element,
which we shall denote by 0.

By an orthogonality space we mean a triple (P, 1, e) where Pis a set,
ce P, and L is an orthogonality relation on P, ie., a binary relation on P
which is symmetric and irreflexive on P— {¢} and in addition satisfies
¢ L p for all peP. A preordercd orthogonality space or simply an
orthospace is a quadruple P=(P, <, 1, 0) where (P, <) is a preordered
sct with least element 0 and (P, L, 0) is an orthogonality space such that,
forall p,q,reP

P<q&qlr-plr

(It is casily shown that under these conditions 0 is actually the unigue least
clement of the preordered sct (P, <).) The set-theoretic complement of the
relation L in Px P is then a reflexive symmetric relation on P — {0} called
the proximity relation associated with L; it will always be denoted- by =:

thus we have
pqep Ly

We also dcfine
Q,={qeP: pxq}
Examples.

I. I[(P, L, e) is any orthogonality spacc, define < on P by p<qe
Vr[rLg—r 1 p]. Then (P, <, L,e) is an orthospace, the orthospace
canonically associated with (P, L, ¢). In particular if H is a Hilbert space
(or any inncr product space) then (/{, <, L, 0) is an orthospace, where L
is the relation of perpendicularity of vectors.

2. If P=(P, <) is any preordered set with least element 0, call two
clements p, q (order) incompatible and write plq it Vr[r < p&r<q-r=0)}
(and (order) compatible if Ir £0 (r<p & r<q)). Then P=(P, <,1,0) is
an orthospace, the orthospace canonically associated with P,

3. An ortholatiice is a latticc "= (L, <, A, v ) with top and bot-
tom elements 1, 0 cquipped also with an operation *: L — L satislying

.XV'Y*=1, -xs)'_’-Ytz)’*

X**=x
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for all x, ye L. It is casily shown that in any ortholattice x A x* =0, so
that x* is a complement for x in the lattice theoretic sense: x* is called the
orthocomplement of x. (Equivalently, in the definition of an ortholattice the
condition x v x*=1 may be replaced by x A x*=0.) Note that in any
ortholattice de Morgan’s laws hold:

(vAp)r=x*vy*  (xv p)t=x* A p*
Each ortholattice Z may be regarded as an orthospace L= (L, <, L, 0)in
which < is the given lattice ordering and L is the relation defined by
Xl ypexgy*

L is called the orthospace induced by 2. where there is no risk of con-
fusion, we identify L and &

An ortholattice . is complete if it is complete as a lattice, ic., if cvery
subset X has a supremum (join) V/ X and an infimum (mcet) A X. (Morc
generally, we use \/ X and A X (o denote the supremum and infimum, if

they exist, of a subsct X of an arbitrary partially ordered sct.) If . is com-
plcte, we obscrve that the orthocomplement x* of xe L is given by

x*=\/{yx 1Ly}
A Boolean algebra is an ortholattice satislying the distributive laws
XAa(pvz)=(xAyp)v(xnaz)
Xv(raz)=(xv y)a(xvz)
It is well known (sce, cg., Rel. 4) that an ortholattice % is a Boolcan
algebra ifT
XS prerx A y=0
for all x, ye L, iec., iff the orthogonality relation 1 in L coincides with the

incompatibility relation /.

4. Let S be a multiplicative semigroup with an element 0 such that
s50=05=0 for all s& S (c.g., the multiplicative semigroup of a ring). Let E
be the sct of idempotent elements of S, i.e,, the sct of clements ¢ € S such
that e’ =c¢. Define the relations <, L on Eby e<feef=fe=c¢ and
¢l feref=fe=0. Then (E, <, L,0)is an orthospace.

A morphism of an orthospace P into an orthospiace Q is a map
S P — Q such that f(0)=0 and

r<qg— f(p)<flq)
rLag—f(p)L f(q)
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Il a morphism [ satisfies p L g f(p) L f(q) (or equivalently, peg=
S(P)=/(q), itis called a weak embedding; if in addition p < g f(p)< flq)
it is a quasiembedding. An injective quasiembedding is called an embedding.
A surjective embedding is, of course, called an isomorphism. Thus
orthospaccs and morphisms between them form a calegory, the category of
orthospaces.

We shall be chicfly concerned with the problem of embedding
orthospaces in complete ortholattices. We first note the following.

2.1. Propesition. LEach orthospace is quasiembeddable in a complcte
Boolean algebra.

Proof. Let P be an orthospace and let / be the family of all subsets
J < P such that (i) peJ, p<q - geJ and (ii) p, geJ - pxq. Let # be the
complete Boolean algebra of all subscts of 7 and define J:P— B by

fp)={Jel peJ}

We claim that f is a quasiembedding. Clearly f(0)=¢ and p<qg—
Sp)<= f(q). Writing J,= {q: p<q} we have J,el and

PELq—J,ef(p)&J, ¢ [(q)
- /(p) € f(q)

Il paq, then clearly J=J,0J el and Jef(p)n f(q), whence f(p)=f(q)
in B. Finally, if f(p)=/f(q) in B, then there is Ke f(p)n flg), whence
{1, q} < Kand pxq. This completes the proof. |

We now introduce the important notion of density. Call a subset X of
a preordered set P (join) dense if for all p, ge P we have

pquVxeX[xsp—*XSQJ

Il P is partially ordered, this is equivalent to the condition that each
clement of P bd the supremum of the set of its predecessors in X, ie.,

r=V {_.reX:.rsp}

A preorder-preserving map f: P — Q between preordered sets P, Q is called
dense if the image f[P] of P is dense in Q.

We shall now turn to the problem of densely embedding an orthospace
into a complete ortholattice. (Note that, in general, the quasiembedding
constructed in 2.1 is not dense.) Given any orthospace P, we construct a
complete ortholattice £(P) as follows. For each pe P, recall that Q,=
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{ge P:g=p};lct L(P) be the family of all unions of sets of the form Q..
Then we have ~

2.2. Proposition. L(P) is a complete ortholattice (P) under sct
inclusion, with sct-thcorctic union as the supremum operation, and in
which the orthocomplement U* of an clement Ue L(P) is given by

U*= U Q,={q¢:(3p¢ Up=q}
ey
Furthermore, the map i: p— Q, is a dense weak embedding of P into L(P),
the orthospace induced by .&°(P).

Proof.  We first observe that since L(P) is closed under unions, it is
automatically a complete latticc under € with union as supremum and ¢,
P as bottom and top elements. Clcarly, also, for any U, Ve L(P) we have
UuvU*=Pand US V- U*2V* And '

urr= U 0,=U {0, (Vg=p)qe U)

réus
=U 10,0, U} =U

Thus 2(P) is an ortholattice.

Finally, we show that i is a densc weak embedding of P into L(I’). The
density of i is obvious; clearly i{(0)= ¢ and p<q - i(p)<i(q). It remains
to show that PR i(p)=i(q) or cquivalently that PqeQ, € QF But
this follows from the implications

rle-p¢Q,-0,c ) 0,=0¢

réQ,
P=q—-qeQ, - Q, & QF

since cvidently ¢ ¢ or 1

and

The orthospace L(P) induced by the complete ortholattice £L(P)
(more precisely the pair (L(P), i)) is called the canonical orthocompletion of
P. We shall scc later on that it is uniquely determined up to isomorphism.

When is the map i: P - L(P) an embedding? To answer this question
we introduce the concept of a normal orthospace. An orthospace P is said
to be normal if < is a partial ordering of P and for all Poqe P,

PSqeNrr Lg—r L p]

or equivalently if

r<q—Q,s0,
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(Obscrve that the implication from left to right holds for any orthospacc.)
Clearly every ortholattice is a normal orthospace. If P is a partially ordered
set, the orthospace P = (P, <,1,0) canonically associated with P is easily
scen to be normal iff it satisfics the condition

P& qg-(3rg plrig

In the case of a partially ordered P, this is precisely the condition that P be
refined (in the terminology of Ref. 2) or separative (in the terminology of
Refl. 11).

From 2.2 we deduce the following.

2.3. Corollary. The following conditions on an orthospace P are
cquivalent:

(i) P is normal;
(i) the map i: P — L(P) is an cmbedding;
(iii) P is densely embeddable in a complete ortholattice.

Proof. (i) - (ii) is obvious from the definition of normalily, and
(i) - (iii) is an immediate conscquence of 2.2,

(iii) — (i). 1f (iii) holds, then the preordered set underlying P may be
regarded as a dense subset of a complele ortholattice & in particular, <
partially orders P. If p & g in P, then ¢* ¢ P*in ', so by the density of P
there is re P such that r<q*andr £ p* ic,r L gandr L pin &, hence
also in P. (i) follows. I

If P is a normal orthospace, the density of the canonical embedding i:
P — L(P) implies that it automatically prescrves any meets that already
exist in P. That is, {AX)=Ai[X] for any subset X< P such that AX
exists in P. Under what conditions does i also preserve joins? This question
is readily answered. Call a morphism J:P = Q (join) complete if whenever
X< P and V X exists in P, then f(V/ X)=V /f[X] in Q. P is said to be
L-continuous if wllcnevcr X< Pand V X exists in P, then for any pe P

(VxeX)p.Lx—»p.L VX

Note that (the orthospace induced by) any ortholattice is L-continuous.

2.4. Proposition. The following conditions on a normal orthospace P
arc cquivalent:

(1) Pis L-continuous:;
(ii)) the canonical embedding i: P — L(P) is complcte.
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Proof. (i) - (ii). Assume (i), let X< P, and suppose that \/ X éxists
in P. Since i preserves order, Vi[X]<i(V X). To prove the reverse
incquality, put Vi[X]=aq, i(V X)=b. Then for any pe P,

i(pyshb-p<s\/ X

—»Vq[q.l_\/,\’—*qip‘l

- Vg[(VxeX)qLx—q 1l p] (by L-continuity of P)

- Vq[(Vxe X)i(q) L i(x) - i(q) L i(p)]

—Vqlilg) L a—i(q) L i(p)]

- Vqli(g)<a* = i(g) <i(p)*]

—a*<i(p)* (by density of i)

—i(p)<a
It now follows from the density of i that b <a and hence that a=h. This
gives (ii).

(1) = (1). Assume (11), let Y€ P, and suppose that \/ X exists in P.

Then if pe P,

(VxeX)p L x— (Vxe X)i(p) L i(x)
—i(p) L\ i[X]= l(\/ X>
—-pl \/ A |

An orthospace P is said to be complete if the preordered set (P, <) is
a complete lattice (so in particular < must be a partial ordering). Then a
complete orthospace is (the orthospace induced by) a complete ortholattice
il (and only if) it is L-continuous and normal. Morc precisely, we have the
following.

2.5. Lemma. Let E be a complete normal L-continuous orthospace.
Define the map x+—x* on E by

x*=\/{reL:x 1y}

Then &= (L, <, *)is a complele ortholattice and

XL ypeorxgp*

so that E is the orthospace induced by &.
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Proof Let O,={yeE:x L y}; then x*= VO,. Clearly x<y—
x*2 y*. Since x L y for all yeO,, the L-continuity of E implies that
xLx* Soif y<x and Y<x* then y=0, whence x A x* =0, Now x* is
the largest element of £ orthogonal to x, ie, Y<x*ex L p Hence

ySx** o p | x*
—Vz[z 1l x>z 1 y] (by L-continuity)

— pgLx
by the normality of E. Thus * is an orthocomplementation on E. ]

Remark. 1{ P is a (partially ordered set whch is a) complete lattice,
its canonically associated orthospace P is L-continuous iff P is a complete
pseudocomplemented lattice, i.e., il for each pe P there is a largest element
g€ P such that p A ¢=0. In particular, this will be the case if P is a com-
plete Heyting algebra, ie., a complete lattice satisfying the distributive law

PAVa=\pag

iel iel

(Note, however, that there are complete pseudocomplemented lattices
which are not complete Heyting algebras, c.g., the 5-element pentagon lat-
tice.) It follows that P is a complete Boolean algebra iff P is a normal com-
plcte L-continuous orthospacc.

Next we characterize the canonical orthocomplction of a normal
orthospace as a minimal completion in a way analogous to the charac-
terization of the Decdekind-MacNeille completion of a partially ordered sct
(cf. Ref. 1).

A completion of an orthospace P is a pair (E, J) in which E is a com-
plete L-continuous orthospacc and j is an embedding of P into E. A com-
pletion (E, j) of P is minimal if for any completion (F, k) of P therc is an
embedding f: E - F such that k=fo] Two completions (E, j) and (F, k)
are isomorphic over P if there is an isomorphism f*E — F such that k =
Soj. Finally, a déhse orthocompletion of P is a pair (E, j) in which E is (the
orthospace induced by) a complete ortholattice and J is a dense weak
embcedding of P into E: it is casily shown that if P is normal and (E, j)is
any densce orthocompletion of P, then j is actually an embedding.

2.6. Proposition. Lct (E, j) bc a completion of a normal orthospace
P. The following arc cquivalent:

(1) (E, j)is a dense orthocompletion of P;
(i) (E, j)is a minimal com'plclion of P.
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Proof. (i) — (ii). Supposc that (E, /) is a dense orthocompletion of P
and that (F, k) is any complction of P. Dcfine f: £ — F by

S =\ {k(p): j(p) < x)

for x € L. Since j is an embedding, it follows that f(0) = 0. Also, for x, ye L,
it folows from the density of j that

XLy Uprip) <y} LV i) jla) < p)
SVpe PLAp)Sx & fg)< v j(p) L j(q)]
Vpe PLAp)Sx& j(g)<y—p Lg]
SVpe PL(p)Sx & j(q)< y—k(p) L k(q)]
>V k(P ip)<x) LV {k(q): ilg) < y)
= S(x) L f(»)
Moreover, x< y — f(x) < f(y) is obvious, and
& yoIzellz L p&zLx]
= 3ze L[ f(z) L f(¥) & f(z) L f(x)]
= S(x) £ f(»)

Thus fis an embedding of E into I,
Finally,

JUPN =V {k(q): j(9) < j(p)}
=V {k(g): < p}
=k(p)
whence foj=k.

(ii) = (i). Let (E, j) be a minimal completion of P and let (F, k) be any
dense orthocompletion of P (which cxists by 2.3). Then, by the proof of
(1) = (ii), (F, &) is minimal, so there is an cmbedding g: F — E such that
geok = j. Similarly, there is an cmbedding /2 E — F such that fo j= k. Now,

putting fe g =h, we have ek =k. Then /i is the identity on F, because for
XeFand pe P, since /i is clearly an cmbedding, we have

k(p)S<xek(p)= Mk(p)) < h(x)

and hence, since & is dense, x = fr{x).
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It follows that f: E — F is surjcctive, and hence an order isomorphism.
Thus /, and hence also its inverse f*, arc lattice isomorphisms. Since J'is
also a L-isomorphism it follows that E is normal (since F is) and hence a
complete ortholattice (isomorphic to E) by 2.5. Finally, since j= f"ok, and
k is dense, so is j. §

In the proof of (ii)— (i) above, we showed that any minimal com-
plction of P is isomorphic over I’ to any dense orthocompletion of P, in
particular, to the canonical orthocompletion of P. Since any dense
orthocomplction is minimal, we have

2.7. Corollary. All densc orthocompletions of a normal orthospace P
and all minimal completions of P arc isomorphic over P 1o its canonical
orthocomplction. |

This justifics calling L(P) (or & (P)), for a normal P, the canonical
orthocompletion of P. _

Next, we show that, like complete Boolean algebras (see Ref. 9) or
complete lattices (sce Ref. 1), complete ortholattices may be characterized
in terms of the notions of injectivity and retractiveness.

Let E be a normal orthospace. E is said to be injective if for any"
morphism f: > - E of a normal orthospace P into E and any embedding
&P —>Qof Pinto a normal orthospace Q, there is a morphism 1: Q - E
such that /= ho g. E is an absolute subretract if for any embedding /1 E —» P
into a normal P there is a morphism g: P — E such that go/is the identity
onE.

2.8. Proposition. The following conditions on a normal orthospace E
arc equivalent:
(i) Eis (the orthospacc induced by a) complete ortholattice:
(it) E is injective;
(iii) E is an absolute subretract.
Proof. (i) —«ii). Suppose that E is a complete ortholattice, P and Q

normal orthospaces, f:P — E a morphism, and g: P - Q an embedding.
Definc /i: Q — E by

h(x)=\/ {f(p): pe P & g(p) < x}

Clearly 1(0)=0 and  is order-preserving. Suppose, moreover, that x L ¥
and p, ge P salisly g(p)<x, g(q)< y. Then g(p) L g(q), whence p L ¢, so
that f(p) L f(q). Ut follows that

hx)=\/{f(p): g(P)<x} L\ {/(q): g(q)< y} =h(y)
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Thus h is a morphism. Finally,
ng(p) =V /(@) gl@) <8P
=\/_ {f@)a<r}

=/(r)
whence e g = /. :

(ii) — (iii) is a standard argument; we omit it (scc, €.g., Ref. 9, Scc-
tion 32).

(iii) = (i). Supposc that E is an absolutc subretract; let (I, j) be the
canonical orthocompletion of E. Then there is a morphism g: I — E such
that go j is the identity on E. We claim that E is a complete orthospace and
hence (by 2.4) a complete ortholattice.

First, E is a complele lattice. Forlct X L, let a=V (e x j(x)in I, and
put g(a)=b. We claim that 5 is the supremum of X in L. [For certainly b is
an upper bound for X, since

xeX— j(x)<a—x=glx))s glay=>
And b is the least upper bound for X since for any y€ [ we have
(Vxe X)x <y — (Ve X)j(x) < »)
—a< j(y)
—bh=gla)<glily))=r

It remains to show that E is 1 -continuous. So let ce L, Y<c L and
suppose that e L x for all x e X. Then j(e) L j(x) whence jle) L Vyex J(x),
so that

e=gljle)) L g ( V j(A‘))
xelX
" But we have shown above that gV ex jx))isVX in . Henee e LV X,
and the proof is complete. |

It follows that the canonical orthocomplction of a normal orthospacc
P may be described as the minimal injective orthospace into which P is
embeddable.

So far we have confined altention chiclly to normal orthospaces. We
turn now to a discussion of the gencral case. First, we observe that any
(not nccessarily normal) orthospacc P can be canonically associated with a
normal orthospace P as follows. Define an cquivalence relation = on P by

p=q—Q,=Q,
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and for each pe P let j be the cquivalence class of p under =. Put P=
{p: pe P}; define relations L, < on P by

f

plgeplyq
PLi—0,c0,

1t is now rcadily verified that P= (P, <, 1,0) (here 0 is the 0 of P) is a
normal orthospace and that the map j: P — P defined by j(p) = j is a weak
embedding of P onto P. (P,j) (or just P) is called the normalization of P,
and j the canonical map.

Remark. When P is (the orthospace canonically associated with) a
complete Heyting algebra (c.g., a topology on a space), the normalization
of P is the complete Boolcan algebra of regular elements of P, ic., the pe P
such that p= p**. ‘ '

The normalization of an orthospacc may be characterized as follows.
Call a morphism f: P — Q between orthospaces normal if for all p, ge P,

0,c0,~f(P)</(q)

and
Qp = Ql[ - /(I)) =.f(ll)

Observe that any morphism with normal domain is normal, as is the
canonical map of an orthospace onto its normalization.

2.9. Lemma. Up to isomorphism over P, the normalization (P, j) is
the unique normal orthospace such that for any normal morphism
/2P = Q there is a unique (normal) morphism g: P — Q such that f =g j.

Proof. We nced only verify that (P, j) satisfics the stated condition;
uniqueness up to isomorphism follows in the usual way. Given a normal
morphism f: P~ Q, we definc g: P — Q by g(p)= f(p) for all pe P; it is
now easily verilied that g is a well-defincd morphism of P into Q. Clearly
f=gejand g is thc unique morphism satisfying this condition.

The result of Lemma 2.9 may be expressed in categorical language as
follows. Let 0.9 be the category of orthospaces and normal morphisms and
N0 the (full) subcategory of normal orthospaces. Then the assignment
I+ P of the normalization is a functor lcft adjoint to the inclusion functor
NO0S c0F, so that /O is reflective in 0.7.

Wc can now show that the canonical orthocompletion of a (not
necessarily normal) orthospace is uniquely determined up to isomorphism.
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2.10. Proposition. Lect P be an orthospace, let (P, j) be its nor-
malization, It (E, k) be the canonical orthocompletion of P, and put i=
ko j. Then (E, i) is a dense orthocompletion of P and any dense orthocom-
pletion of P is isomorphic over P (o (E, ). In particular, K is isomorphic to
the canonical orthocomplction L(P?) of P.

Proof. -Since k is a densce cembedding and j is a surjective weak
embedding, i=kojis a densc weak cmbedding. We claim that  is also nor-
mal. For supposc i(p) £ i(q). Then (since E is normal) there is x e E such
that x=i(p) and x L i(q). Since i is dense, x=\/ {i(r): i{r)y<.x} and so
there is re P such that i(r)<x and i(r)=i(p). It follows that i(r) L i(q).
Since i is a weak cmbedding, rxp and r L 4, whence Q, & Q,- It also
follows from this that i(p)=i(qg) whenever 0,=0,.

By 2.9, there is a unique morphism /3 P = E such that i= foj Since i
is dense, f is dense. Obscrve also that

SUPY) L fUq)) = i(p) L i(q)
—plyg

< Jj(p) L jlq)

so that fis a weak embedding, and hence an embedding since both its
domain and range arc normal. It follows that (E, /) is a dense orthocom-
pletion of P and is therefore uniquely determined up to isomorphism
over P.

To show that (E, i) is uniquely determined up to isomorphism over P,
let (E, i) be another such pair. Then by the same reasoning as for (E, /)
there is a densc embedding /*: P — E’ such that ¢ = ["oj. Thus (I, f*) is a
dense orthocompletion of P and so there is an isomorphism g: E' — E such
that f=gof". But then gei'=gof'oj=fuj=i This completes the
proofl. |

When is a dense orthocompletion of an orthospace a Boolcan algebra?
Our next result provides an answer to this question. Recall that two
elements p, ¢ of an orthospacc P arc compatible if 3r £ 0 [r<p&r<yql.

2.11. Proposition. The following conditions on an orthospace P arc
cquivalent:
(1) P satisfics

rq=3r#£0(0,€0,n0,] (*)

(i) The proximity relation =~ on the normalization P of P coincides
with the compatibility relation on P. a
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(iii) The dense orthocompletion of P (or, equivalently, of P) is a
Boolean algebra.

Proof. (i) - (ii). Supposc P satisfies (*). If =4 in P, then pqin P
and so there is r#0 in P such that Q, = Q,, Q,<0Q,. But then 7 £0, F < p,
F<§, giving (ii).

- (ii) - (iii). Assume (ii) and let (E, i) be the dense orthocompletion of
P. If x~y in E, then the density of i implies that there exist a, be P such
that i(a) < x, i(h)< y, and i(a)=i(h), whence axb. So there is ce P such
that ¢#0& c<a, c<bh, whence i(c) #0, i(c)<i(a)<x, i(c)< iby<y It
lollows that = is the compatibility relation in E so that E is a Boolean
algebra.

(iii) = (i). Suppose that the dense orthocompletion (L(P), /) of P is a
Boolcan algebra. If pxgq in P, then i(p)xi(q) in L(P); since the latter is a
Boolean algebra and i is dense, there must be r#0 in P such thai
i(r)<i(p) and i(r) < i(q). It follows easily that Q Q,and 0, <Q,, com-
pleting the proof. |

Clearly, if ~ is the compatibility relation in P, then P satisfies (*) of
2.11 so that the canonical orthocompletion of P is a Boolean algebra. (If P
is normal, then the converse holds, ic., =~ is the compatibility relation
in P.) In this case the construction of a densc (Boolean) orthocompletion
of P may also be carried out in the manner familiar to students of set-
theoretic forcing (cf. Refs. 2 or 11): we topologize P— {0} by taking the
subsets {¢: ¢< p} as basic opens; the complete Boolean algebra RO(P) of
regular open subscts of the resulting topological space—the regular open
algebra of P—is then a dense orthocompletion of P, and so isomorphic to
the canonical orthocompletion L(P) of P.

3. ENSEMBLES, TESTS, AND QUANTUM LOGIC

In the introduction we put forward the idea of regarding an
orlhospacc P= (P, <, 1,0) as a collection P of ecnsembles subject to pas-
sing or failing various “lests,” where < and L are the relations of inclusion
and exclusion. We now attempt to show how the canonical orthocom-
pletion of P may be regarded as the natural lattice of (formal) properties
ol P.

Assumc for the moment that P is normal. For each p e P, consider the
property ¢(p) of being a subensemble of p, ie., for any g€ P, q has property
$(p) il and only if ¢ < p. We have natural relations of entailment (<) and
exclusion (1) among these propertics:

G.1). {v‘( P)< $(q)«— p < g« phas property ¢(q)
¢(p) L d(q)=p Lyg
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We seck to “closc up” the resulting orthospace of propertics {¢(p): pe P}
under the logical operations of conjunction and disjunction in such a way
that cach member of the resulting augmented orthospace E of “properties”
may still be construcd as a propertly of the clements of 2. In particular, I
will be a complete orthospacc; the ordering < on E will again be construed
as entailment, the orthogonality relation L on E as cxclusion, and by
analogy with (3.1), for pe P, ae E, the rclation ¢(p) <a will be taken to
mean that p (and all its subensembles) have the “property” a.

If each clement of E is to be nothing morc than a “property” of
elements of P, then the rclation a entails b, ie., a <b, must mcan that for
any p € P, whenever p has “property” «, then p has “property” b, i.c.,

a<beVpeP[p(p)<a—$(p)<h]

But this, of coursc, is preciscly the condition that the subsct {4(p): pe P}
be dense in E. That is, @ must be a dense embedding of P into E.

So we sce that for the complcte orthospace E to qualify as a complete
orthospacc of “properties™ of the clements of P we must require that P be
denscly embeddable in E. If we further impose the reasonable requirement
that E be a minimal completion of P (so that I ariscs by adding the “fewest
possible” propertics to P), then by 2.6, E is a dense orthocomplction of P
which must, by 2.7, be isomorphic to the canonical orthocompletion of P,
Thus, starting with a normal orthospace P of enscmbles, any densc
orthocomplction E of P may be considered a natural candidate for being
the complete lattice of “propertics™ of the elements of P. We shall call the
elements of any dense orthocomplction (E, i) of P formal properties of the
elements of P in order to distinguish them from propertics of the clements
of P in the usual extensional sense (i.c., those which are represented simply
by subsets of £). Any formal property a € £ is corrclated with the property
i(p)<a of cnscmbles pe P. And conversely, any property of ensembles is
correlated with the subsct X < P of all ensembles having the property, and
X in turn may be correlated with the formal property a,=V i[X] e E. This
is natural sincc a, is the least formal property a such that, for all pe X, p
has the property correlated with a.

We obscrve that since E is not in general a Boolcan algebra (in view of
the fact that the orthogonality rclation on P does not in general coincide
with the incompatibility relation), it follows that the complete lattices of
formal propertics of scts of cnsembles do not normally embody all the laws
of classical logic (c.g., distributivity fails), but rather just the laws of quan-
(um logic (sce, e.g., Ref. 3). 1t scems, then, that quantum logic has a natural
origin in the analysis of orthospaces of ensembles.

The above analysis extends to the casc in which P is not normal by
replacing P with its normalization P: any dense orthocompletion of P may
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now be considered (albeit in a-slightly weaker sense than that described
above, since P is now only weakly densely embeddable in E) as the com-
plete lattice of formal propertics of the clements of I ,

We now [inally introduce an axiomatization of the concept of rest
which  will bring the discussion down to an even more basic
phenomcnological level. This axiomatization was first proposed in Ref, 3;
for the sake of completeness we provide a (somewhal compressed) account
of its fundamentals.

We assume that we are given two scts S—called the set of
screens—and P—called the set of ensembles (or beams). Each screen s acts
on each enscmble x to yicld a ncw cnsemble sx. (to be interpreted as the
cnscmble that emerges when x travels through s). We assume that cach
screen is uniquely determined by its action on ensembles: thus for s, 7€ S.

VyePlsx=1x] - s=1 (*)

(We notc that in making this assumption we incur no cssential loss of
gencrality since we can always replace each se S by its equivalence class
[5] under the cquivalence relation s=t« (Vxe P)sx=1x and deline
[s]v=usx; the action of thesc cquivalence classes on P then satisfies (*).)
Any pair s, €S is assumed to have a product ste S salislying

(Vx e P)(st)x =s(tx)

Thus st may be regarded as the screen obtained by juxtaposing 1 and s (in
that order). We shall assume that this operation is associative: (st)u=s(tu)
forall 5,1, ueS.

We also suppose that P contains a unique empiy ensemble 0 satisfying
s0=0 for all s and that S contains elements 0, | such that Ox=0 and
Ix=x for all xe P. Thus 0 is a screcn which “absorbs” every ensemble and
I a screen which has no effect on any ensemble. Clearly Os=s50=0 and
Is=sl=sfor all s€S.

We assume also that each scrcen s can be “reversed” so as to form a
new screen § called its transpose. (Thus, for any x e P, §x may be construed
as the result of dllo‘wmg the cnsemble x to travel through s “in the opposite
dircction.”) The transpose opcration is presumed to satisfy the evident con-

ditions -
(st) =15, (5) =s

for all 5, r€S. Clearly, T=1, 0=0.

We may sum up the situation by saying that S is an involution
semigroup, with O and |, acting on the set P.

We next determine what properties a screen should possess if it is to
correspond o a “test for a property” of ensembles. To begin with, it is
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natural to suppose that, oncc an ensemble has bcen subjected to a “test,”
an immediate subsequent application of the same “test” should have no
further eflfect on the ensemble. This means that a screen s which
corresponds to a “test” must be idempotent:

st=5

We shall also suppose that the effect exerted on any ensemble by a screen
corresponding to a “test” is independent of the ensemble’s “direction of
travel” through the screen. That is, a screen s corresponding to a “test”
must be equal to its transpose:

S§=s

A screcn corresponding (o a test will be called a filter; thus an element
se€ S is a filter iff s> =5§=2s. This is cquivalent to the condition: s§=s. We
write F for the set of all filters. Notice that 0, 1 € F, and that, for 5, re F,

steFest=1ts

A screen s is said to be transparent to an ensemble s, and x is said to
pass s il sx = x, i.e., il passage through s has no eflcct on x. And s is said to
be opaque to x or to block x il sx=0, i.c., il x is completely absorbed by s.
Thus, thinking of a filter s as a rest for a property P, an enscmble x passcs
the test corresponding to s ifl s is transparcent to x, and x (completely) fails
the test ifl s blocks s.

We turn Finto an orthospacc in the following natural way. We dcfine,
fors,teF

s<teVxe Plsx=x—o(v=x]
and

slteoVxePlsx=x—-1x=0& ix=x—-s5x=0]

These are the relations of entailment and exclusion between filters (or
“tests™) respectively. We then have

3.2. Lemma. F=(F, <, 1,0)is a (partially ordered) orthospace in
which

(1) sSteost=is=s
(1) sLltest=15=0

for all s, re F.
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Proof. We verify (i) and (ii). . >

(i) Ifs<y, then sx=x—tx=x for all xe P. But ssx =s5%x=sx, so
tsx=sx for all xe P, whence ts=s. Therefore tse F, whence st=ts=3.
Conversely, suppose ts=s; then if sx =x, it follows that x = sx = tsx = 1x,
so that s<t.

(ii) Ifs L then sx=x—tx=0 for all xe P. But ssx =s5’x =sx, so
tsx =0 for all xe P, whence ts=0. Hence tse F, so that st =1s=0. Conver-
sely, suppose st =1ts=0. Then if sx =x, we have tx=tsx=0 and if rx =x,
then sx =stx=90. Hence s L 1.

We leave to the reader the casy verification, using (i) and (ii), that
(F, <, 1,0) is an orthospacc and that < is a partial ordering. |

It follows easily from 3.2 that, il 5,7€ F and st=1ts, then s is the
greatest lower bound of {s,} in F.

Now consider the set P of ensembles. We define the relations < and 1
on P by

XS yoVsel[sy=y—osx=x]
x1lyeo3dse F{[sx=x&(Vz< y)sz=0]
v [sy=ypy& (Vz< x)sz2=0]]

Thus < is the refation of inclusion: x < y means that x passes every “test”
that y passes, or simply that x is a subensemble of y. And L is the relation
of exclusion: x 1 y mcans that there is a “test” which x passes but no sub-
cnsemble of y does, or vice-versa. As usual, we write xx y for x L y.

It is now easily verified that P=(P, <€, 1,0) is an orthospace, the
orthospace of ensembles determined by F. Note that < is not in general a
partial ordering: two cnsembles may be subensembles of one another yet
not identical.

Now let (E, /) bc any dense orthocompletion of P. As we have scen, E
can be considered as being (up to isomorphism) the complcte lattice of for-
mal properties of elements of P. Each filter, moreover, is presumed to
correspond to a 'test” for a property of members of P. It is natural to take
this property to be that of passing s, so that s is correlated with the subset
P,={xeP:sx=x} of P. But by the observations above, P,, and hence
also s, is correlated with the formal property (i.e., element of E) §=
Vi[P,] e E. Now il (E, i) is the canonical orthocompletion of P, then

§=Vi[P,J={yeP:3xeP,xx~y)

Thus, although s is supposed to be “testing” ensembles x for the property
of passing s, i.c.,, the property sx = x, the (extension of) the corresponding
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formal property in E is nor the sct P, of all cnsembles that pass s, but
rathcer the sct of all cnsembles y such that x=x y for somc censcmble x
passing s. We shall sce later on, however, that when F is commutative we
may lake § to be P,.

We now introduce the concept of compatibility of filters, which is
intended to give expression to the idea of simultancous performability of the
corresponding “tests.” (Note that the concept of compatibility of filters
should not be confused with the notion of order compatibility introduced in
Example 2 of Section 2.) For cach filter 5, let T, be the corresponding
“test.” We say that two filters s, 1 arc compatible—and the “tests” T, T,
simultaneously performable—if any ensemble that passes 7, continues to do
so even after it has been subjected to T, (cf. Rel. 8, 4.3¢). That is, s is com-
patible with ¢ il and only il

VX € P[sy =X - 51X = (x] (*)

Now it is easily shown that (*) is equivalent to the condition sts=ts. (IFor
if (*) holds, then, for any ye P, pulling x=sy, we have sx=x, so
stsy = tsy; since this holds for any ye P, it follows that sts=ts. Converscly,
if sts=1s, and sx =, then stx = stsxy = (sx = 1x.) Therefore: Two filters are
compatible (and the corresponding “tests™ simultancously performable) if and
only if they conmmute.

The notion of compatibility is closely related to the concept of
tightness. We say that a filter s is right if sx < x for every ensemble x. Thus
a tight filter is one whosc cffect on any ensemble x is to “filtcr out™ a sub-
ensemble of x, i.c., an ensemble that will continuc to pass any “tests” that x
would pass. We notc the following.

3.3. Proposition. A filter s is tight iff s7=ts for all filters . Thus Fis
commutative iff every filter is tight.

Proof. Suppose that s is tight and r€ F. Then for any ve P> we have
1y = y where y = t1x; since sy < y it follows that tsy = sy, whence 1s1x = six,
so that rst=s1 and it follows as above that st=1s. Conversely, supposc
st=tsfor all re F. Then if tx=x, we have tsx=stx=sx, so sx<x. |

Next, we investigate some of the conscquences of the assumption that
for each ensemble a there is a filter s, which “tests™ the property of being a
subensemble of a, i.c., is such that, for any xe P,

(3.4). S, N=xeNLa

If, for cach ae P, an s, € F satislying (3.4) cxists, we say that [ acts ade-
quately on P.
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. We note the following.

3.5. Lemma. Supposc that F acts adequately on P. Then
(i) s,x<aforany xe P;

(i) s,<sesa=aforall seF, ae P;

(iit) the map ars s, is a densc quasiembedding of P into F.

Proof. (i) Since s,(s,x)=3s,x, this follows from (3.4).

(ii) We have
S, 5o Vx(s,x=x— sy =1x)

—{(Vx<a)sx=x

—sa=aqa
'(iii) We have
S, S, o 85,a=aqa (by (ii))
—a<h (by (3.4))

and
s, Lsp—os,5,=0

= (s,a=a)&Vz<b(s,z2 =5,5,2=0)

—alb

Il a 1 b, then there is s€ F such that sa =a and (Vz2<b)sz=0. Hence s, < s
by (ii), so that s, =s,s. Thus, for any xe P, s, s,x=s,55,x =5,0=0. Hence
S.ss=0and s, L 5,.

Therefore ars s, is a quasiembedding. To show that it is dense, sup-
pose that s,reF and s,<s—s,<t for all aeP. Then by (ii) sa=
a—ta=afor all ae P, whence s<t. |

If F acts adequately on P, then it follows from this last result that the
canonical orthocompletion of F is also a dense orthocompletion of P,
which by 2.10 is isomorphic to the canonical orthocompletion (L(P), i) of
P. In this casc it is casily shown that the formal property (i.e., clement of
L(P)) correlated with a given filter s is

§={xeP:ss, #0)}

Il F.acts adequately on P and is also commutative, then the proximity
relation = on P coincides with the relation of compatibility. (For if xx y
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in P, then s x=x implies 3z < s z#0. But Sezsyand s.z2<z2€ ) It
follows from 2.11 that in this case L(P) is a complete Boolcan algebra
which, by the remarks at the end of Section 2, is isomorphic to the regular
open algebra RO(P) of P. Thus RO(P) is a complete lattice of formal
properties of the elements of P. If P is normal, onc casily shows that the
formal property (i.e., clement of RO(P)) correlated with a given se Fis the
sel '

§=P,={xeP:sx=x)
of ensembles that pass s. It is also readily shown that, for s, re F,
St=5ni
If, further, we correlate cach xe 2 witl its image
X =ys={rel y<x)

under the canonical dense embedding of P in RO(P), then the action of F
on P transforms into the action by set-theoretic intersection of (he set F=
{x:5€F} on the set P= {¥:xe P}, since it is casily shown that

(sx) =s5nx
forseF, xer. :

To sum up, then, if Fis commutative, normal, and acts adequalely on
a normal P, we may regard F and P as familics of subscts of the sume set
(actually P itself) and both the product in F and the action of F on P as
set-theoretic intersection. This situation may be obtained by starting with
any family / of individuals, taking F (or S) to be any family of subsets of /
containing ¥ and / and closed under finite intersections and P as any
family of subsets of 7 containing ¥ and closed under inlersection with
members of F. This is the classical situation in which cach filter or “test™ is
correlated with a classical property (considered in extension) of individuals
and each ensemble is just a collection of individuals.

When the set of filters is noncommutative the complete lattice of formal
properties E of P is in gencral non-Boolean and the “logic” of these proper-
lies is accordingly nonclassical. Morcover, in this situation there arise some
of the characteristic features of quantum physics. In addition to incom-
patibility of tests which we have alrcady mentioned, we can formulate a
reasonable version of the concept of the quantum mechanical concept of
superposition (of purc enscmblcs).

Let us call a nonzero enscmble « pure if it is minimal in P, ic., if i
satisfies

Vxe P[x<aerxv=0o0r x= al -
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Paraphrasing Dirac’s famous 1930 definition of superposition of states (see
Ref. 6, Chapter I, Scction 6) we say that a pure cnsemble a is a super-
position of pure enscinbles b and ¢ provided that any test which both b and
¢ fail is also failed by a. Thus a is a superposition of b and ¢ if

Vse Flsh=0& sc=0-50=0] (*)

It is now casily shown using 3.3 that if F acts adequately on P and non-
trivial superpositions arc present in P, i.c., if there are distinct pure ensem-
bles a, b, ¢ satisfying (*) above, then F is noncommutative. So the presence
of nontrivial superpositions of pure ensembles ensures that the lattice of for-
mal properties of ensembles has a nonclassical nature.

Obscrve that nowhere have we needed to assume that the sel of filters
or ensembles forms a lattice, let alone a lattice of projections or subspaces
of a Hilbert space, as one customarily does in the foundations of quantum
mcchanics. It is of interest, however, (o mention the “orthodox" quantum
mechanical framework in which S is the semigroup of continuous linear
operators on a Hilbert space H, F is the set of projections in S, and P is a
set of (closed) subspaces of H which includes all the one-dimensional sub-
spaces. In this case the canonical orthocompletion of P may be identified
with the complcte ortholattice E of all closed subspaces of /{ and for se F
the correlated formal property §e E is the range of the projection s. Pure
cnsembles arc just one-dimensional subspaces of /1, i.c,, pure states in the
quantum-mechanical sense. Finally, a pure ensemble (state) a is a super-
position in the above sense of pure ensembles (states) b, ¢ iff a is in the sub-
space of I spanned by b and ¢, i.e., if a is a superposition of b and ¢ in the
usual quantum-mcchanical sense.

In conclusion, we may assert that, starting with the simple and
phenomenologically plausible idea of a.collection of filters acting on a
collection of ensembles, we obtain in a natural way a comglete lattice of
(formal) properties of the ensembles. If all filters are compatible, i.e., if
every filter is tight, then the resulting lattice is Boolean and the
corresponding “logic” of the properties is classical. If, on the other hand,
the filters are nat all compatible, or if nontrivial superpositions of pure
enscmbles are present, then the lattice of properties is not in general
Boolean, and the corresponding “logic” of the properties is “nonclassical”
or “quantum logical.” Thus “quantum logic” arises simply from the incom-
patibility or noncommutativity of filters or “tests.”
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