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0 Introduction

A polymodal lattice is a distributive lattice carrying, for some n 2 1, an n-place
operator (which we shall call a polymodality) preserving top elements and finite meets
in a certain natural sense. The (dual of) the concept of polymodal lattice, which
constitutes a natural generalization of the concept of Boolean algebra with operators
first introduced by JONSSON and TARSKI in [4], has been studied (under the name
complez algebra) by GOLDBLATT in (2], where a general representation theorem is
proved. Our purpose in the present paper is to develop the theory of polymodal
lattices in some rather different directions, namely, to investigate the relationship
between polymodalities and a generalization (“filtroid”) of the notion of filter to
cartesian products of lattices, to analyze free polymodal lattices, and, finally, to apply
the results obtained to the logical systems correlated with them, which we shall term
polymodal logics, and which constitute natural generalizations of the usual systems of
(proposit.ional) modal logic familiar from the literature. -

In Section 1 we introduce the concepts of filtroid and polymodal lattice and ex-
plore some of their basic properties and relationships. In Section 2 the connection
between polymodalities and filtroids is exploited to establish properties of free poly-
modal lattices. In Section 3 the concept of (classical or intuitionistic propositional)
polymodal logic is introduced and the results of Section 2 applied to show that these
systems possess certain features (notably, versions of the socalled disjunction prop-
erty) familiar from classical modal logic. To conclude, we formulate an extension of
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Kripke semantics to classical polymodal logic and prove soundness and completeness
theorems, the proof of the latter making essential use of the concept of filtroid in-
troduced in Section 1 and, as a result, turning out to be more than just a routine
variation on the usual proof of completeness for classical modal logic.

Notation. Given sets X;,..., X, we write # = (21,...,Z5), ¥ = (1, -+, Yn),
etc. for members of the Cartesian product X; x --- x X,,. Given subsets A;,..., A,
of X1,...,Xn, respectively, we write Ay + ---+ A, for {x € X; x --- x X, :
) € Ajor ...orz, € Ay}. We write z ~ y for 3 (Vi # j).z; = ui, and z|y
for 3j.z; = y;. We write P(X) for the power set of X.

1 Filtroids and polymodal lattices

By a lattice L = (L,A,V,<,0,1) we shall always mean a distributive lattice which
is bounded, i.e. has both a bottom element 0 and a top element 1. We shall always
assume that homomorphisms between lattices preserve 0 and 1. If L is a Heyting
algebra (in particular, a Boolean algebra), we write —, * for the pseudocomplemen-
tation operations in L: thus, for z,y € L, ¢ — y is the largest element 2z € L for
which 2 A 2 < y and z* is ¢ — 0. By a filter in a lattice L we mean a subset F of L
such that

$,y€F=>$/\yeF, l‘EF,:cSy=>y€F

A filter F'in L is properif F' # L, or equivalently if 0 ¢ F. Dually, an idealin L is a
subset I of L such that

z,y€l => zvyel, ‘zel,z>y=>yel.

I is properif 1 ¢ I. For each X C L the set {y:(3z1...zp € X). 21 A---Az, < y}
(resp. {y: (3z1...2n € X).y <21 V---Vz,}) is the least filter (resp. ideal) contain-
ing X; it is called the filter (ideal) generated by X; it is proper iff for each finite subset
{z1,.. ., zn} of X, 21 A Azp #0 (resp. 2, V---V 2, # 1). A filter is principal if
it is generated by a singleton {a}; in that case it is of the form {z : a < z}. A filter
F is prime if it is proper and if zVy € F implies z € F or y € F for any z,y. If L
is distributive and bounded, then every proper filter is the intersection of the family
of prime filters that contain it. As a consequence, two elements are the same iff they
are contained in the same prime filters. (For proofs of ‘all these facts, see e.g. [1].)

We now extend some of these concepts to products of lattices. Given an n-tuple
of lattices A = (Ly,..., Ly), the Cartesian product IIA = L; x - -- x L,, is a lattice in
which A, V, < are defined “coordinatewise” in the obvious way. We write 1, 0 for the
top and bottom elements of L™, i.e., 1 =(1,...,1)and 0 = (0,...,0). By a A-filtroid
we shall mean a subset F' of I\ satisfying, for all =, y € IIA,

1)ife€ Fand ¢ <y, theny € F,

2)ife,y€e Fandz ~y,thenz Ay € F,

3) {1}+---+ {1} C F.

A A-filtroid F is said to be proper if it does not contain 0 (i.e., does not coincide

with IIA) and prime if it is proper and Vy € F implies * € F or y € F for any =, y.
If Ly =...= L, = L, a Afiltroid is called an n-filtroid over L. Clearly 1-filtroids
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coincide with filters. If @ € TIA, the set (@) = {x €A :a < zorz|l}isa filtroid
called the principal filtroid generated by a. Given RETR Ry n s P D ey iy Ly
respectively, it is evident that Fy +--- + F, is a A-filtroid; filtroids of this form will
be called basic.

Proposition 1.1. Let F be a A-filtroid. Then we have:

(i) F 1s basic iff, for any € F, there is i such that (0, Ly @upiani) € E

(ii) F is prime iff there exist prime filters Py, ..., Py in Ly,...,Ln, respectively, for
which F = P+ -+ -+ Pn.

Proof. The proof of (i) is a simple exercise and is left to the reader. As for (ii),
sufficiency is easy. For necessity, suppose that F is prime and define, for each i,
1<ig<ny P={z€eLi: (0, 2 .50)€ F}. 1t is readily checked that P; is a
prime filter in L;. We claim that By ¥ 0i Py=Fr e P+ 4 P,, then,
for some i, z; € P;, i.e., (0,...,%i,...,0) € F. Since (0,5... 80, 0 <2aad F
is a filtroid, it follows that € F. Accordingly, Py +---+ P, C F. For the reverse

inclusion, observe that since, for any @, we have z = (21,0,...,0)V---v(0,...,0, ),
it follows from the primeness of F that if ¢ € F, then (0,...,2i,..., 0) € F for some 1,
ie,z;€P;. Thusz€ P+ --+ P, and the reverse inclusion follows. O

Our next result generalizes a well-known property of filters.

Theorem 1.2. Each proper A-filtroid is the intersection of the family of prime
\-filtroids that contain 1t.

Proof. We may assume n > 1. Let F' be a proper A-filtroid and suppose
a = (aj,...,an) ¢ F. We define sequences Fi,...,F, of filters and Py,..., P, of
prime filters in Ly, ..., Ln, respectively, by recursion as follows.

First, we put F} = {z € L, : (z, a2, . ..,an) € F}. Clearly Fy is a filter in L, and
a; ¢ Fy. Let Py be a prime filter in L, containing F; but not a;.

Now assume for k > 1 the inductive hypothesis that Fy, ..., Fyand Py, ..., P have
been defined, where Py, ..., Py are prime, satisfy F; C Pi,a; ¢ Pifori=1,...,k and

(1) Fr={z€Li:(32, ¢ Py)...3zk-1 ¢ Pi-1). (21, 5 Bh1:2BR 41, ..y@n) € F}.
Now define

Fryi = {z € Li41: (3:81 ¢ Pl)...(B:ck ¢ Py). (:1:1, S Ry X, Ak-2, .y@pn) € 1%

We claim that Fyyy = G is a filter in Lg4a. For, to begin with, G clearly con-
tains 1 and is accordingly nonempty. Next, it is evident that if z € G and z < y,
then y € G. Finally, if z,y € G, then for some z;, y; not in By (i-= 1,.:..5k)the
n-tuples (z1,...,%k, T, Qk42, - - ,an) and (Y1, -, Y&, ¥ Ck+2, - - .,an) are both in F.
Then, by the first filtroid condition, (z1 Vyr,--rzk V Yk, T,Qk42, - --,n) and
(z1Vy1, .- Tk VYk, Yy k42, - - - ,ay) are also both in F, so that, by the second filtroid
condition, (21 Vy1,. -, Tk VY, TAY, Ak42, - - .,an) € F. Since Py, ..., P are prime,
ziVyi ¢ P (i=1,...,k). It follows that zAy € G and so Fy4 is a filter as claimed.

Since Fy C Py, we deduce from (1) that

Vz[(axl ¢ Pl)...(al'k_l ¢ Pk—l)'(zli vy T—=1,T,0k+1, “')aﬂ) EF=>rzre€ Pk]y
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i.e.,
"1[(31,‘1 ¢ Pl) o .(Bxk_l i Pk_l)(E!:c ¢ Pk). (.’L‘l, srie B R & 1k F 1 = .,a,,) = F]
But this means that ax41 & Fi41. To complete the inductive step we choose a prime
filter Pr41 in Li4, containing Fi4g but not ag4i.
We thus obtain filters Fy, ..., F, and prime filters Py,..., P, such that a; ¢ P;
(i 51, .0vm)nnd
(2) Pn 2 Fn = {I € Ln 3 (31:1 ¢ Pl) ads .(Hrn_l ¢ Pn—l)~ (.’Bl, ol .,.’Bn_.l,.’L‘)} = F.

Clearlya ¢ Py+-- -+ P,. Also,ifz = (z1,...,zp) E Fand z; ¢ P; (i=1,...,n-1),
then z, € F, and so z, € P, by (2). This means that € € P, + --- + P,,. We have
therefore shown that F C Py + ---+ P,. Thus we have produced, for each a ¢ F,
a prime filtroid containing F' but not a, proving the theorem. O

We now introduce the central concept of the paper. Let L be a distributive lattice
with 0 and 1. For n > 1, an n-modality on L is a map O : L™ — L satisfying:

1) Oz =1 for any = € L" such that =|1,

2) O(z Ay) = Ox AOy for any «, y € L™ such that z ~ y.
A 1-modality will be called simply a modality. Clearly any modality O on L satisfies
01 = 1 and O(z A y) = Oz A Oy for arbitrary z,y € L. A O,-lattice (or O, -Boolean
algebra or O, -Heyting algebra) is a pair consisting of a lattice (or Boolean algebra or

Heyting algebra) and an n-modality on it. We shall call an n-modality for arbitrary
n > 1 a polymodality, and a O,-lattice for arbitrary n > 1 a polymodal lattice.

A O-morphism between O,-lattices (L,0) and (M, A) is a lattice homomorphism
h : L — M such that h(Ox) = Ah(z), where h(z1,...,z,) = (h(z1), ..., h(z,)).
If L and M are Heyting algebras, h is called a Heyting O-morphism if in addition it
preserves the relative pseudocomplement operation —.

The following facts are easily checked: Polymodalities preserve order; for any
n-modality 00 on L and any filter F' in L, the set

O-'F := {z :0Oz € F}
is an n-filtroid over L; moreover for each ¢ the map OJ; : L — L given by
O‘z := 0(0,...,z,...,0) (z in the i*™ place)

is a modality on L: the O are called the modalities on L induced by 0.

Examples.

1. The maps = + z; V ---V z, and x + z; are n-modalities for any n and i < n.

2. Let ¢1(z),...,¢n(z) be formulas, and T a theory in a first order language L
such that T+ ¢(¥*) for any i = 1,...,n and any o € T. For sentences oy, ...,0, of L
define

[Ros, .- 0] = aﬁw) V...Vl

Then O induces in the obvious way an n-modality on the Lindenbaum-Tarski algebra

of T.
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3. Let Ti,...,T,, T be theories in a first-order language L capable of encoding
its own syntax such that O TFECNHa - AT ind (ii) for each i there is in L a
Ti-provability predicate Pr; for which 7" - Pri({c)) whenever T; + o, where (o) is the
code for o. Define, for sentences L e ) 5

Ofoy;...,00) = Pri((61)) V-V Pra((0,)).
Then O induces in the obvious Way an n-modality on the Lindenbaum-Tarski algebra
of T'.

4. Let each of Cy, .. -, Cn be a ZF-definable class of models of Zermelo-Fraenkel set
theory ZF. Then the operator [J defined on sentences 71, ...,0n of the language of
ZF by

L(ayy. .. 00) = (YMeC)MEg v...v (YMeC,).MEgq,
induces an n-modality on the Lindenbaum-Tarski algebra of sentences of ZF in the
evident way.

5. If Ay, ..., A, are (1-)modalities on a fixed lattice L, then O : L —, [, defined
by

Be = Ajz; V- -V Apz,
is an n-modality on L. A polymodality which can be represented in this way will be
called simple; if the modalities By, ..., A\, inthe representation are all identical, the
polymodality will be called rudimentary.

Rudimentary and simple polymodalities may be characterized as follows.

Proposition 1.3. Let O be an n-modality on a lattice L. Then the following
conditions are equivalent:

(1) O is simple;
(i1) for all x, Oz = D(zl,O,...,0)V~--VEI(O,...,O,z,.);
(ii) O'P s basic for any prime filter P in L.

Moreover, O is rudimentary iff it satisfies any of (i) - (iii) and is, in addition, sym-
metric, 1. e. the value of Oz is invariant under permutation of the z;.

Proof. The equivalence of (1) and (ii), and the final assertion, are left as sim-
ple exercises to the reader. If (ii) holds, and Oz is a member of a prime filter P,
then, for some i, D(O,...,::,',...,O) € P, so that (0,...,:c.-,...,0) € O°'P. It now
follows from 1.1(i) that O~!P is basic. Conversely, assume (iii). Writing Vz for the
expression on the right-hand-side of the equation in (ii), clearly we have V& < Oz,
and to prove the reverse inequality we need only show that any prime filter contain-
ing Oz also contains Vz. If Oz Is in a prime filter P, then ¢ € O-1P, so that,
by (iii) and 1.1(i), there is i for which (0i:0:,24::.,0) € O7YP. It follows that
Ve > 0(0,..., ;.. .,0) € P. Therefore Vz € P; hence (ii). O

We shall call an n-filtroid F over L O-prime if there is a prime filter P in [, for
which F = 0O~1P. Write O"F for the filter in L generated by the set {Oz:z € F}.
We say that F is O-disjunctive if, for any x,...,x; € L",

Oz, v--.vOz, €O F > z; € F for some 1.

IF{1}+ -+ {1} is U-disjunctive, we shall say that (L,0) is disjunctive. We note
the following
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Proposition 1.4. For any proper n-filiroid F over L, the following are equiva-
lent:

(1) F s O-prime;
(i1) F s O-disjunctive.
Proof.

(i) = (ii). Suppose that F = O~'P for some prime filter P and assume that
a=0z V.---vOx, € OF. Now O'F = O°(0°'P) C P, so a € P, whence
Oz; € P for some 1, so that x=; € F.

(i) = (i). Suppose that F' is O-disjunctive. Then the set {0z : ¢ F'} generates
a proper ideal I disjoint from O F. By a well-known result (see, e. g., [1, 9.13]), there
is a prime filter P in L containing 0" F and disjoint from I. Then O~ !P = F, since
if z € O°!P, then Ox € P, so that Ox ¢ I, whence € F, while if z € F, then
Oz € O F C P, whence z € O~ P. O

In this connection we also have

Proposition 1.5. For any polymodal lattice (L,0) the following are equivalent:
(i) Every O-prime filtroid over L is prime;
(i1) O(x Vy) = Ox vV Oy for allz, y in L.

Proof.

(i) = (ii). Assume (i) and let P be a prime filter in L. Then O~!P is prime and
we have

OxzVvy)eP if zvyed!'P
if xe0 'PoryeO"lP
iff Or€ePorlyeP
iff Oxzv0OyeP.
Therefore O(x V y) and Oz V Oy are contained in the same prime filters; they are,
accordingly, equal.

(i) = (i). Assuming (ii), if P is prime and z Vy € 07! P, then Oz vV Oy =
O(zVy) € Psothat Oz € Por Oy € P,i.e. z € O°'P or y € O°'P. Accordingly
O-!P is prime. O

A O,-lattice (L,0) will be said to be well-primed (resp. properly primed, prin-
cipally primed, weakly primed) if every n-filtroid over L (resp. every proper filtroid,
every proper principal filtroid, {1} + - -- 4+ {1}) is O-prime.

Proposition 1.6. Let (L,0) be a O,-lattice.

(1) (L,0) s weakly primed iff 1t is disjunctive.
(11) (L,0) s principally primed iff, for any a, z1,...,xx € L™,
Oa <0z, V---VOzxr = a <z or z;|1 for some 1.
(If n =1, the phrase “or z;|1” is redundant.)
(1) If n =1, (L,0) 1s principally primed off it is properly primed.
(iv) If (L,0) is principally primed, then each induced modality O on L is injective.
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(v) If (L,0) is well-primed, then Oz is never 0 and the map n — (@H™0 (where
(O™ is the " iterate of O') is an injection of the set of natural numbers into 1
so the latter is infinite.

Proof.
(i) and (ii) are straightforward consequences of 1.4.

(iii) Suppose n = 1; it suffices to show that principally primed implies properly
primed. So suppose (L,0) principally primed, and let F be a proper filter in L
for which £ = Oz V ---V Oz € O F. Then there are ay,...,am € F such that
O(ay A---Aap) =0a; A---Alam < z. Then 0 #a=a; A---Aan € F, and since
(L,0) has been assumed principally primed, there is ¢ such that a < z;. But then
z; € F, and we conclude that (L,0) is properly primed.

(iv) If (L,0) is principally primed, it follows from (ii) that O'z < O'y implies
z < y. Injectivity is an immediate consequence.
(v) If (L,0) is well-primed, there is a prime filter P such that L" = O-1P.

In particular 0 € O-!P so that 00 € P, whence 000 # 0. The first claim in (v)
is an immediate consequence. By (iv), O! is injective (and order preserving), so

0<O0< (OH)0<--- a
We now temporarily confine attention to Boolean algebras. Let By, .. 25 BB
be Boolean algebras. A map h : By X -+ x B, — B is called a hemimorphism if

h(z) = 1 for any z|1 and h(z A y) = h(z) A h(y) for any z ~ y. It is easily shown
that the inverse image of a filter under a hemimorphism is a filtroid.

We are going to construct, for any Boolean algebras By, . . ., B,., a Boolean algebra
B,0---0OB, such that hemimorphisms with domain By x - -+ x By correspond bijec-
tively to (Boolean) homomorphisms with domain B;0---0B,. In particular, for any
Boolean algebra B, polymodalities on B correspond to homomorphisms BO - --0OB,
so that the study of polymodalities on Boolean algebras reduces in principle to the
study of special kinds of homomorphisms.

Let Filt(By, ..., B,) = Filt be the set of all (By, ..., Bp)-filtroids; for each = in
By X --+ X By define Fo = {F € Filt : ® € F}. Let B;0---0B,, be the Boolean
subalgebra of P(Filt) generated by the Fg. Let i : B; x---x B, — B,0---0B,
be the map & +— Fg. Clearly 7 is a hemimorphism.

Theorem 1.7. For any Boolean algebra B, ..., Bn, B and each hemimorphism
f: By x---x B, — B there is a unique homomorphism g : B0 ---0B, — B
such that f = goa1.

Proof. Since the image K of By x - - - x B, under i generates B;0..-0By, if the
g corresponding to a given f exists, it must be unique. To establish its existence we
need to show that the map k : K — B defined by k(i(z)) = f(z) can be extended
to a homomorphism B;0---0B, — B. By [8, 12.2], this will be the case provided
that, for any ®1,...,Tk,Y1,---»Ym € B1 X -+ - X Bn,

(3) i(2) N - -Ni(ze) Ni(yy) N Ni(y,) =0
= f@i) A Af(xe) Af(y) A A f(ym)® =0
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Now (3) is equivalent to

(1) fE)AAf(@) £ fy) V-V f(y,)
= (3F€Filt).{z1,...,zk}gF&{yl,...,ym}ﬁF:(b.

Let G be the filter in B generated by the set {f(z1)A--‘Af(xk)}. Then F = 7liGle

Filt. Clearly {z;,..., 2} C F. If f(®) A Af(xx) £ fly,) V-V f(y,n), then
f(®) A=A f(zi) £ f(y,) so that y; ¢ Fforalli=1,... m. This proves (4) and
the theorem. O

We conclude this section with a discussion of some of the properties of the set
Mod, (L) of all n-modalities on a bounded distributive lattice L. We define a partial
ordering on Mod,(L) by O < A iff Oz < Az for all z € L™. This turns Mod, (L)
into a bounded lower semilattice with top (bottom) element the constant map on L"
with value 1 (0), and in which the meet O A A is given by (OA A)z = Oz A Ax.
When L is a complete Heyting algebra we can assert much more.

Proposition 1.8. If L is a complete Heyting algebra, so is Mod,(L).

Proof. Clearly, if L is complete, Mod, (L) is a complete lattice in which the meet
operation A is given by

/\iel(Di)m - /\iel O;x.

We need to show that, when L is in addition a Heyting algebra, then the relative
pseudocomplement 0 — A exists in Mod, (L) for any O, A € Mod, (L). To this end,
define I' : L™ — L by

Iz .= A{Oz - A(zVvz):2€L"} for zeLn.

We claim that T'is O — A. First, T is in Mod,(L) since clearly I'z = 1 whenever
z|1 and if &~ y, then, noting that #V 2 & y V z for any z € L", we have

Pz Ay) = AN{Oz > A((zAy)Vvz):z e L}
=MOz - A((zvz)A(yVvz): 2 € L™}
=MOz— (A((zvz)AA(yV2):z€ ) hudi
= M@0z - Az v2))A Oz — A(yVz)):zeL"}
=Tz ATy.
Finally, suppose ¥ € Mod,,(L) satisfies ¥ < I'. Then for any ¢ € L™,
Yz AOz <Tz AOz < (Oz — Az) AOz < Az,
whence A0 < A. Conversely, if © A0 < A, then for any ¢,z € L™, we have
Lz AOz <E(zVz)AO(xV2)< Az V 2).
Therefore Lz < 0z — A(z Vv z), whence
Lz < A0z - A(zvz):ze L),
so that ¥ <T. ]
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2 Free polymodal lattices and algebras

A O,-lattice (O,-Boolean algebra) (L,0) is said to be freely generated by a set I (or
free on I) if there is an (injective) map p : I — L (called the canonical injection) such
that, for any O,-lattice (resp. O,-Boolean algebra) (M, A) and any map f : I — M
there is a unique O-morphism h : (L,0) — (M, A) such that f = hop. If in
this definition we replace the terms “O,-lattice” and “O-morphism” by the terms
“0,-Heyting algebra” and “Heyting O-morphism”, respectively, we obtain the notion
of O,,-Heyting algebra freely generated by I. Standard arguments of universal algebra
(see, e.g. [3, ch. 4]) show that, for any I, there exists a (unique up to isomorphism)
O,-lattice, O,-Boolean algebra and ,-Heyting algebra freely generated by I.

Let C be a collection of properties of O,-lattices or algebras expressible in terms of
universally quantified equational conditions (e.g. Ve.Ox < 2,V - -Vzn, equivalent to
Vz.(z;V - Vz,)AOz = Ox). A On-lattice or algebra possessing all the properties
in C will be called a C-O,-lattice or algebra. Standard arguments again establish
the existence, for any set I, of the C-0,-lattice, the C-O,-Heyting algebra and the
C-0,-Boolean algebra free on I.

A list of properties selected from the conditions
00=0, Oz<z;V---Vz, 0Oz<00=z,...,0z)
will be called a standard list. These are the natural extensions to polymodalities of
the familiar conditions
0o =0, fzr <z, Oz < OO0z
sometimes imposed on modalities.

We now make the following definitions. Write 2 for the lattice (resp. Boolean
algebra) {0,1}. For = = (zi1,...,2,) € L", ¢ = (i1,...,in) € 2", write  ® 2 for
((z1,41),- - -,(Zn,in)). Given a Oy-lattice (L,0) and an n-filtroid F" over L, define
the maps Op, O. : (L x 2)" — L x 2 by

(Oz,1) ifzeF,
(Ozx,0) otherwise;

Dp(:l:@i) - {

(1,1) if (zj,1;) = (1,1) for some j,
(Ox,0) otherwise.

Ofz®%) = {

It is easily verified that Op and O, are O,-modalities over the lattice L x 2 (which
is a Heyting algebra or Boolean algebra if L is).

The next result will be instrumental in demonstrating that free polymodal lattices
possess some of the properties formulated in the previous section.

Theorem 2.1. Let (L,0) be a O,-lattice.

(i) Let F be an n-filtroid over L. Then the following conditions are equivalent:

(a) F 1s O-prime.

(b) There is a O-morphism h : (L,0) — (L x2,0F) such that myoh is the identity
on L. (Here m is the projection of L x 2 to L.)
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(i1) The following are equivalent:
(a) (L,0) is disjunctive.
(b) There is a O-morphism h - (L£,0) — (L x 2,0.) such that 7, 0 h is the udentity
on L.
These equivalences also hold, mutatis mutandis, for O, -Boolean algebras.
Proof.
(i)(a) = (i)(b). Suppose F = O-1p for some prime filter P. Define  : [, —_, Lx2
by

h(z):{ (=,1) .if:cGP,
(%,0) ifz¢p

It is easily checked that his a homomorphism, and clearly 7, o 4 is the identity on I
Moreover, h is a O-morphism since if 2 € F, then Oz ¢ P, so, for some 3 € 2",
Urh(z) =Op(z @ i) = (O=,1) = h(Oz),
while if ¢ F| then Oz ¢ P, so, for some i € 25
Urh(z) = Op(z ® 1) = (O=,0) = h(Oz).

(i)(b) = (i)(a). Suppose & meets the conditions laid down in (b). Let P be the
prime filter {z - Tah(x) = 1} (where 72 1s the projection of L x 2 to 2) in L. Then
we have, for z ¢ Lo

Oz epr iff mh(Oz) = 1
iff m0rh(z) = 1
it 70p(z ® 1) = 1 with h(z)=z®1
iff zeF

So F=0O-1p a required.

(i) We know from 1.6 that (a) is equivalent to the assertion that (Z, ) js weakly
primed. An argument similar to that in (i) (taking F = {1}+---+{1}) demonstrates
the equivalence of this latter condition with (b): we leave this to the reader. O

This result has the following consequences.

Corollary 2.2,

(i) Any free O, -lattice or O,-Heyting algebra or O, - Boolean algebra is well primed.
(ii) Write P, for the property of polymodalities (10 — 0. Then any free {Po}-0,-
lattice or {Po}-Dn-Heyting algebra or {Po}-0,-Boolean algebra is properly primed.
(i) If C is a standard list then any free C-0,-lattice or C-D,,-Heyting algebra or
C-0,,-Boolean algebra is weakly primed (and hence disjunctive).

Proof. We prove just the lattice versions; the proofs for Heyting algebras and
Boolean algebras are similar.

(i) Write (L,0) for the free On-lattice on I and let P: I — L be the canonical
injection. Define £ : J —, L x 2 by k(i) := (p(i),1) for i € I. Then for any n-filtroid
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F over L there is, by the freedom of (L, ), a O-morphism h : (L,0) — (L x 2,0F)
such that k = hop. Then myohop =7 0ok = p so that m o h is the 1dentity on L
by the uniqueness of factorizations through p. So condition (1)(b) of 2.1 is satisfied
by any n-filtroid F" and it follows that (L, () is well-primed.

(i) It is easily verified that, if (L, 0) is any Op-lattice satisfying Py, then for any
proper n-filtroid F over L, (L x 2,0) also satisfies Py. Writing (M,0) for the free
{Po}-On-lattice on I, the same argument as in (i) shows that, for any proper n-filtroid
over M, there is a O-morphism h : (M,0) — (M x 2,0p) such that 7, o h is the
identity on M. It now follows from 2.1(i) that (M,0) is properly primed.

(ii1) Let C be a standard list. If (L,0) is any Oy,-lattice having the properties in
C, it is readily verified that (L x 2,0,) also has the properties in C. Writing (M, 0O)
for the free C-O,-lattice on I, the same argument as in (i) shows that there is a
O-morphism A : (M,0) — (M x 2,0.) such that 7 o h is the identity on M. It
follows now from 2.1(ii) that (M, ) is weakly primed. O

Corollary 2.3. Any free O, -lattice (or O,-Heyting algebra or O, -Boolean
algebra), and any {Po}-Oy,-lattice (or {Py}-0,-Heyting algebra or {Po}-0,-Boolean
algebra) free on a nonempty set, is infinite.

Proof. The first assertion follows from 2.2(i) and 1.6(v). To prove the second,
we note that if (L,0) is a O,-lattice free on a nonempty set I and 0! is injective,
then L is infinite. This may be shown as follows. Writing p : I — L for the
canonical injection, we have p(i) ¢ range(0') for any i € I. To see this, consider
the O, -lattice (L,#) with #x = 1 for all £ € L™. There must be a O-morphism
h: (L,0) — (L, #) such that hop = p. Thus if p(i) = O'a for some a € L, it would
follow that

p(i) = h(p(i)) = h(O'a) = #h((a,0,..., B))i=1s

which is clearly impossible since p(7) is a free generator. So if 0! is injective, then
since it carries L into the proper subset L — p[1], it follows that L is infinite. This
applies in particular when (L,0) is any {Pp}-0,-lattice free on a nonempty set, since
by 2.2(ii) and 1.6(iv), O' is injective in such lattices. For {P}-0,-Boolean algebras
or {Pp}-0O,-Heyting algebras the argument is similar. O

We see from this result that the free 0'- and { Pp}-0*-lattices and Boolean algebras
on a single generator are all infinite. But if we write £ for the list of conditions
Vz.0Oz < z, Vz. Oz < OO0z, it is easy to see that the free E-O'-lattice on 1 generator
has 4 elements, while according to [6, Theorem 5.2] the corresponding free Boolean
algebra is infinite. Whether all finitely generated free E-O'-lattices are finite seems
to be an open question.

3 Applications to logic

We now apply some of the results of previous sections to the logical systems — poly-
modal (propositional) logics — which are the natural generalizations of the usual modal
logics to incorporate polymodal operators.

Let £ be the language of propositional logic (which we will suppose contains a
symbol L for “the false”) and, for n > 1 let £(n,0) be obtained from £ by adding
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the new n-ary logical operator 0 and extending the class of formulas by the clause
if p1,...,¢n are formulas, then so is O(e1,-.-,¢n)-
We employ boldface letters ¢, 1, . .. for n-tuples of formulas of £(n,0).
fe=(p1,...,0n), ¥ = (¥, ..., ¥n), we write

@ — 1 for ((Pl—'1/)1,~~-,‘Pn—’¢n),
eAYp  for (p1AYy,...,00 Ath,),

and \/ ¢ for ¢y V-V p,. For any formula % we write () for the n-tuple (¢, ..., ).
Recall that ¢ = 4 stands for 3i (Vj # i). v; = ;.

Now let K,,, KiM be the logical systems in £(n, ) obtained by adding to the usual
classical and intuitionistic systems, respectively, the aziom schemes

(pr = Y1) A Apn & ¥n) = (O(p1, - .., on) < 0O(%1,...,%n))
for any ¢1,..., 04, ¥1,...,¥n;

O(p A9) — (Op ADOyp)
for any ¢, 1;

(Op AOy) — O(p A4p)
for any ¢, 9 such that ¢ &~ 4; and the rule of inference

¢/ a,

where ¢ is any formula and « is any n-tuple of formulas in which ¢ appears. Since
Ki and K™ are just (equivalent to) the usual minimal systems of classical and intui-
tionistic modal logic, respectively, it seems appropriate to call K, and K" systems
of polymodal logic. 1t also seems natural to think of the operator [J in such systems
as “generalized disjunction”: we shall see below that the semantics for K,, provides
support for this idea.

Consider the formula or formula schemes

(2) ~O(L), (b) Op — Ve, (c) Op — (Oe,...,0p).

We shall introduce a slight variation on the notation of LEMMON [5] and write K,,D,
KnT, Ka4, K,T4 for the polymodal systems obtained by adding the axioms (a),
(b), (c), (b) & (c), respectively, to K,, and analogously for Ki"*. If ¥ is any one of
these systems, then we can form the Lindenbaum-Tarski algebra LT(X) of ¥ in the
usual way: this is the lattice of equivalence classes of formulas of L(n,0) under the
equivalence relation of provable equivalence from . Write I for the set of proposition
letters of £. Then LT(K,) (resp. LT(Ki™) is a (J,-Boolean (resp. O,-Heyting) algebra
isomorphic to the free 0,,-Boolean (resp. On-Heyting) algebra on I. If ¥ is any of
the systems K, D, Kn T, Kn4, K, T4 (resp. KirtD, KintT, Ki“4, KintT4), then LT(X) is
isomorphic to the free C-0,,-Boolean (resp. C-O,-Heyting) algebra on I, where C is
the standard list of conditions (see Section 2) corresponding to the axioms of the form
(a), (b), (c) appearing in . (For a proof of the corresponding claim for the modal
system 54 (= K; T4 in our notation), see [7, XI, 9.6]: the proofs of the claims made
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here are essentially the same.) It follows that the results concerning free 0,,-algebras
obtained in the previous section may be interpreted in terms of polymodal logical
systems.

To do this we need to make some further definitions. If ¢ = (1, ..., p,), we write
Fx @ forbg o1 A---Apn, b5 @ for 3i. by p; and, if @ is a set of n-tuples of formulas

of L(n,0), @ by 4 for 3p € #. b5 ¢ — 1p. We shall call & an (n-)scheme over X if
it satisfies

1.) if & Fx ¢, then ¢ € &;
2.) if kg ¢, then a € @ for any n-tuple a of formulas in which ¢ appears;
3.)if @by ¢, Fxp,and px 1, then Py p A,

An n-scheme @ is consistent if (L) ¢ @ and prime if it is consistent and, for any
n-tuples of formulas ¢, 1, if ¢ Vi) € &, then ¢ € & or ¥ € &. Clearly 1-schemes
over X are just theories in X, and n-schemes are the logical counterparts of n-filtroids
in the corresponding free algebras. Consistent schemes correspond to proper filtroids,
and prime schemes to prime filtroids. Noting these definitions and correspondences,
we derive immediately from 1.6 and 2.2 the following theorem and corollary.

Theorem 3.1.

(i) For any n-scheme @ over K,, (Ki™) there is a prime theory Il in K, (resp. KI™)
such that @ = {¢ : Oy € I}.

(ii) For any consistent n-scheme @ over K,D (KI"D) there is a prime theory 11 in
KnD (resp. KI™D) such that @ = {¢ : Op € 11}.

(ii1) If X 1s any of the systems K, T, K,4, K, T4, KI"*T Kint4 Ki"T4 then there is
a prime theory Il such that, for all ¢ = (¢1,...,¢n), O € Il if and only if b5 @;
for some 1. O

Corollary 3.2. _
(i) If © 1s any of the systems K,,, K,D, Kit*, Kif*D, then for any @, @, ..., ¢k,
Fe Op — @, V- -V iff for some i, b5 p; or Fs o — ;.

(i) If ¥ is any of the systems K, T, Kn4, K, T4, KT, Kint4, Ki"T4 then ¥ has
the disjunction property, viz., for any @y, ..., ¢k,

Fs @y V-V iff b5 @, for some i. 0O
When n = 1, the results stated in this corollary for classical modal systems are
well known (see [5]) but for intuitionistic modal systems they appear to be new.

In conclusion, we extend the usual Kripke semantics for (propositional) modal
logic to classical polymodal systems, and use some of our previous results to establish
the adequacy of this extended semantics.

Let At be the set of propositional atoms of £: thus At consists of an infinite set I of
proposition letters together with the symbol L. For n > 1 we define an n-frame to be
a tripled = (U, R, 1) with U a nonempty set, R C U*! and Il : U — P(At—{L}).
We define, for formulas ¢ of £(n,0) and u € U, the assertion U F* ¢, read “p is true
at u in U ”, recursively as follows.

(a) U EY ¢ iff ¢ € II(u) for atomic ¢;
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(b) U F¥ = iff not y Eu ®;

() UF oAy iff Yy Ev P and U FY g

(d) U F* O(p,, . . sy on) iff (Vo ... vn)[Ruvy .. v, = 35y kv ®il.
Note how in clause (d) O is interpreted "disjunctively”

We write U E ¢ for (Vu e U)W kv ®), U E* T for (Vo € D) (U kv ®), U ET for
(Yu € U) U Ev I) and T'E, ¢ for VU(Vue U)UE'T = U F*T). Here and in the
sequel I' denotes an arbitrary set of formulas of L(n,O).

We now prove the

Theorem 3.3 (Soundness Theorem). Jf FK, ¥, then Tk, ®.

Proof. By induction on the proof of ¢ from I in Kn. We need only check
the modal axioms and rule of inference. The soundness of the axiom O(e A ) —
Oe A0y is immediate from (¢) in the definition of k¥ Suppose now that @ =~ 1 and
U F* Op A 0. Then i Ev O and Yy kv ¥ so that, for any vi,...,v, such that
Ruv, .. v, there exist 7, j such that 1 < 4j<nandly kv wi, U EY Y. Ifi = 5,
then ¢ Ev: Pi ANy If i # 5, then, since ¢ ~ ¥, either o; = Yi or p; = ¥;, whence
U FY o; Ay or U Evi ¥ A ;. It follows that U E“ O(p A 1), thus verifying the
soundness of the axiom Op AOy — O(e A %) when ¥ ~ . Finally, to verify the
soundness of the modal rule ofinference, we need to show that if Fn ¢, then T F, D«
for any a in which ¥ appears. Supposing ¢ is a;, If T'F, ¢, then for any U F T we
have (Vu e U).U ¢ @, so a fortiorj Vu € U)(Vv; .. -Vn) [Ruw, .. ‘U = Y EY o],
whence Y F, Oa. O

LT(K,) and prime schemes over K,, to 1.1(ii) we obtain

(A) The prime n-schemes over K, are precisely those schemes of the form &, +. . +d,,
where &, . ®,, are prime theorjes in K,,.

By applying this same correspondence to 1.2, we obtain

(B) Each consistent n-scheme over K, is the intersection of the family of prime
n-schemes that contain it

For any theory & in Kn, it is easily verified that 0 — {e :0Op € ®} is an n-
scheme over Kn. We use this in defining, for any consistent set of formulas I in K,,
the canonical n-frame Y p = (Ur,Rp,Hp) as follows. First, Ur is the set of prime
theories in K, containing I'. (Up is of course nonempty by standard arguments: it
follows, for example, from the fact that in LT(K,) every proper filter is contained in
a prime filter.) We define Rp C ULt by

(O, W )EE i 5 C W+ LR
Finally we define I by (@) = & N At
We can now prove the
Lemma 3.4.
(i)l/rf:d’cp Uf v € @, for ® € Up.
() Urkyp ff Ty, o; in particular Y r E T.
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Proof.

(i) By induction on ¢. For atomic ¢ (i) holds by definition. The induction steps
for A and — are routine, the latter using the primeness of each member of Ur. The
induction step for O proceeds as follows: Suppose (i) holds for ¢i,...,¢n. Then,
writing ¢ for (¢1,...,¢n), and suppressing the subscript T', we have

U E® Op iff (YO, ... ¥, € U)[R®Y, ... ¥, - UFY g or --- or U E¥» o]
iﬂ'(V\Ill...\IlnEU)[@DQ\IJ1+---+\I/,, = o1 €Wy or -+ or pp € ¥,]
iff (V... 9, €eU)@C C¥ + - +¥, => o€V +---+¥,]
iff ¢ is in every prime n-scheme containing ®°  (by (A))
iff o € @2 (by (B))
iff Op € .

(ii) Clearly, I' Fi, ¢ implies ¢ € ® for all ® € Ur such that Ur F ¢ by (1).
Conversely, if not I' Fk_ ¢, then there is, by standard arguments (or by (B) with
n =1), T' € Ur such that ¢ ¢ ®. Then not U F® ¢ by (i) whence not Ur F . O

As an immediate consequence of this we have

Theorem 3.5 (Completeness Theorem). If I' F, ¢, then I bk .

Finally, we note that these results can be extended to some of the other polymodal
systems we have introduced. For example, call an n-frame reflezive if its relation con-
tains every n-tuple of the form (u, ..., u). It is then not hard to show that deducibility
in K, T is equivalent to validity in all reflexive n-frames. I have not, however, been
able to formulate a simple condition S on n-frames (when n > 1) so that deducibil-
ity in K,4 is equivalent to validity in all frames satisfying S. There seems to be a
disanalogy here with the case n = 1, since it is well known that deducibility in K4 is
equivalent to validity in all transitive (1-)frames.
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