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Abstract. One of the most familiar uses of the Russell paradox , or, at least, of the ideaunderlying
it, isin proving Cantor’s theorem that the cardinality of any set is strictly less than that of its power
set. The other method of proving Cantor’s theorem—employed by Cantor himself in showing
that the set of real numbers is uncountable—is that of diagonalization. Typically, diagonalization
arguments are used to show that function spaces are “large” in a suitable sense. Classically, these
two methods are equivalent. But constructively they are not: while the argument for Russell’s
paradox is perfectly constructive, (i.e., employs intuitionistically acceptable principles of logic)
the method of diagonalization fails to be so. I describe the ways in which these two methods
diverge in a constructive setting.

One of the most familiar uses of the Russell paradox, or, at least, of the idea underlying
it, is in proving Cantor’s theorem that, for any set E, the cardinality of E is strictly
less than that of its power set & E. This, as we all know, boils down to showing that
there can be no surjection E — $ E. To establish this it is enough to show that, for
any map f: E — P E, the assertion

() VX e PEIx € E.X = f(x)

leads to a contradiction. Now from a constructive standpoint the argument of Russell’s
paradox establishes more than just the negation of (1), since it produces an explicit set
R for which it can be proved that

—3Ix e E.R= f(x)
namely the familiar “Russell set”
R={x€E:x¢ f(x)

This is, of course, because assuming R = f(e) forsome e € E leads instantly to the
~ contradiction ¢ € f(e) < e ¢ f(e). For U C E, a similar argument, replacing R
~ above by R N U, shows that there can be no surjection U — P E. If we agree to say
* that a set B is surjective with a set A provided that there is a surjection A — B, then
~ this may be put: for no set E is P E surjective with a subset of E.

These arguments are constructively valid in that they employ only constructively,
~ orintuitionistically, acceptable principles of logic.
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Equally, the (classically equivalent, but not automatically constructively equiva-
lent) form of Cantor’s theorem that, for any set £ there is no injection PE — E
can also be given a constructive proof using the idea of Russell’s paradox. In fact we
can prove more, to wit, that for any set E there can be no injection of # E into a set
surjective with E. For suppose given a surjection f: £ — A and an injection m:
PE — A. Define

B={xeE:IX e PEm(X)= f(x) Ax ¢ X}.
Since f is surjective there is b € E for which f(b) = m(B). Then we have

be B <= 3IX.mX)=fb)Ab¢X
e IX.mX)=mB)Ab¢ X
= 3IX.X=BAb¢X
&> b¢B,

and we have our contradiction.

As pointed out by George Boolos in [2], one can, classically, produce explicit
counterexamples to the injectivity of a givenmap m: P E — E, that is, subsets X and
Y of E for which X # Y and m(X) = m(Y). To do this it suffices to define a partial
right inverse r of m such that, for M = dom(r), m(M) € M andVx € M. x ¢ r(x).
For then, writing m(M) = a, and X = r(a), we have a ¢ X, whence X # M,
and m(X) = m(r(a)) = a = m(M). Using an idea that goes back to Zermelo,
Boolos obtains M as the field of the largest partial well-ordering < of E such that
m({y : y < x}) = xforall x € M, and defines r by r(x) = {y : y < x}. The
presence of well-orderings in this argument makes it highly nonconstructive; I do not
know whether the existence of such an r and M can be established constructively.

Classically, the power set 2 E is naturally bijective with 2, the set of all maps
E — 2 = {0, 1}. Constructively, this is no longer the case: here, in general, P E =
QF, where Q is the object of truth values or propositions, which is only = 2 when the
law of excluded middle is assumed. In fact, constructively, 2F is isomorphic, not to
& E, but to its Boolean sublattice CE consisting of all complemented (or detachable)
subsets of E (a subset U of F is said to be complemented if Vx € E. x e Uvx ¢ U).
What happens when we replace $ E by CF in the above arguments? Classically, of
course, it makes no difference, but do the “Russell paradox™ arguments survive the
transition to constructivity?

Well, if one takes the first argument, showing that there can be no surjection f:
E — P E, one finds that, when P E is replaced by CE, the set R ¢ range(f) is itself
complemented and the argument goes through, proving constructively that there can
be no surjection £ — CE. But the second argument, with & E replaced by C E (and
E replaced by a subset U of E) only goes through constructively when U is itself
complemented. And as for the third argument to go through constructively once # E
isreplaced by C E, it is necessary to show that the set B defined there is complemented,
and, as we shall see, this cannot in general be done. The failure of these two latter
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arguments in a constructive context can be easily demonstrated by considering a model
M of smooth infinitesimal analysis, see, e.g., [1]. In 90 the real line R has just the two
detachable subsets @, R, that is, CR has just two elements. A fortiori CR is injectible
into R, showing that the third argument fails constructively. The fact that there is no
surjection R — CR corresponds simply to the fact that, since R is connected, there are
no continuous nonconstant maps R — 2 (all maps in 9 being smooth, and certainly
continuous). But CR is trivially surjective with the ‘subset {0, 1} of R, refuting the
second argument—of course, in 91, {0, 1} is not a complemented subset of R! At the
end of the paper we supply a quite different constructive example of a set E for which
CE is surjective with a subset of E.

Let us return once again to the argument that there is no surjection £ —» PE.
Classically, we may replace £ E by the isomorphic object 2Z. In that case the use of
Russell’s paradox is transformed into an application of diagonalization, the technique
Cantor used to prove that the set of real numbers has strictly larger cardinality than the
set of natural numbers. Indeed, if ¢: E — 2F is the map canonically associated with
the given map f: E — PE via characteristic functions (i.e., defined by ¢(x)(y) =
1 & y € f(x)) then the “Russell” set R € L E outside the range of f corresponds
precisely tothemapr: E — 2 outside the range of ¢ and defined by “diagonalization”:

[o i ()(x) =1
r(x) = i
1 ifp(x)(x)=0.

This argument is perfectly constructive and parallels that given above for the nonex-
istence of a surjection E — CE.

Diagonalization appears in one of its most familiar guises in the well-known proof
that there can be no surjection of the set N of natural numbers onto the set NN of
all maps N — N, that, in a word, NN s uncountable. Here one is given a map ¢:
N — NV, then the map f: N — N defined by the prescription

0 ifp(n)(n) #0
1 if ¢(n)(n) = 0.

is clearly outside the range of ¢. This instance of diagonalization, although not
identical with the previous one, also appears very similar to Russell’s paradox.

Looked at constructively, this proof depends crucially on the decidability of N,
i.e., the truth of the assertion

|

VmeNVheN.m=nvms#n.

Since N is decidable from a constructive standpoint, the argument is constructively
valid, so that NN jg constructively uncountable. (More generally, the same argument
shows that if X is any decidable set with at least two distinct elements, X* cannot be
surjective with X.)

Let us call a set subcountable if it is surjective with a subset of N. Classically, it
follows trivially from the fact that NN is uncountable that it also fails to be subcount-
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able, that is, NN is not surjective with a subset of N. For given ¢: U — NI; the map
f+ N — N defined by the new prescription (still resembling Russell’s paradox)

0 ifrnelU&pm)n) #0
f)y=11 ifnel &pn)(n)=0
1 ifn¢U

is again clearly outside the range of ¢. Now this argument only goes through construc-
tively when U is a detachable subset of N, so that the most “diagonalization” shows,
constructively, is that NY is not “detachably” subcountable. But prima facie nothing
prevents NN from being “nondetachably” subcountable; for if, given ¢: U — NN we
repeat the original prescription, the map f so obtained is defined just on U, not on
the whole of N, and the argument collapses. So, while it still follows from Russell’s
paradox that $N cannot be constructively subcountable, diagonalization (as well as
Russell’s paradox) fails to establish the corresponding fact for NN,

In fact models of constructive mathematics have been produced in which NN g
actually subcountable. Such is the case, notably, in the effective topos Eff, see, e.g.,
chap. 23 of [3]. In Eff, #N and NN effectively(!) part company, making Russell’s
paradox and diagonalization the more easily distinguished. Russell’s paradox contin-
ues to yield the non-subcountability of N, which accordingly remains “large”. But
diagonalization, while continuing to yield the uncountability of NN, fails to prevent it
from being subcountable in Eff, and so from being in some sense “small” there. The
reason for this is that, in Eff, NN consists, not of arbitrary maps N — N, but just of
the recursive ones. The subset U C N establishing the subcountability of NN is the
set of codes of total recursive functions; since, in Eff, the complemented subsets of
N are just the recursive subsets, the fact that U cannot be complemented corresponds
to the fact that the set of codes of total recursive functions is net itself recursive. The
subcountability of NN immediately implies that of its subset 2"V, and hence also of
the latter’s isomorph CN, showing anew the failure, in a constructive context, of the
argument that there can be no set E for which CE is surjective with a subset of E.

The “divergence” in Eff between diagonalization and Russell’s paradox can be
further pointed up by observing that Eff contains nonsingleton objects C for which the
object C€ of self-maps is actually isomorphic to C. Such objects cannot be classical
sets, because clearly the only such sets satisfying this condition are singletons. For a
classical set C, the condition of being a singleton is equivalent to the condition that
there be no injection of 2—the object of truth values in classical set theory—into C.
So, in classical set theory, the condition that C¢ = C implies that there is no injection
of Qinto C. In fact Russell’s paradox shows that ¢his implication continues to hold in
the constructive setting. For suppose that i is an isomorphism (even just an injection)
of C¢ with C and that m is an injection of €2 into C. Then the map

X—=i({x,mxe X)):xeC)
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is easily seen an injection of #C into C, which by the Russell’s paradox argument
above, is impossible.

To summarize: in a constructive context, diagonalization does not fail to prevent
the possible presence of an object which is isomorphic to its object of self-maps
and yet is not a singleton. But Russell’s paradox does preclude the existence of an
injection of the object of truth values into any such object C: such a map would yield
an injection into C of its power object #C, which by Russell’s paradox is too large
to be so injectible.

To conclude. We have seen that, in certain constructive contexts, diagonalization
may fail to ensure that function spaces are “relatively large”. By contrast, Russell’s
paradox—at least, as properly applied to power sets—Tetains its potency even in
constructive environments, ensuring that power sets, or objects, retain their “size”. It
seems fitting, therefore, to claim for Russell’s paradox a universal applicability which
must at the same time be denied diagonalization.
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