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Some propositions equivalent to the Sikorski Extension Theorem for
Boolean algebras

by

J. L. Bell (London)

Abstract. It is known that the Sikorski Extension Theorem (evcry complete Boolean algebra
is injective) is not a consequence of the Boolean Prime Ideal Theorem. In this paper we formulate
several propositions equivalent to the Sikorski Extension Theorem and, as a consequence, solve in
the negative a problem of Rubin and Rubin as to whether a certain proposition concerning Boolean
algebras is implied by the Boolean Prime Ideal Theorem.

In {1], it is shown that the Sikorski Extension Theorem for Boolean algebras
is not a consequence of the Boolean Prime Ideal Theorem. (It is still an open problem
as to whether the Sikorski Extension Theorem is equivalent to the axiom of choice.)
It is, accordingly, of some interest to discover propositions equivalent to the Sikorski
Extension Theorem. In this paper we formulate several such propositions, and, as
a consequence, solve in the negative a problem of Rubin and Rubin [4] as to whether
a certain proposition concerning Boolean algebras is implied by the Boolean Prime
Ideal Theorem.

§ 1. Preliminaries. Several of our propositions will be topological in nature;
accordingly we begin with some topological definitions and results.
Let f/: X — Y be a continuous surjection from a topological space X to a topo-

logical space Y. The map fis said to be irreducible if the i image of a proper closed
subset of X is a proper subset of Y.

Let C be a category of topological spaces. A space P in C is said to be projective
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in C if for any epic arrow f: X — Y in C and any arrow P — Y in C there is an

arrow P A X in C such that fog =.h.

A space X is (a) Boolean if it is compact Hausdorff and has a base of clopen
4(
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(= open-and-closed) subsets, (b) extermally disconnected if the closure of any open
subset is open.

Let X be compact Hausdorff. A Gleason cover of X is a pair (E, n) consisting
of an extremally disconnected compact Hausdorff space E and an irreducible conti-
nuous surjection n: E — X,

We write BooSp, CompHaus for the categories of Boolean spaces, compact
Hausdorff spaces (and continuous mappings) respectively.

Let Bool be the category of Boolean algebras and Boolean homomorphisms.
The Boolean Prime Ideal Theorem (BPI), which asserts that every Boolean algebra
contains a prime ideal, or, equivalently, an ultrafilter, implies via the Stone repre-
sentation theory, that BooSp is equivalent to Bool°?, the opposite category of Bool.

From now on we work in Zermelo-Fraenkel set theory ZF; thus the axiom of
choice is not assumed. We shall need the following results of Gleason [3], which are
all proved in ZF, unless otherwise stated.

1. LeMMA. (Lemma 2.3 of [3]). Any irreducible surjection of a compact Hausdor(f
Space to an extremally disconnected compact Hausdorff space is a homeomorphism.

1.2. THEOREM. (Theorem 3.2 of [3]). Assume BPI. Then any compact Hausdorff
space has a Gleason cover.

§ 2. Equivalents of the Sikorski Extension Theorem. The Sikorski Extension
Theorem states that, for any Boolean algebra 4 and any complete Boolean algebra B,
any homomorphism of a subalgebra of 4 into B can be extended to the whole of A.
That s,

SET: Any complete Boolean algebra is injective in Bool.

Under the Stone equivalence between Bool®” and BooSp, complete Boolean
algebras correspond to extremally disconnected spaces. Accordingly, assuming BPI,
SET is equivalent to the assertion:

A. Any extremally disconnected compact Hausdorff space is projective in BooSp.

Now consider the additional statements:

B. Any extremally disconnected compact Hausdorff space is projective in
CompHaus.

C. Any continuous surjection between extremally disconnected compact Hausdorff
spaces has an irreducible restriction to a closed subset of its domain.

D. Any continuous surjection between Boolean spaces has an irreducible restriction
to a closed subset of its domain.

E. Any continuous surjection between compact Hausdorff spaces has an irreducible
restriction to a closed subset of its domain.

B is (essentially) Theorem 2.5 of 3]

We prove the following

2.1. THEOREM. Assuming BP1, assertions A-E are all equivalent to SET. Thus SET
is equivalent (over ZF) to the conjunction of BPI with each of A-E.
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Proof. We establish the complex of implications
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Firstt E=D=C and B= A are obvious. We prove C=38, B=E and
A=D.

C = B. Assume C. We first show that

(+) Any continuous surjection f X — E from a compact Hausdorff space X to
an extremally disconnected compact Hausdorff space E has an irreducible restriction
to a closed subset of its domain.

To prove (#), by 1.21et (D, n) be a Gleason cover of X. Then f o n is a continuous
surjection from D to E and so by C there is a closed subset Z of D such that
(f°7)|Z is an irreducible surjection from Z to E. Since Z is closed, it is compact
(Hausdorff) and so by 1.1 (fe 7)|Z is a homeomorphism.

Now consider n[Z] = Y. As the continuous image of the compact space Z, Y is
compact and hence closed. Also, since (fom)|Z is a homeomorphism, f|Y is
a homeomorphism of Y with E. Clearly, then, f|Y is irreducible. This proves (»).

Now to get B, we use (*) to adapt the proof of Theorem 2.5 of [3]. Thus let E
be an extremally disconnected compact Hausdorff space, let X and Y be compact
HausdorfT spaces; let # be a continuous map of E to Y and let f be a continuous
surjection from X to Y. We must show that there is a continuous map g from Eto X
such that fog = h.

In the space Ex X consider Z = {{a, x) e ExX: h(a) = f(x)}. This set is
evidently closed: hence compact (and HausdorfT). Since f is surjective, the projec-
tion 7 of Ex X onto E sends Z onto E. By (#) there is a closed (hence compact)
subset W of Z such that m,|W is an irreducible surjection between W and E. By
Lemma 1.1, ¢ = 7| W is a homeomorphism between W and E. Defineg = m,0 0%,
where 7, is the projection of Ex X onto X. Then g is the required map from E to X.
For if a € E, then since ¢~ *(a) € Z we have

f(@@) = f(na0™'(@)) = h(my(9~ (@) = h(@) .
Thus fo g = h as required. This proves B.

S
B = E. Assume B and let X - Y be a continuous surjection between compact
Hausdorff spaces X, Y. By 1.2,let (E, ;) bea Gleason cover of Y. By B, E is projective
in CompHaus. So there is a continuous map ¢: E = X such that the diagram
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commutes. Now consider Z = ¢ [E]. Clearly Z is compact and hence closed in X.
Moreover, f[Z] = fle[E]l = Y. We claim that f|Z is irreducible. For let W be
any closed subset of Z such that f[W] = Y. Consider the closed subset ¢~ ![W]
of E. We have (since W< olE])

o (W] = flele ' IWH] = /W] = Y.

Since m}E is irreducible, it follows that ¢~ 1[W] = E, whence W = olE}l=Z.
Therefore f|Z is irreducible as claimed, and E follows.

Finally, A =D is proved as in B=E, replacing “compact Hausdorff” by
“Boolean” everywhere. -

Since, assuming BPIL, A is equivalent to SET we have our theorem. M

‘ It is proved in [1] that SET is not a consequence of BPI (in ZF). 1t follows from
this and 2.1 that '

. 2.2. COROLLARY. None of the statements A-E is a consequence of BPL 1

We now reformulate statement D in terms of Boolean algebras. Let m: A—B
be a monomorphism between Boolean algebras A and B. An epimorphism p: B+ C
to a Boolean algebra Cis said to be m-minimal if the following two conditions hold:

(1) the composition p o m is monic; (2) if C S D is any epimorphism to a Boolean
algebra D such that gopom is monic, then g is an isomorphism.

Now consider the following assertions.

F. If m: A»> B is a monomorphism between Boolean algebras, then there is
an m-minimal epimorphism p: B — C to some Boolean algebra C.

G. If A is a subalgebra of a Boolean algebra B, then there is a < -maximal
proper filter F in B such that Fnd = {1}.
~ Itis easy to show that F and G are equivalent, and that both of them imply BPL
Moreover, under the Stone equivalence between BooSp’”? and Bool, statement D
clearly corresponds to statement F. Theorem 2.1 therefore yields the following
result. -

2.3. COROLLARY. Statements ¥ and G are each equivalent to SET, and are there-
fore not consequences of BPI.. R : "

This leads to a negative solution of a problem of Rubin and Rubin [4]. On p. 101 -
of that volume, they consider the statement
~ & If Bis a Boolean algebra and S < B such that S is closed w.r.t. A then
there is a < -maximal proper ideal I such that InS = {0}. :
" They state that it is not known whether BPI implies S. Now S is equivalent to
the dual assertion S’ obtained by replacing “A”, “ideal”, “{0}” by “v 7, “filter”,

“{1}”, respectively, and S’ evidently implies G. Therefore from Corollary 2.3, we
infer the ;

2.4. COROLLARY. S is not a consequence of BPL
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§ 3. A statement equivalent to the axiom of choice. As we have pointed out, it
1s unknown whether SET or any of the statements A-E imply the axiom of choice.
However, by dropping “Hausdorff” for the domain space of statement E we get
an assertion equivalent to the axiom of choice.

3.1. THEOREM. The assertion:

E’. Any continuous surjection between compact spaces where the range space is
Hausdorff has an irreducible restriction to a closed subset of its domain

implies the axiom of choice.

Proof. We adapt an argument of Franklin and Thomas [2]; see Thm 8.9 of
Rubin and Rubin [4].

Let {X;: ie I} be a family of non-empty pairwise disjoint sets, and for each
i€ I assign X; the cofinite topology (a subset is open iff it is empty or its complement
is finite). Each X; is then compact. Let X = {J X, be the free union of the topological

iel
spaces X;: thatis, U< Xis openiff Un X;isopenin X;forallie I Let X' = Xu{*}
be the one-point compactification of X. Assign I the discrete topology and let
I' = Tu {#} be the one-point compactification of 7. Then I’ is compact Hausdorff.
Define /: X' - I' by

S(x) = unique i€ such that xe X;

if xe X; f(x) = = It is easy to check that fis a continuous surjection. Therefore,
by E’, there is a closed subset C of X’ such that £|C is an irreducible surjection.

Clearly the intersection of C with each X; must be a singleton. The axiom of choice
follows. W
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