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ON THE STRENGTH OF THE SIKORSKI
EXTENSION THEOREM FOR BOOLEAN ALGEBRAS

J.L. BELL

§1. Introduction. The Sikorski Extension Theorem [6] states that, for any
Boolean algebra 4 and any complete Boolean algebra B, any homomorphism
of a subalgebra of A into B can be extended to the whole of 4. That is,

Inj: Any complete Boolean algebra is injective (in the category of
Boolean algebras).

The proof of Inj uses the axiom of choice (AC); thus the implication AC — Inj
can be proved in Zermelo-Fraenkel set theory (ZF). On the other hand, the
Boolean prime ideal theorem

BPI: Every Boolean algebra contains a prime ideal (or, equivalently,
an ultrafilter)

may be equivalently stated as:
The two element Boolean algebra 2 is injective,

and so the implication Inj —» BPI can be proved in ZF.

In [3]), Luxemburg surmises that this last implication cannot be reversed in
ZF. It is the main purpose of this paper to show that this surmise is correct. We
shall do this by showing that Inj implies that BPI holds in every Boolean extension
of the universe of sets, and then invoking a recent result of Monro [5] to the
effect that BPI does not yield this conclusion.

§2. Preliminaries. We work in ZF; thus the axiom of choice is nor assumed. We
shall suppose some familiarity with Boolean-valued models of set theory as pre-
sented, e.g. in [1]. We employ the standard notations. If B is a complete Boolean
algebra, V ® is the Boolean-valued universe constructed from B. There is a ca-
nonical embedding x — £ from the real universe V' of sets into VB, If g is a
sentence of the language of set theory (possibly containing names for elements
of ¥V ®), we write [¢]2 (or just [¢]) for the Boolean value of ¢ calculated in V',
and V® |= ¢ for [g]® = lg, the top element of B. The object Uy € V 8 defined
by U = {{%, x): x € B} is called the canonical (generic) ultrafilter in B; as is well
known, we have
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V8 k= Uy is an ultrafilter in the Boolean algebra B.

Note also that, if 4 is any Boolean algebra, then V'® = A is a Boolean algebra.
Since we are not assuming the axiom of choice, we must now consider a number
of delicate points about ¥ which can be proved to hold without its use. Chief
among these is the following special case of the Maximum Principle (1.27 of [1]).
2.1. LEMMa (proved in ZF). If V® = 31xg(x), then there is u € V® such that
VB = ¢(u). (Here ¢(x) has just the free variable x, but may contain names for
elements of V B).)
Proor. First note that since V® = 3!xg(x), we have

(%) [p)] A [g(W] < [u = V]

for any u, ve V®. Now we have
= [@Exg(0)] = V. _[$(0)]
VB

and using the axioms of replacement and regularity we can find a set {uiriel} c
V8 such that
L=\ [¢x0)] =V [l
8 iel

xeVE

If we now define ue ¥V® by dom(u) = | J;=; dom(x,), and for z e dom(u),
u(z) = \/1 [¢(u) A zeu,
=

then, using (+), we easily show, as in the proof of 1.25 of [1], that [¢(u)] < [u =u,]
for each i e I. Tt follows that

(w1 = \e/t [pu)l A [u=u] = \e/l [u)l =1. 1§

The next point is that without loss of generality we may assume that V' ® is
separated, i.e. for any x, y € V® we have V® |= x =y iff x = y. To justify this,
we define the equivalence relation ~on V® by x ~ y iff V® =x =y, and
then employ ““Scott’s trick’ of replacing each x e V'® by the set of objects y
in V® of lowest rank such that x ~ y. This procedure turns ¥ ® into a separated
structure.

Finally, we shall need the following ideas derived from (7). If V' ® = {4, < "
is a Boolean algebra, define

A® B={xeV®: [xed]? = lg}.

(Since ¥ ® is now separated, 4 ® B is easily shown to be a set.) Define < (some-
times written < 4gp) on 4 ® B by

xSy [x<,y18=lpg

for x, ye A ® B. Using Lemma 2.1, it is readily shown (in ZF) that {4 ® B, <)
is a Boolean algebra in which, for x, ye 4 ® B,

x A yis the unique z € A ® B such that
[z = inf{x, y} in A18 = I,
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x V y is the unique z € 4 ® B such that
[z = sup{x, y} in A]B = 1,
x* is the unique z € A ® B such that
[z = x*in A]B = 1.
(Here x* denotes the Boolean complement of x.) Moreover, B is embeddable

in A ® B via the map e defined by setting, for each b € B, e(b) = unique x e
A ® B for which

2.2 [x=1,08=5b [x=04"=b*

(This definition uses the mixing lemma in ¥ ® (1.25 of [1]), whose proof does
not require AC.) We shall use the embedding e to identify B with its imagein A ® B,
so that B becomes a subalgebra of A ® B. From (2.2) it follows that, for b € B,

2.3) [b=1,8=b, [b = 0,8 = b*
and
2.4) b=0,Vbh=148=1

§3. The main result. Given Boolean algebras 4 and B, we write B < 4 for B
is a subalgebra of A. B is called an absolute subretract if for any Boolean algebra
A, whenever B < A there is an (epi) morphism A: 4 — B which is the identity on
B. We can now prove the following result.

3.1. THEOREM. Let B be a complete Boolean algebra. Then the following conditions
are provably equivalent in ZF.

(i) B is injective;

(ii) B is an absolute subretract;

(iti) for any Boolean algebra A such that B X A, there is Ue V‘® such that
V® = U is an ultrafilter in A and Uy < U;

(iv) for any C e VB such that VB {= Cis a Boolean algebra, there is U € V&)
such that VB |= U is an ultrafilter in C.

ProoF. (i) — (ii) is obvious.

(i) — (iii). Assume (ii), let B < A4, and let 4: 4 —» B be a homomorphism
which is the identity on B. If we put U = {{4, h(a)): a € A} then it is easily verified
that V® \= U is an ultrafilter in 4. Moreover, we have, for b€ B, the Ugl =
b = h(b) = [b e U] whence ¥® = Uy = U. Hence (iii).

(iii) — (iv). Assume (i) and let C € V' ® satisfy V'® = C is a Boolean algebra.
Then C ® B is a Boolean algebra and B < C ® B. It follows that V® = B and
(C ® B)~ are Boolean algebras and B < (C ® B)". Now, working in V‘®, let F
be the filter in (C ® B)" generated by the canonical ultrafilter Up; that is, in
Ve, F={xe(C® B)":3ye Up-y < cgp-Xx}. We claim that in V®, C is iso-
morphic to the quotient algebra(C ® B)™/F. To see this, define h € V® by h =
{<%, x)®: xe C® B} x {l}. It is easy to verify that, in ¥®, h is a homomor-
phism of (C ® B)" onto C. To show that C = (C ® B)"/F in V®, it suffices to
show that V® = F = h-1(1;). To prove this, we observe that, for x € C ®
B,
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[[iEF]] = [3})6 UB'y S(c@gyi‘]l

=\ b A [b <cepr ]
bEB

= \/{be B: b <cgpX}
Also, for b e B, we have
b<[x=ldelb=1]=<Ix=1] (by23)
S VB =b=1->x=1¢
o> VB =b<cx (by2.4)
b <cgp X

Hence [h(%) = 1c] = [x = 1] = \/{beB: b <cgpx} = [%€F] by the above,
proving the claim.

Now by (iii) there is U € ¥ ‘¥ such that V® k= U is an ultrafilter in (C ® B)”
containing Ug. Then V® = F < U and so V® = BU] is an ultrafilter in
(C ® B)"/F = C. This gives (iv).

(iv) —» (i). Assume (iv) and let 4 be a homomorphism of a subalgebra C of a
Boolean algebra 4 into B. Put U = {{%, h(x)): x € C}; then, as before, V& = U
is an ultrafilter in C. Working in V' ®, let F be the filter in A generated by U,
and let # be the canonical epimorphism of A onto A/F. Using (iv), let Ue V®
be an ultrafilter in A/F. Then,in V®, U’ = h=Ulis an ultrafilter in A extending
F. (Note that, in claiming #-[U] as an explicit object of ¥ ®, we are tacitly using
Lemma 1.1.) If we now define g: 4 - B by g(a) = [d € U']3, then it is readily
verified that g is a homomorphism of A into B extending 4. 11

REMARKS. (1) The equivalence of (i) and (ii) was originally proved in [3] by
a method entirely different from the one employed here, and (iv) — (i) is essen-
tially proved in [4]. It is (i) — (iv) which appears to be new; as we shall see, it
is crucial for our purposes.

(2) Notice that, since the full Maximum Principle is not available, condition
(iv) of 3.1 is ostensibly stronger than the condition ¥ ® (= BPL In this connection
one may ask whether Inj is equivalent to the statement: “For all complete Boolean
algebras B, V® = BPI”. I do not know the answer to this question.

We have as a consequence the main result of the paper.

3.2. COROLLARY. Inj is not provable from BPI in ZF (assuming the consistency
of the latter).

PROOF. We first employ 3.1 to show that, if B is injective, then V' ® = BPL
For suppose Ce V®;let b = [Cis a Boolean algebra]® and, using the mixing
lemma in V@, let C’ e V' be such that

[C=C18=b [C' =2]8=0b"
Then V® = C’ is a Boolean algebra and so, by (i) = (iv) of 3.1, there is Ue V&
such that ¥V ® k= U is an ultrafilter in C’. Clearly
b = [C' = C1B < [U is an ultrafilter in C']12 A [C’' = C}B
< [U is an ultrafilter in C18
< [3X. X is an ultrafilter in C]5.
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It follows that V' ® = BPI.

Now let M be the Halpern-Levy model of ZF in which BPI holds but AC fails
(see, €.g., [2]). Monro [5] has constructed a complete Boolean algebra B in M
such that, in M, [BPI]8 = 0p. It follows from the above that, in M, B is not in-
jective, and so Inj fails in M. The result follows. 1

§4. Some final observations. Let us call a sentence ¢ of the language of set theory
persistent if we can prove in ZF that, if ¢ holds, it continues to hold in every
Boolean extension of V. Of course, AC is persistent. Monro [5] shows, on the
other hand, that several consequences of AC, in particular BPI and the ordering
principle, are not persistent. In contrast, we have

4.1. THEOREM (ZF). Inj is persistent.

PRrROOF. Suppose Inj holds, and let B be a complete Boolean algebra. We need
to show that V' ® |= Inj, and by 3.1 it suffices to show that, in V& every complete
Boolean algebra is an absolute subretract. And for this to be the case it suffices to
show that, if 4, C are any elements of V ‘® such that VB = 4 and C are Boolean
algebras, C is complete, and C X A, then there is he V® suchthat V® = h
is a homomorphism of A onto C which is the identity on C.

Now B X C® B <X A® B, and, by 5.2.1 of [7] (whose proof does not require
AC), C ® B is complete. Since Inj is assumed to hold, there is a homomorphism
g: A ® B — C ® B which is the identity on C ® B, and hence also on B. We have

V® = B < (C® B) <X (4® B) and§ is a homomorphism
of (A ® B)" onto (C ® B)".

Also, if F, F’ are the filters generated by the canonical ultrafilter Uy in (C ® B)",
(A ® B)~ respectively, then, by the proof of (iii) — (iv) of 3.1 we have

VB =C=(C® B /Fand A =~ (A ® B)"/F.

It now follows easily from this and the fact that g is the identity on C ® B that
in VB, g induces a homomorphism of A onto C which is the identity on C. This
completes the proof. |1

It is tempting to conjecture on the basis of this result and 3.2 that Inj is actually
equivalent to AC. I have not, however, been able to settle this question.
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