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TYPE REDUCING CORRESPONDENCES AND WELL-ORDERINGS:
FREGE’S AND ZERMELO’S CONSTRUCTIONS RE-EXAMINED

J. L. BELL

A key idea in both Frege’s development of arithmetic in the Grundlagen [7]
and Zermelo’s 1904 proof [10] of the well-ordering theorem is that of a “type
reducing” correspondence between second-level and first-level entities. In Frege’s
construction, the correspondence obtains between concept and number, in Zer-
melo’s (through the axiom of choice), between set and member. In this paper,
a formulation is given and a detailed investigation undertaken of a system .5 of
many-sorted first-order logic (first outlined in the Appendix to [6]) in which this
notion of type reducing correspondence is accorded a central role and which en-
ables Frege’s and Zermelo’s constructions to be presented in such a way as to reveal
their essential similarity. By adapting Bourbaki’s version of Zermelo’s proof of the
well-ordering theorem, we show that, within &, any correspondence ¢ between
second-level entities (here called concepts) and first-level ones (here called objects)
induces a well-ordering relation W (c) in a canonical manner. We shall see that,
when c is the “Fregean” correspondence between concepts and cardinal numbers,
W (c) is (the well-ordering of) the ordinal w + 1, and when c¢ is a “Zermelian™
choice function on concepts, W(c) is a well-ordering of the universal concept
embracing all objects.

In & an important role is played by the notion of extension of a concept. To
each concept X we assume there is assigned an object e(x) in such a way that,
for any concepts X, Y satisfying a certain predicate E, we have e(X) = e(Y) iff
the same objects fall under X and Y. For concepts X satisfying E, e(X) is called
the extension of X. (E thus represents:the property of possessing an extension:
Russell’s paradox implies that not every concept can satisfy E.) We show that the
canonical well-ordering W (e) induced by the correspondence e is precisely that
of the von Neumann ordinals.

Since the concepts of set and membership are manifestly not primitive in &
(although we do eventually introduce them by definition), it follows that the
constructions analyzed anew here—Frege’s development of the natural number
system, Zermelo’s proof of the well-ordering theorem, even the formation of the
von Neumann ordinals—need not be regarded as “set-theoretical” constructions as
such, but rather as natural outgrowths of the four “logical” notions of the system
F: concept, object, predication, extension.

Received November 3, 1993; revised July 12, 1994.
The author is grateful to William Demopoulos for many illuminating discussions on the subject
matter of this paper. Assistance in its preparation was provided by NSERC of Canada.

©1995. Association for Symbolic Logic
0022-4812/95/6001-0012/502.30



210 J. L. BELL

§1. The system &. & is a system of many-sorted first-order logic possessing
five sorts to which we assign the following names: I: objects, 11 basic (or first-level)
concepts, 111: relations, IV: second-level concepts, V: second-level relational concepts.
We assume that & contains the following variables and constants of each sort:

Sort Variable Constant
I XN abc...

II X V2o A, B, C,...
Iy <X Yo, Lo A B G
Vel &2 A BYC, oo

A" YA ZE, us MNIBECPy. o

In addition to variables and constants, & and its extensions will contain various
additional terms. Terms of sorts II, IV, or V will be called concept terms.

We assume the presence in F of an identity symbol = yielding atomic statements
of the form ¢ = 7, where ¢ and 7 are terms of the same sort.

We also assume the presence in F of a predication symbol n yielding atomic
statements of the form snt, (s’,t")nqu, where s is of sort I, II, III and ¢ is of sort
I1, IV, V; and s’,¢" are both of sort I and u is of sort III. We read “suyt” as “s
falls under t.”

The sole axiom scheme in & is the

COMPREHENSION SCHEME FOR CONCEPTS. Corresponding to any formula ¢(x),
é(x, ), 0(X) or ¢(X) we are given a term s of sort II, 111, IV, or V, respectively,
for which we adopt as axioms the formulas

Yolwns « ¢(w)],

where w is x, X or X, and
VxVy[(xy)ns < ¢(x,y)].

We write x "¢, (xy)"¢, X "¢, X "¢ for s, as the case may be. A term of the
first, third, or fourth types is called the concept term determined by ¢, and a term
of the second type the relation term determined by ¢.

We define the relation = of extensional equality of terms by

s =t &g Vo (wys — ont),

where s, 7 are concept terms of the same sort (and w a variable of the appropriate
sort), and
X =Y &4 VxVy[(xy)nX < (xy)nX].

Clearly, concept terms are determined uniquely by formulas up to extensional
equality.

If € is & or any of its extensions (to be introduced presently), we write “& - ¢”
for “¢ is first-order inferrable from the axioms of &.”

§2. The Zermelo-Bourbaki lemma. Our next task is to show within & that
any assignment of objects to (basic) concepts yields a well-ordering relation in
a canonical manner. The argument establishing this is an adaptation of that used
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by Bourbaki ([5, Chapitre 3, §2, Lemme 3]); the proof is itself a generalization of
Zermelo’s argument in [10] to prove Zermelo’s well-ordering theorem.
We first make the following definitions in &
X C Y &4 Vx(xnX — xnY),
X C Y &4 Vxy[(xy)nX — (xy)nY],
Field(X) =g x " Byl(xy)nX v (yx)nX]],
WO(X) gt Vx[xn Field(X) — (xx)nX] AVxy[(xy)nX A (yx)nX — x = y]
AVxyz[(xy)nX A (yz)nX — (xz)nX]
AVY[Y C Field(X) A 3x.xnY — 3x[xnY AVy[ynY — (xy)n X1
(WO(X) thus says that X is a well-ordering),
Yis an initial segment of X <4 Y C Field(X) AVxy[ynY A (xy)nX — xnY],
X* =4 y~.(yx)nX,
X, =ar y"Ix # y A (yx)nX]

(X* and X are, respectively, the initial segment and the strict initial segment of
X determined by x),

[x] =4 ¥~ (x =),
X - Y =4 x"[xnX A~xnY),
XUY =4 x"(xpX VxnY),
X|Y =4 (xp) [(xp)n X A xnY AynY],
Stab(X) ar VXY (X = Y A XnX — YnX).

A term S of sort IV is said to be stable if F - Stab(S).

Now suppose given a constant S of sort IV and a term ¢ such that #(o) is of
sort I for any term o of sort II. Let # (S, 1) be obtained from & by adding as
axioms the statements Stab(S) and VXY[X = Y AXyS — t(X) =1(Y)]. We now
prove in (S,1) the i 3

2.1. ZERMELO-BOURBAKI LEMMA. We can construct a relation R from S and t
such that F(S,t) - WO(R) and, writing M for Field(R), %

() F(S.1) F VxloM — RS At(R,) = x],
(i) F(S,1)F MnS — t(M)nM.
PrOOF. Define
U* =gt X TWO(X) A Vx[xn Field(X) — X 7S A x = t(X, )],
R =4 (xy)"BX[XnU" A (xy)nX].
Thus R is the “union” of the second level relational concept U*.

We claim that 7 (S,t) + WO(R). Since R is the “union” of well-orderings,

for this to be the case it suffices—by the usual order-theoretic argument (which

is easily formulable in & )—to prove within & (S,1) that, for any X, Y such that
XnU*,YnU*, one, X say, is included in the other and in that case Field(X) is
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an initial segment of Field(Y). To prove this, arguing within & (S,1), write W
for Field(X), Z for Field(Y), and define

/g ==gdr XA[X’]W A X'IZ A _X.\- - X.\' A Xll\’ = Xlix]

Then P is an initial segment of X and Y, and X|P = Y|P. It thus suffices to
show that P = W or P = Z.

Suppose that neither P = W nor P = Z. Then Ix.xn(W — P) and
3x.xn(Z — P). Let a, b be the “least elements” of W — P, Z — P with respect to the
well-orderings X, Y respectively. Then P = X, and P = Y. But since XnU*, we
have X 7S, so, since S is stable, PyS. Also a =t(X,) =t(P), b=1t(Y,) =t(P).
From the definition of P it now follows that anP; since P = X, we conclude that
anX,, and we have a contradiction.

The claim is, accordingly, proved. Then M =4 Field(R) satisfies (i). To
establish (ii), again arguing within (S, 1), suppose that MzS. Define

O =4 (xy) [(xynRV x =y =t(M)V[xnM A y = t(M)]].

(O is the well-ordering obtained from R by “tacking on” #(M) as last “element”.)
Writing m for t(M), we have O, = M, whence O,,nS and t(0,,) = t(M) = m.
Hence OnU*, so Field(O) C M. Since mn Field(0), it follows that myM , proving
(). |

As a consequence we obtain a version of Zermelo’s well-ordering theorem. Let
(&) be obtained by adding to & a term & such that &(a) is of sort I for any term
o of sort II, together with the axioms

(a) VX (3x.xnX — e(X)nX)
(b) 3XY(X =Y —e(X) =e(Y)).

Axiom (a) is, essentially, Hilbert's epsilon axiom, and (b) is Ackermann’s exten-
sionality principle (cf. [1]). A formulation and discussion of a principle similar to
axiom (a) within a framework resembling the present one may be found in [4].

Define the universal concept V =4 x~.x = x. Then we have

2.2. CoroLLARY (the well-ordering principle). We can construct a relation R
from & such that

F(¢) - WO(R) AField(R) = V.

ProOOF. We apply the Zermelo-Bourbaki lemma in & (¢) with S the second-level
concept X ~(3x.—xnX) and ¢ the term given by #(X) =4 &(x~.—~xnX). Arguing
in # (&), we obtain a well-ordering R with field M such that, writing m for (M),

(%) Ix.—xnM — mnM .

But from condition (a) above we have, writing M’ for x~.—~xyM and noting that
e(M') =m,
) Ix.~xnM — Ix.xpM' — e(M' )qM' — -myM .

We conclude from this and (x) that Vx.xyM. Thus M = V, and the result is
proved. |
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§3. Extensions of concepts and Frege’s theorem. We form the system &, by
adding to &
e a term e such that e(z) is well-formed and of sort I for any concept term
7, and
e a predicate symbol E such that E(7) is well-formed for any concept term
T’
and the axioms

(Ext;) YoVo[E (v) A E(w) — [e(v) = e(w) < v = o]],

(Ext,) YoVwl[E(v) Av = w — E(w)],

where v, w are concept variables of the same sort.

If we think of e(z) as an object representing t, (Ext;) expresses the idea that
extensional equality of concepts satisfying E is equivalent to identity of their rep-
resenting objects. That is, for any concept 7 satisfying E, e(r) may be regarded
as the extension of 7. And the predicate E represents the property of possessing
an extension. As for (Ext,), it states the reasonable requirement that any concept
extensionally equivalent to a concept possessing an extension itself possesses one
(that is, = is a congruence relation with respect to E). If &, + —E(z), we shall
say that the concept t does not possess an extension.

Now a short Russell-type argument (which we leave to the reader) in &, shows
that the non-self-predication concept

x"[BX(E(X)Ae(X) =xA-xnX)]
does not possess an extension. And nor, indeed, does the well-foundedness concept
WF =g x"[VX[Vy[y E X — ynX] — xnX]],

where y C X stands for 3Y[E(Y) Ae(Y) =y AY C X]. Since the argument in
this case is more intricate, here it is.

Suppose that, arguing in #,, E(WF); let a = ¢(WF). It is then easy to see that
an WF. Now let U =4 x~.x # a. If y C U, then, for some ¥, E(Y),e(Y) =y
and Y C U, ie. —anY. If y = a, then e(WF) = e(Y), whence WF = 7,
so since an WF we would have anY, a contradiction. So we have shown that
y C U — y #a— ynU. Therefore WF C U, since ~anU it follows that ~an WF.
This contradiction shows that WF does not possess an extension.

Since we have shown that not all concepts can possess extensions, it is natural to
ask what concepts we need require to possess extensions in order to be able to carry
out essential mathematical constructions in %,: in particular, the construction of
the natural number system. It was Frege’s remarkable discovery that for this it
suffices just to assume that extensions are possessed by the members of a certain
class of simple and natural second-level concepts, those that, following Boolos [3],

avemn Al Al bmvaan ciivcannwla]
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Numerical concepts are defined as follows. First we define the relations Bij and
~ of bijectivity and equinumerosity as usual:

Bii(Z, X, Y) & Vxy[(xy)nZ — sy X A yyY]
AVxyz[(xyInZ A (xz)nZ — y = z]
AVx[xnX — 3y.(xy)nZ] AVl Y — 3x.(xy)n 2],
X ~ Y &4 3ZBij(Z, X, Y).

Notethat ¥ FX =Y — XY ~ Y. With any basic concept X we associate the
second-level concept

IX[| = ¥"X ~ Y.

Concepts of the form ||X || are called numerical.

If we assume that every numerical concept possesses an extension, i.e.
VXE(||X]), then the extension |X| =y e(]| X 1) is called the cardinal number of Xx.
Objects of the form |X| are called cardinal numbers. Under these conditions it is

easy to derive what Boolos [3] calls Hume's principle, viz.
VXY[X 2 Y & |X| =|Y]].
We make the following definitions.

X is (Dedekind) infinite g IY[Y CXA(Y=X)AX »~ Vil
X is an infinite number <df IX[X is infinite A x = | X1,
X is infinite <4 Field(X) is infinite.

Clearly,
F + Xinfinite N\ X ~ Y — Yinfinite.

Let 5 be the system obtained from . by adding the axiom VXE (1X]). As
a corollary to the Zermelo-Bourbaki lemma we derive

3.1. FREGE’S THEOREM. In F* we can prove that there exists both an infinite
well-ordering and an infinite number.

PROOF. Arguing in *, we apply the Zermelo-Bourbaki lemma with S the
universal second-level concept XX = X and ¢(X) =4 |X|. We obtain a well-
ordering F such that, writing M for Field(F), and m for |M|,

Vx(xyM — |F,| = x) and myM .

Then |M| =m = |F,,|, whence F, ~ M. Since -mnF, by definition, it follows
that M, and hence F and m, are infinite. L]

In the Grundlagen Frege outlines a proof (reconstructed in detail in [3]), from
principles similar to those laid down in F*, of the existence of the natural number
system. We now show how this fact can be derived within * from our version of
Frege’s theorem. We show, moreover, that the infinite well-ordering F constructed
in the proof of Frege’s theorem is of order type w + 1.
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We first establish in & a special case of the Schrider-Bernstein theorem (in point
of fact equivalent to it), viz., the
3.2. EQUINUMEROSITY THEOREM.

FEYXVZXC Y AYS LA w8 = Y = Z}

ProoOF. The assertion here is the formulation within & of Lemma 5.1.1 of [9].
To prove it within & we simply adapt and condense the proof given in [9]. Thus
suppose that X C Y C Z and Bij(R, Z, X). Define

R[U] =4 y " [Bx.xnU A (xy)nR],
Clg[U] =4r x~ VYU € Y AR[Y]C Y] — xnY]].

Then if we define
S =4t (xy)"[(xy)nR A xnClg[Z — Y]]V [x =y A xn(Z — Clg[Z — Y]]

it can be shown without difficulty that Bij(S, Z, Y), whence Y = Z. 5]

3.3. COROLLARY. F F Xinfinite N xnX — X = X — [x].

PrOOF. Arguing in &, if X is infinite then there is Y C X such that (X = Y)
and Y ~ X. Suppose now that xnX. We consider two cases. 1) =x7Y. In this
case Y C X —[x] € X and X — [x] = X by the equinumerosity theorem. 2)
xnY. In this case choose yn(X — Y). Then (Y —[x)UDIC X —[x]C X and
it follows easily from Y ~ X that also (Y —[x]) Uyl = X. The equinumerosity
theorem again yields X ~ X — [x]. |

Now write M for the field of the infinite well-ordering F obtained in the proof
of Frege’s theorem, and m for |M |. We recall that ¥~ F mnM. We shall write
x < y for (xy)nF and x <y for x <yAx#Y.

3.4. PROPOSITION. F * |- m is the <-largest “element” of M.

PrOOF. Arguingin F*,if m < x, then F,, CF, C M. Butm=|F,|=|M]|,so
that F,, ~ M. It follows from the equinumerosity theorem that F, = M, whence
x =|E,|=|M|=m. u

Now define 0 =4 |x~.x # x|. Then clearly we can prove in & * that 0 is the least
element of M. We also define x* =q4¢ |[F*|. If x with xyM has an F-successor,
then clearly x™ is its immediate successor. This suggests that we define

X is inductive <4 X C M AOpX AVx(xnX — xtnX).

3.5. PROPOSITION. (i) F*Fx<m — xT <m.

(ii) F*Fm* =m.

(iii) F*F x* =yt 2=y,

Proor. Throughout, we argue in & .

(i) Suppose x* = m. Then [M| = |E *|, so that F* is infinite. It now follows
from 3.3 that F, = F* — [x] =~ F*, whence x = |F,| = |E*| = |M]|=m.

(ii) We have |M| = m = |F,,|, so, since F,, < F™ C M, the equinumerosity
theorem implies that F™ ~ M, whence mt = |M|=m.

(iii) If x, y < m, then (iii) follows from the fact that in this case x (y*) is the
immediate successor of x (y). On the other hand if, say, y = m, then x* = m*
and (ii) gives m = m* = x*. Unless x = m we would violate (i). L]
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3.6. PROPOSITION. F * + F, is inductive.

ProOF. We have (arguing in *) OyF,,, since if m = 0 then |M| = |Ro,
but R, cannot be infinite since it is empty. The rest follows immediately from
3.5(1). [ |

Define the natural number concept N by

N =4 x VX (X inductive — xnX).

Clearly N is the least inductive concept. It follows immediately from the definitions
of 0 and N and from 3.5(iii) that N satisfies Peano’s axioms, ie.

F* HYxy[xyN AygN — (0 # xT) A (x* =y" = x =y)]
AVX[X inductive — N C X].

3.7. PROPOSITION. F* b N is an initial segment of M.
ProoOF. For this it suffices to show that, arguing in &,

A =4 x"Vy(y < x — ygN)

is inductive. Clearly, OnA. If x74, then x7N, and so x*nN. Now ¥ St
either y = x* or y < x, and in either case y7N. So x*yA, and 4 is inductive. W

3.8. PROPOSITION. F*F N =F, Am=|N|.

PROOF. Arguing in &*, clearly N C F,, since the latter is inductive (3.6).
Now let @ be the <-least “element” of M — N (which must exist since ~mnN ).
Then, since N is an initial segment of M (3.7), we have F, = N. Therefore
Bij(R,F“, F,), where

R=4 (xy) [(x=aAy=0)V(xNAy=x")]

(i.e. R is “the graph of the map a ~ 0, x ~~ x*”). So F* ~ F,, whence a* = a.
If a < m, then a # a™*, since a™ is in this case the immediate successor of a.
Accordinglya =mand N=F,=F,,. |

From 3.8 and 3.4 and the fact that N satisfies Peano’s axioms we immediately
obtain

3.9. THEOREM. & * - M has order type w + 1. |

REMARK. Since, as is well known, Frege’s system as originally presented in the
Grundgesetze was inconsistent, we should assure ourselves that ™ is consistent.
The easiest way to see this is by noting that the following set-theoretic interpre-
tations yield a model of the axioms of #*. To wit, interpret sort I as w + 1, sort
Il as P(w + 1), sort Il as P((w + 1) x (@ + 1)), sort IV as PP(w+1), sort V as
PP((w + 1) x (w + 1)), E as the subset of PP(w + 1) consisting of all elements
of the form ||X|| =4 {Y € P(w + 1): X and Y have the same cardinality}, 7
as the membership relation, and e as the map PP(w + 1) — w + 1 which sends
each || X|| with X € P(w + 1) to the cardinality |X| of X, and everything else to
&. Thus the axioms of & * may be regarded as a consistent fragment of Frege’s
original system.
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§4. Ordinals and the axioms of set theory in &,. It is natural to apply the
Zermelo-Bourbaki lemma within F. when t is the extension term ¢ and S the

second level concept X ~.E(X) corresponding to the possession of an extension.
We obtain a well-ordering W with field W for which we can prove in &, that

(w,) VW — E(W,) Ae(W,) = x],

(w,) E(W)—e(W)qw.

In a natural sense, W turns out to be the concept in F, corresponding to the
(von Neumann) ordinals. To see this, we need to make the following definitions in
. (into which we introduce some obvious notational abbreviations):

set(x) <4r IX[E(X) A elX) = x|,
x €y w4 IY[E(Y) Ae(Y) =y AxqY),
x &y &4 -x €y,
{x:8(x)} =q4r e(x"¢(x)),
XCxe4 XCy yex,
trans(x) <qr set(x) AVy € x.set(y) AVy € xVz € y.z € x,
EWO(X)@deyEX.y¢y/\waz Exlweyryez - wez]
/\VyzEx[yEsz:szEy]
AVX[X C x A3y.ypX — IybmX AVz[znX — y € z111,
Ord(x) <4 trans(x) A € WO(x).

Here set(x) asserts that x is a set, i.e. an object arising as the extension of a
concept possessing one, € is the membership relation, trans(x) asserts that x is
a transitive sets of sets, € WO(X) asserts that the membership relation on x is a
(strict) well-ordering, and Ord(x) asserts that x is an ordinal.

We shall need the following fact.

4.1 LEMMA. Z, I Vx[set(x) « Ey"yex)Ax={y:ye x}].

PROOF. Argue in %,. Clearly the right-hand side of the equivalence implies
the left-hand side. Conversely, assuming set(x), let X be such that E (X) and
e(X) = X. Then

yE€x o 3IY[E(Y)Ne(Y)=xAypY] o pyX.

Soy~.y € X = X, whence E(y~.y €x)and x =e(X) =e(y"yex)={y:y € x}.
|
In the statement and proof of the theorem that follows, we write x < y for
xn W, (equivalently, (xy)y W A x % pl.
THEOREM 4.2. In Fe the following are provable:
(i) ~E(W),
(i) < is the membership relation on W, i.e.

VXYW AW — [x <y & x € y]],

(iii) W = x~. Ord(x).
PRrOOF. Throughout, we argue in P



218 J. L. BELL

(i) Assume E(W). Then, writing p for e( W), we have pnW by (W>). Hence
E(W,) and e(W,) = p =e(W) by (W)). It follows that W,=W,so pnW
gives pnW ,, a contradiction.

(i) Suppose xyW and yyW. If x < y, then, since E(W,)and e(W,) = y
(by (W1)), it follows that x € y. Conversely, if x € », then for some Y we have
E(Y),e(Y) =y and xyY. But since ynW, we have y = e(W ) = e(Y), whence
W, =Y. Since xnY, it follows that xy W . '

(iii) We have to show that, for any a,

(%) anW < Ord(a).

Suppose first that ay W. We need to show that (a)trans(a), and (b) eWO(a). We
observe that (a) follows from (a), (7), (5) below.

(@) set(a) by (W)).

(B) Vx € a.xyW, since x € a — xnW, — xpW.

() Vx € a.set(x), since x € a — xpW — set(x) by (a) and (p).

(0) Vx € aVy € x.y € a. For if x € a and Y € x, then xyW and yyW by (f).
Hence x < a and y < x by (ii), so y < a since < (i.e. W) is an ordering. Thus
y € a by (ii). This proves (d), and so we have (a).

As for (b), we observe first that, if x € a, then xnW by () above; since —(x < x)
it follows that x ¢ e(W,) = x. The remaining conjuncts in the definition of
€ WO(a) follow from the fact that < is a well-ordering which, when restricted to
x7.x € a, coincides with the relation induced by € there.

Before proving the reverse implication in (), note that, by the proof of the
Zermelo-Bourbaki lemma,

(xx) W includes the field of every well-ordering X such that

Vx[xn Field(X) — E(X ) A x = e(X,)].

—X

Now suppose that Ord(a). Define
S=4 (xy)'\[[xéa/\yea/\[xGny=y]]v[x€a/\y=a]\/x=y:a]].

Then S is “the €-relation on x“(x € a V x = a)”, and from € WO(a) it follows
easily that WO(S). Also, if x5 Field(S), then x € ¢ or x — a, so set(x) in either
case; since S, = y~.y € x it follows from 4.1 that E(S,)and e(S,)={y:y€
x} = x. Therefore, by (x«), Field(S) C W. But clearly an Field(S), so anW .
This proves (iii). [ |

From (iii) of this theorem, we see that, as claimed, W is (extensionally equiv-
alent to) the ordinal concept. However, it is consistent to assume, even in 7 *,
that W is the empty concept. To see this, observe that it is easily proved in #,
that W is nonempty iff the empty concept x.x # x has an extension. But in
the model of 7* presented at the end of §3, it is clear that the interpretation of
no concept possessing an extension is empty. So “W is nonempty” fails in this
model.
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Accordingly, to make W nonempty we need to postulate the empty set axiom,
which in &, takes the form

E( % 8£%);

Next, how can we ensure that W is unbounded? Of course, W is already
“unbounded” in the sense that it does not possess an extension, but this, as we
have seen, is consistent with W being empty. There are two more natural senses
in which W could be deemed unbounded (assuming it is nonempty): (1) W has
no largest “element”, or (2) no subset of W is cofinal in W, i.e., for any subset
a of W, there is an “element” of W larger than every element of a.

Using the fact (4.2(ii)) that the well-ordering on W is €, it is easily shown that
the derivability of (1) in &, is ensured by postulating the axiom of successor sets,
which here takes the form

Vx[set(x) = E(y"(y € x Vy = x))],
and that of (2) is ensured by postulating the axiom of unions, viz.
Vx[set(x) AVy € x.set(y) — E(z"(3y € x.z € y))].

Writing @ for e(x~.x # x) and s(x) for e(y~(y € x Vy = x)), it is now
easily proved in &, from the axioms of empty set and successor sets that the
“correspondence” x ~+ s(x) establishes a bijection of W with a subconcept of
W — [2], so that W is infinite. This enables the natural numbers to be defined in
F. as ordinals in the customary way, Viz.,

N* =g x"[VX[X C W A2nX AVy(ynX — s(y)nX)] — xnX].

Since N * may not possess an extension, to ensure that it does we have no alternative
but simply to postulate the axiom of infinity, viz. E(N*).

The three “set-theoretic” axioms—empty set, successor sets, and infinity—
together guarantee in %, that all ordinal numbers < w + w exist. This is to be
contrasted with the fact that the single additional hypothesis in & *—that numerical
concepts possess extensions—guarantees the existence of all numbers < w + 1.
As far as providing a foundation for arithmetic is concerned, assuming the latter
hypothesis seems a more elegant and less ad hoc expedient than the postulation
of piecemeal set-theoretic axioms.

§5. Defining the extension predicate. It is natural to ask whether there is any
reasonable way of defining the extension predicate E within & . One possibility is
suggested by von Neumann's maximum principle (cf. [8, p. 288], (1)) which in F,
would amount to the following axiom:

(VN) VX[E(X) & ~(X =~ V)].

(A discussion of a similar principle may be found in [2].) As observed in [8], (VN)
is an extraordinarily powerful principle. From it one immediately derives in Z,:
e the well-ordering principle (2.2): V can be well-ordered. For ~E(W) and

so W ~ V; since W is well-ordered, V' can be well-ordered.
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o the axiom of separation: X C Y NE(Y) — E(X). For if =E(X) then
X ~ V,soifalso X C Y then Y = V by the equinumerosity theorem, so
-E(Y).
e the (weak) axiom of replacement: E(X)ANX =Y — E(Y).
(In fact, note that, using the well-ordering principle, it can be shown that the
counterpart of the full axiom of replacement can be derived from (VN).)
Observe that (VN), together with the “set-theoretic” axioms of the previous
section, may be consistently added to . To see this, note that the following set-
theoretic interpretations yield a model of the resulting theory. Let s be a strongly
inaccessible cardinal, and for each ordinal « write R(a) for the set of sets of rank
< a. (Then R(k + 1) is a model of Morse-Kelley set theory.) Now interpret sort
I as R(k), sort IT as R(x + 1), sort III as P(R(x) x R(k)), sort IV as R(k +2),
sort V as PP(R(x) x R(x)), E as R(k) U{||X|| : X € R(x + 1) — {@}}, where
|X||={Y €R(k+1):X and Y have the same cardinality}, » as the membership
relation, and finally e as the map defined as follows: e|R(x) = identity, e(|| X)) =
cardinality of X if X # @ and cardinality of X <, e(|| X||) = some fixed element
a € R(k) not a cardinal if cardinality of X = &, and e(U) = @ for any U not of
the previous forms.
In conclusion, we note that another possible way of defining E would be to
stipulate:

(1) VX[E(X) & 3Y[YCMAX = Y]],

where M is the (countable) well-ordered concept obtained in the proof of Frege’s
theorem. This stipulation makes all (basic) concepts possessing extensions count-
able and, like (VN), can be shown to be consistent with F* and all the “set-
theoretical” axioms we have introduced. Unlike (VN), however, (1) is not con-
sistent with the counterpart of the power set axiom in Z., since, by Cantor’s
theorem (which is easily provable in %), the “power concept” of M could not
be equinumerous with a subconcept of M. Nonetheless, (1) would seem to be a
perfectly sound principle on which to base a theory of the countable.
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