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A restricted second-order language is obtained by taking a first-order language
and adding a collection of one place predicate (set) variables which are then interpre-
ted as ranging over sets of individuals of less than some prescribed power(s). Let L
be such a language, and let us say that a cardinal x is weakly L-compact if a set
of sentences of L of power < x has a model whenever every subset of power <
has a model. In this paper we investigate the properties of weakly L-compact
inaccessible cardinals: our first result (Theorem 1) is that, if L has set variables
ranging over sets of individuals of power < R,, and if x is an inaccessible < the
first measurable cardinal, then « is weakly L-compact only if « is weakly compact
in the usual sense. We also obtain (in Theorem 2) a somewhat weaker conclusion
when x > the first measurable cardinal.

DEeFINITION 1. Let a be an ordinal. W, is the restricted second-order language
with set v‘griables Vo, V1, ... ranging over sets of individuals of power < X.. W'
is the restricted second-order language with set variables VO, v®, .. for each
¢ < a ranging over sets of individuals of power < R,.

Evidently W' is translatable into Lo, «, and W, is translatable into Lo, o
where L,; is the infinitary language which allows conjunctions and disjunctions of
sequences of formulas of length < x, and quantifications of sequences of variables
of length < A.

DEFINITION 2. A cardinal x is said to be weakly W,_ (W?_) compact if, whenever
Z'is a set of sentences of W, (W) of power < « such that each subset of X of power
< k has a model, then X itself has a model.

DEFINITION 3. Let «f and 9 be structures. An elementary embedding f of <7
in B is said to be a W,_ (W,-) elementary embedding if, for each formula @ of
W, (W2) without free second-order variables and each sequence @ of elements of A4,
we have o |= o [a] if and only if B|=o Lf @].
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DErFINITION 4. If & is an ordinal and x is a cardinal the predicate In (¢, k) is
defined by recursion as follows:

In (0, x) <>k 1is inaccessible,
In(¢+1,k)<=In( k) & Ma<w)@Ff<w)la<p & In( B
for limit A, In (4, ¥) < (V& < D In (&, k).

DEFINITION 5. y, is the first (uncountable) measurable cardinal.
We shall use the following result, more or less implicit in Reinhardt [1], which
was brought to our attention by George Wilmers.

RESULT 1. Let x be a cardinal and f an elementary embedding of {(R,, €) into
a transitive structure {4, €). If f moves some ordinal, then the first such ordinal
is a measurable cardinal (> w).

Our first theorem asserts that weak W, -compactness for some a1 entails
weak compactness, at least for inaccessible cardinals < p,.

THEOREM 1. If Kk < po, Kk is inaccessible and weakly W,-compact for some
a =1, then x is weakly compact.

Proof. We prove that under these conditions x is H: -indescribable; by Silver

[2] it is sufficient to show that
(%) if U< R,, then {R,, e, U) has an elementary extension {4, e, V>, where
A is transitive and x € 4.

Let {c, :a€ R,} be a set of individual constants to match the members of R,
and let ¢ be a constant distinct from all the ¢,. Now let X be the union of the W,
theory of {(R,,€, U, {a:ae R,}) with the set of sentences which say that ¢ is an
ordinal and it is bigger than ¢, for each £ < . Since x is inaccessible, card (R,) =
= i so that card (X) = k. Each subset of X of power < x clearly has a model,
namely {R,, €, U) with the constants interpreted appropriately, so, since x is weakly
W compact, X itself has a model, <3 say. Since the well-foundedness of € can be
expressed by a sentence of W,, and this sentence holds in {R,, €, U}, it follows that
B is well-founded. And since 13 is also a model of the axiom of extensionality, there
is a collapsing isomorphism g of 13 onto a transitive structure {4, €, V). If f is the
composition of g with the elementary embedding of {(R,, €, U) into }3 which exists
by construction, then f is an elementary embedding of {(R,, e, U) into {4, €&, V).
Since x < yo, Result 1 implies that f must leave all ordinals < x fixed so that f
is the identity on R,. The denotation of ¢ in {4, €, ¥} is an ordinal with at least x
predecessors so, since A is transitive, k € A. This proves (x). The proof of the theorem
is completed by observing that each 7 :-indescribable cardinal is weakly compact.

Clearly Theorem 1 holds when “W,” is replaced by “W)” and “a>1" by
“a=2".

Our next result gives some information about the properties of weakly W, -
-compact cardinals when x > u,.
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THEOREM 2. If Kk > po, k is inaccessible and weakly W:-compact for some
a=k, then In (uo, K).
The proof of this theorem breaks down into several lemmas.

LeMMA 1. If A is transitive and &, x € A then
In (¢, &) = {4, € =T [{, «].
Proof. Easy, by transfinite induction on (.

LEMMA 2. Under the conditions of Theorem 2, there is a transitive set A such
that k€ A and an elementary embedding f: (R, €) -><{A, €) such that f“ k< k.

Proof. The proof is similar to that of Theorem 1, only a trifle more delicate.
Again let {c,:ae R} be a set of individual constants to match the members of
R,, and let ¢ be a constant distinct from all the c,. Let X be the union of the W,
theory of {R,, €, {a: a € R,}> with the set of sentences asserting that ¢ is an ordinal
and that it is bigger than ¢, for each ¢ < k. Since x is inaccessible, card (R,) = x
and so card (X) = k. As in the proof of Theorem 1, since x is weakly W ! -compact
for some a >k, and a fortiori weakly W' -compact, there is a model 53 of X' and
a collapsing isomorphism g of 3 onto a transitive structure {4, €) = <{. Now
g(c) is an ordinal in <{, and, for each ¢ <x, cgﬁ) < (V) ¢l¥), Therefore
g(cg%)) < g () for each & <« so that g(c{P) has at least x predecessors.
Hence g (c/®) > «; since A4 is transitive, x € A. It is clear from the construction
of B that the map h: R, - B defined by setting 4 (a) = c{ﬂ%l for each ae R, is
a W -elementary embedding of {R,, €) into )3, so that f=gohis a W !-elementary
embedding of {(R,, €) into {4, €). We finally show that f“ k< x. If £ < k, then

(R, &) =V Vu(ue v VTP ) €],
where @, = card ({) < x. Hence since f is a W -elementary embedding,
AFEIVIIVu(ue v VIV W) [£(©)].
Since A is transitive, it follows that card (f(&))<w, < « so that f(£) < «. This
completes the proof of Lemma 2.

Proof of Theorem 2. By Lemma 2, under the conditions of the Theorem,
there is a transitive set 4 such that k€ 4 and an elementary embedding, f, of
{R,,€> into (A, €) such that f* x< x. We now show, by induction on ¢, that
& < po = In (&, k), from which we infer that In (o, k). We know that In (0, K)
and the induction step for limit ¢ is trivial. Suppose then that { < uo and In (¢, x).
By Lemma 1, {4,€) F=In [ «] and, for each § < x we know that f(B) < .

Therefore, since x € A, we have

A,ep=u(v, <u & In(vo,w) & f(B].

Since & < o, Result 1 implies that f(§) =& and a fortiori {€f* R,. Because
{f*“ Ry, €) < (A, €) it follows that

f“Roe>Fu(v,<u & In(vo,u) S (B).
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Hence, since {f“ R,,€) =~ {(R,,€> we have

R & FIu(v,<u & In(ve,u)lE Al

But In is obviously absolute with respect to natural models, so we infer that

Ir<klf<y & In(y)
which implies that In ({+1, ), completing the induction step and the proof.

Note. In view of the well-known fact that the first weakly compact inaccessible
is smaller than the first measurable, it follows from Theorem 1 that the first weakly
W -compact inaccessible cardinal coincides with the first weakly compact inaccessible.
In fact it is clear from this theorem that the properties of weak compactness and
weak W,-compactness coincide for inaccessible cardinals < the first measurable
cardinal. Whether this result holds without restriction on the size of the cardinal
is still au open question, as in the weaker problem of whether every weakly
W.-compact inaccessible cardinal x is weakly compact.

In conclusion, T would like to express my gratitude to George Wilmers for his
stimulating observations on the contents of this paper and in particular for
communicating Result 1 to me, and to Professor A. Mostowski, who very generously
read a preliminary draft of this paper, and made several valuable suggestions.
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