BULLETIN DE L'ACADÉMIE POLONAISE DES SCIENCES Série des sciences math., astr. et phys. — Vol. XVIII, No. 3, 1970

M A T H E M A T I C S
(LOGIC AND FOUNDATIONS)

Weak Compactness in Restricted Second-order Languages

by

J. L. BELL

Presented by A. MOSTOWSKI on November 7, 1969

A restricted second-order language is obtained by taking a first-order language and adding a collection of one place predicate (set) variables which are then interpreted as ranging over sets of individuals of less than some prescribed power(s). Let L be such a language, and let us say that a cardinal κ is weakly L-compact if a set of sentences of L of power $\leq \kappa$ has a model whenever every subset of power $< \kappa$ has a model. In this paper we investigate the properties of weakly L-compact inaccessible cardinals: our first result (Theorem 1) is that, if L has set variables ranging over sets of individuals of power $< \aleph_1$, and if κ is an inaccessible \leq the first measurable cardinal, then κ is weakly L-compact only if κ is weakly compact in the usual sense. We also obtain (in Theorem 2) a somewhat weaker conclusion when $\kappa \geq$ the first measurable cardinal.

DEFINITION 1. Let a be an ordinal. W_{α} is the restricted second-order language with set variables V_0 , V_1 , ... ranging over sets of individuals of power $\langle \aleph_{\alpha}, W_{\alpha}^* \rangle$ is the restricted second-order language with set variables $V_0^{(\xi)}$, $V_1^{(\xi)}$, ... for each $\xi < a$ ranging over sets of individuals of power $\langle \aleph_{\xi} \rangle$.

Evidently W_{α}^* is translatable into $L_{\omega_{\alpha}\omega_{\alpha}}$ and W_{α} is translatable into $L_{\omega_{\alpha+1}\omega_{\alpha}}$, where $L_{\kappa\lambda}$ is the infinitary language which allows conjunctions and disjunctions of sequences of formulas of length $< \kappa$, and quantifications of sequences of variables of length $< \lambda$.

DEFINITION 2. A cardinal κ is said to be weakly $W_{\alpha-}(W_{\alpha-}^*)$ compact if, whenever Σ is a set of sentences of $W_{\alpha}(W_{\alpha}^*)$ of power $\leq \kappa$ such that each subset of Σ of power $< \kappa$ has a model, then Σ itself has a model.

DEFINITION 3. Let \mathcal{A} and \mathcal{B} be structures. An elementary embedding f of \mathcal{A} in \mathcal{B} is said to be a $W_{\alpha-}(W_{\alpha-}^*)$ elementary embedding if, for each formula Φ of $W_{\alpha}(W_{\alpha}^*)$ without free second-order variables and each sequence \tilde{a} of elements of A, we have $\mathcal{A} \models \Phi[\tilde{a}]$ if and only if $B \models \Phi[f(\tilde{a})]$.

DEFINITION 4. If ξ is an ordinal and κ is a cardinal the predicate In (ξ, κ) is defined by recursion as follows:

In $(0, \kappa) \Leftrightarrow \kappa$ is inaccessible,

In $(\xi+1, \kappa) \Leftrightarrow$ In (ξ, κ) & $(\forall a < \kappa) (\exists \beta < \kappa) [a < \beta$ & In (ξ, β)] for limit λ , In $(\lambda, \kappa) \Leftrightarrow (\forall \xi < \lambda)$ In (ξ, κ) .

Definition 5. μ_0 is the first (uncountable) measurable cardinal.

We shall use the following result, more or less implicit in Reinhardt [1], which was brought to our attention by George Wilmers.

RESULT 1. Let κ be a cardinal and f an elementary embedding of $\langle R_{\kappa}, \in \rangle$ into a transitive structure $\langle A, \in \rangle$. If f moves some ordinal, then the first such ordinal is a measurable cardinal $(> \omega)$.

Our first theorem asserts that weak W_{α} -compactness for some $\alpha \ge 1$ entails weak compactness, at least for inaccessible cardinals $\le \mu_0$.

THEOREM 1. If $\kappa \leqslant \mu_0$, κ is inaccessible and weakly W_α -compact for some $a \geqslant 1$, then κ is weakly compact.

Proof. We prove that under these conditions κ is Π_1^{\prime} -indescribable; by Silver [2] it is sufficient to show that

(*) if $U \subseteq R_{\kappa}$, then $\langle R_{\kappa}, \in, U \rangle$ has an elementary extension $\langle A, \in, V \rangle$, where A is transitive and $\kappa \in A$.

Let $\{c_a: a \in R_{\kappa}\}$ be a set of individual constants to match the members of R_{κ} and let c be a constant distinct from all the c_a . Now let Σ be the union of the W_a theory of $\langle R_{\kappa}, \in, U, \{a: a \in R_{\kappa}\} \rangle$ with the set of sentences which say that c is an ordinal and it is bigger than c_{ξ} for each $\xi < \kappa$. Since κ is inaccessible, card $(R_{\kappa}) =$ $= \kappa$ so that card $(\Sigma) = \kappa$. Each subset of Σ of power $< \kappa$ clearly has a model, namely $\langle R_{\kappa}, \in, U \rangle$ with the constants interpreted appropriately, so, since κ is weakly W_a -compact, Σ itself has a model, \Re say. Since the well-foundedness of \in can be expressed by a sentence of W_{α} , and this sentence holds in $\langle R_{\kappa}, \in, U \rangle$, it follows that \mathfrak{P} is well-founded. And since \mathfrak{P} is also a model of the axiom of extensionality, there is a collapsing isomorphism g of \mathfrak{B} onto a transitive structure $\langle A, \in, V \rangle$. If f is the composition of g with the elementary embedding of $\langle R_{\kappa}, \in, U \rangle$ into \Re which exists by construction, then f is an elementary embedding of $\langle R_{\kappa}, \epsilon, U \rangle$ into $\langle A, \epsilon, V \rangle$. Since $\kappa \leq \mu_0$, Result 1 implies that f must leave all ordinals $< \kappa$ fixed so that f is the identity on R_{κ} . The denotation of c in $\langle A, \in, V \rangle$ is an ordinal with at least κ predecessors so, since A is transitive, $\kappa \in A$. This proves (*). The proof of the theorem is completed by observing that each Π_1^1 -indescribable cardinal is weakly compact.

Clearly Theorem 1 holds when " W_{α} " is replaced by " W_{α}^{*} " and " $\alpha \ge 1$ " by " $\alpha \ge 2$ ".

Our next result gives some information about the properties of weakly W_{α}^* -compact cardinals when $\kappa > \mu_0$.

THEOREM 2. If $\kappa > \mu_0$, κ is inaccessible and weakly W_{α}^* -compact for some $\alpha \geqslant \kappa$, then In (μ_0, κ) .

The proof of this theorem breaks down into several lemmas.

LEMMA 1. If A is transitive and $\xi, \kappa \in A$ then

In
$$(\xi, \kappa) \Rightarrow \langle A, \epsilon \rangle \models$$
 In $[\xi, \kappa]$.

Proof. Easy, by transfinite induction on ξ .

LEMMA 2. Under the conditions of Theorem 2, there is a transitive set A such that $\kappa \in A$ and an elementary embedding $f: \langle R_{\kappa}, \in \rangle \dashrightarrow \langle A, \in \rangle$ such that $f'' \kappa \subseteq \kappa$.

Proof. The proof is similar to that of Theorem 1, only a trifle more delicate. Again let $\{c_a: a \in R_\kappa\}$ be a set of individual constants to match the members of R_κ , and let c be a constant distinct from all the c_a . Let Σ be the union of the W_κ^* theory of $\langle R_\kappa, \in, \{a: a \in R_\kappa\} \rangle$ with the set of sentences asserting that c is an ordinal and that it is bigger than c_ξ for each $\xi < \kappa$. Since κ is inaccessible, card $(R_\kappa) = \kappa$ and so card $(\Sigma) = \kappa$. As in the proof of Theorem 1, since κ is weakly W_α^* -compact for some $a \geqslant \kappa$, and a fortiori weakly W_κ^* -compact, there is a model \mathfrak{B} of Σ and a collapsing isomorphism g of \mathfrak{B} onto a transitive structure $\langle A, \in \rangle = \mathfrak{L}$. Now $g(c^{(\mathfrak{B})})$ is an ordinal in \mathfrak{L} , and, for each $\xi < \kappa$, $c_{\xi}^{(\mathfrak{B})} < c_{\xi}^{(\mathfrak{B})} < c_{\xi}^{(\mathfrak{B})}$. Therefore $g(c_{\xi}^{(\mathfrak{B})}) < g(c_{\xi}^{(\mathfrak{B})})$ for each $\xi < \kappa$ so that $g(c_{\xi}^{(\mathfrak{B})})$ has at least κ predecessors. Hence $g(c_{\xi}^{(\mathfrak{B})}) \geqslant \kappa$; since A is transitive, $\kappa \in A$. It is clear from the construction of \mathfrak{B} that the map $h: R_\kappa \to B$ defined by setting $h(a) = c_{\xi}^{(\mathfrak{B})}$ for each $a \in R_\kappa$ is a W_κ^* -elementary embedding of $\langle R_\kappa, \varepsilon \rangle$ into \mathfrak{B} , so that $f = g \circ h$ is a W_κ^* -elementary embedding of $\langle R_\kappa, \varepsilon \rangle$ into $\langle A, \varepsilon \rangle$. We finally show that $f^* \kappa \subseteq \kappa$. If $\xi < \kappa$, then

$$\langle R_{\kappa}, \epsilon \rangle \models \exists V_0^{(\gamma+1)} \, \forall u \, (u \in v \leftrightarrow V_0^{(\gamma+1)}(u)) \, [\xi],$$

where $\omega_{\gamma} = \operatorname{card}(\xi) < \kappa$. Hence since f is a W_{κ}^* -elementary embedding,

$$\mathcal{Sl} \models \exists V_0^{(\gamma+1)} \, \forall u \, \big(u \in v \longleftrightarrow V_0^{(\gamma+1)} \, (u) \big) \, [f(\xi)].$$

Since A is transitive, it follows that card $(f(\xi)) \le \omega_{\gamma} < \kappa$ so that $f(\xi) < \kappa$. This completes the proof of Lemma 2.

Proof of Theorem 2. By Lemma 2, under the conditions of the Theorem, there is a transitive set A such that $\kappa \in A$ and an elementary embedding, f, of $\langle R_{\kappa}, \in \rangle$ into $\langle A, \in \rangle$ such that $f : \kappa \subseteq \kappa$. We now show, by induction on ξ , that $\xi < \mu_0 \Rightarrow \text{In } (\xi, \kappa)$, from which we infer that $\text{In } (\mu_0, \kappa)$. We know that $\text{In } (0, \kappa)$ and the induction step for limit ξ is trivial. Suppose then that $\xi < \mu_0$ and $\text{In } (\xi, \kappa)$. By Lemma 1, $\langle A, \in \rangle \models \text{In } [\xi, \kappa]$ and, for each $\beta < \kappa$ we know that $f(\beta) < \kappa$.

Therefore, since
$$\kappa \in A$$
, we have

$$\langle A, \epsilon \rangle \models \exists u (v_1 < u \& \operatorname{In} (v_0, u)) [\xi, f(\beta)].$$

Since $\xi < \mu_0$, Result 1 implies that $f(\xi) = \xi$ and a fortior $\xi \in f''(R_{\kappa})$. Because $\langle f''(R_{\kappa}, \epsilon) \rangle \prec \langle A, \epsilon \rangle$ it follows that

$$\langle f^{"}R_{\kappa}, \epsilon \rangle \models \exists u (v_1 < u \& \operatorname{In}(v_0, u)) [\xi, f(\beta)].$$

Hence, since $\langle f^{*} R_{\kappa}, \epsilon \rangle \cong \langle R_{\kappa}, \epsilon \rangle$ we have

$$\langle R_{\kappa}, \epsilon \rangle \models \exists u (v_1 < u \& \operatorname{In} (v_0, u)) [\xi, \beta].$$

But In is obviously absolute with respect to natural models, so we infer that

$$\exists \gamma < \kappa \ [\beta < \gamma \quad \& \quad \text{In} \ (\xi, \gamma)]$$

which implies that In $(\xi+1, \kappa)$, completing the induction step and the proof.

Note. In view of the well-known fact that the first weakly compact inaccessible is smaller than the first measurable, it follows from Theorem 1 that the first weakly W_1 -compact inaccessible cardinal coincides with the first weakly compact inaccessible. In fact it is clear from this theorem that the properties of weak compactness and weak W_1 -compactness coincide for inaccessible cardinals \leq the first measurable cardinal. Whether this result holds without restriction on the size of the cardinal is still an open question, as in the weaker problem of whether every weakly W_{κ}^* -compact inaccessible cardinal κ is weakly compact.

In conclusion, I would like to express my gratitude to George Wilmers for his stimulating observations on the contents of this paper and in particular for communicating Result 1 to me, and to Professor A. Mostowski, who very generously read a preliminary draft of this paper, and made several valuable suggestions.

DEPARTMENT OF MATHEMATICS, THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCES

REFERENCES

[1] W. Reinhardt, Conditions on natural models of set theory, Proc. 1967 U.C.L.A. Summer Institute, [to appear].

[2] J. Silver, Ph. D. Thesis, Berkeley, 1966.